
Available online at www.sciencedirect.com

Computers & Operations Research 31 (2004) 1033–1047
www.elsevier.com/locate/dsw

Generating trading rules on the stock markets with
genetic programming

Jean-Yves Potvina;c;∗, Patrick Sorianoa;b, Maxime Vall.eeb

aCentre de Recherche sur les Transports, Universit�e de Montr�eal, C.P. 6128, succ. Centre-ville, Montr�eal,
Qu�ebec, Canada H3C 3J7

bD�epartement d’Informatique et de Recherche Op�erationnelle, Universit�e de Montr�eal, C.P. 6128, succ. Centre-ville,
Montr�eal, Qu�ebec, Canada H3C 3J7

c �Ecole des Hautes �Etudes Commerciales, 3000 Chemin de la Côte-Sainte-Catherine, Montr�eal, Qu�ebec,
Canada H3T 2A7

Abstract

Technical analysis is aimed at devising trading rules capable of exploiting short-term 2uctuations on the
3nancial markets. Recent results indicate that this market timing approach may be a viable alternative to the
buy-and-hold approach, where the assets are kept over a relatively long time period. In this paper, we propose
genetic programming as a means to automatically generate such short-term trading rules on the stock markets.
Rather than using a composite stock index for this purpose, the trading rules are adjusted to individual stocks.
Computational results, based on historical pricing and transaction volume data, are reported for 14 Canadian
companies listed on the Toronto stock exchange market.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Trading rules; Stock markets; Technical analysis; Genetic programming

1. Introduction

In stock exchange markets, the “buy-and-hold” approach is a well-known strategy among traders.
Basically, if a company and its activity sector look promising, the trader buys and keeps his assets
over a relatively long time period. An alternative approach, known as market timing, is more dy-
namic and focuses on short-term 2uctuations. Through technical analysis, trading rules are devised
to generate appropriate buying and selling signals over short time periods. The purpose of this pa-
per is to demonstrate that genetic programming, a recent development in the 3eld of evolutionary
algorithms, can be exploited to automatically generate such trading rules.

∗ Corresponding author.
E-mail address: jean-yues.potvin@umontreal.ca (J.-Y. Potvin).

0305-0548/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0305-0548(03)00063-7

mailto:jean-yues.potvin@umontreal.ca


1034 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

There is a fairly large literature related to technical analysis in various 3nancial domains. The 3rst
results in the 1960s and 1970s supported the “eDcient market hypothesis”, which states that there
should not be any discernable and exploitable pattern in the data, as 3nancial markets are eDcient
(Alexander [1], Fama and Blume [2], Fama [3], Jensen and Bennington [4]). Some recent results,
however, seem to indicate otherwise. For example, Pruitt and White [5] developed the CRISMA
trading system which showed positive returns over a 10-year period, based on transaction costs of
2%. Brock et al. [6], followed by Bessembinder and Chan [7], also demonstrated that simple trading
rules could be pro3table (but, without transaction costs). Other successful applications of technical
analysis in the currency exchange market may be found in Sweeney [8], Levich and Thomas [9]
and Osler and Chang [10].

Although interesting, these developments are based on a priori rules determined through technical
analysis. The emergence of new technologies, in particular evolutionary algorithms, now allows a
system to automatically generate and adapt trading rules to particular applications. Genetic algorithms
(Holland [11]), for example, have already been applied to a number of 3nancial applications (see, for
example, Bauer [12]). For learning trading rules, however, the genetic programming (GP) approach
of Koza [13] looks more promising, as it provides a 2exible framework for adjusting the trading
rules (which may be seen as ‘programs’) to the current environment. Although, the 3rst attempts
by Chen and Yeh [14] and Allen and Karjalainen [15] on the stock exchange markets did not show
any excess returns with regard to the buy-and-hold approach, other recent applications of GP are
more encouraging (Neely et al. [16], Neely and Weller [17], Marney et al. [18]), at least when the
notion of risk is not considered (Marney et al. [19]).

Our goal here is to explore once more the application of GP on stock exchange markets, but to
consider stocks oPered by individual companies, rather than global market indices (e.g., Dow Jones,
S&P 500), as it was done in previous studies. This approach looks more promising, given that each
rule generated through GP will now be adjusted to an individual stock or activity sector. Also, the
sale of stocks which the seller does not own will be allowed to take advantage of falling stock prices
(i.e., by later purchasing the stocks at a lower price, a pro3t is made). This has never been done
in the past because the implementation of simultaneous short sales in the case of a composite stock
index would have been very diDcult to realize. Another goal of this study is to identify markets
where the trading rules generated with GP are particularly indicated.

The remainder of the paper is the following. In the next section, we 3rst introduce the GP
paradigm. Then, its adaptation to our application domain is presented in Section 3. Computational
results obtained with the stocks of 14 Canadian companies operating in diPerent activity sectors are
reported in Section 4. The conclusion follows.

2. Genetic programming

Genetic programming (Koza [13], Koza [20], Koza et al. [21]) is a recent development in the 3eld
of evolutionary algorithms which extends classical genetic algorithms by allowing the processing of
non-linear structures. A genetic algorithm (Holland [11], Goldberg [22], Davis [23], Chambers [24],
Michalewicz [25]) is a randomized search procedure working on a population of individuals or
solutions encoded as linear bit strings. This population evolves over time through the application
of operators which mimic those found in nature, namely, selection of the 3ttest, crossover and



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1035

1 0 | 1 0 0 (parent 1)
0 0 | 1 1 1 (parent 2) 
____________________ 

1 0 1 1 1 (offspring 1)
0 0 1 0 0 (offspring 2)

Fig. 1. One-point crossover on two bit strings.

mutation. First, ”parent” chromosomes are selected in the population for reproduction. The selection
process is probabilistic and biased towards the best individuals (to propagate good solution features
to the next generation). Then, the crossover operator combines the characteristics of a pair of parent
chromosomes to create two new oPspring, in the hope that these oPspring will be better 3t than their
parents. An example of one-point crossover is shown in Fig. 1, where the cross point is randomly
chosen between the second and third bit. In this case, the end parts of the two parent chromosomes
are exchanged to create the oPspring.

Finally, the mutation operator is applied to each oPspring. This operator processes the oPspring
position by position and 2ips the bit value from 0 to 1, or from 1 to 0, with a small probability
at each position. Mutation is viewed as a “background” operator which slightly perturbs a small
proportion of solutions. Its primary goal is to maintain or restore diversity in the population and
to guarantee that every state of the search space is accessible from the current state. Through the
selection/crossover/mutation process, it is expected that an initial population of randomly generated
individuals will improve as parents are replaced by better oPspring.

Genetic programming extends the above paradigm by allowing the evolution of programs encoded
as tree structures. These programs are constructed from a prede3ned set of functions and terminals
(which may be variables, like the state variables of a particular system, or constants, like integer 3
or boolean False). The evolution of programs within the genetic programming framework can be
summarized as follows:

Step 1: Initialization. Create an initial random population of P programs and evaluate the 3tness of
each program by applying it on a set of =tness cases (examples). Set the current population
to this initial population.

Step 2: Selection. Select P programs in the current population (with replacement). The selection
process is probabilistically biased in favor of the best programs.

Step 3: Modi=cation. Apply reproduction or crossover to the selected programs.
Step 4: Evaluation. Evaluate the 3tness of each oPspring in the new population.
Step 5: Set the current population to the new population of oPspring.
Step 6: Repeat steps 2–6 for a prede3ned number of generations or until the system does not

improve anymore.

The 3nal result is the best program generated during the search. The main issues related with this
algorithm are brie2y discussed in the next subsections.

2.1. Encoding

The individual structures which evolve over time are computer programs represented as tree struc-
tures. In our context, these structures will encode trading rules. The size, shape and contents of



1036 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

+

×

C0

C0

C1

Fig. 2. A tree structure for a program.

the trees, which are recursively constructed from a prede3ned set of functions G and terminals T ,
dynamically change during the evolution process. Each particular function gi in the function set takes
a speci3ed number of arguments and should be able to accept as argument the value returned by
the other functions in the set. Fig. 2 illustrates a program with G= {+; ∗} and T = {C0; C1}. Such
a program computes C0 × C1 + C0, where C0 and C1 are numerical constants.

2.2. Fitness evaluation

The 3tness of a program is evaluated by applying the program to a set of 3tness cases. In our
context, the excess return provided by a trading rule over the buy-and-hold approach is evaluated
on historical data.

2.3. Initial population

Typically, the initial population is made of randomly generated programs or trees. Usually, an
equal mix of trees is produced with the Full and Grow methods, which are de3ned as follows.

Full: This method creates trees such that the length of every path between a terminal and the root
is equal to a prede3ned depth.
Grow: This method creates trees of variable shapes. That is, the length of a path between a

terminal and the root is at most a prede3ned maximum depth.

2.4. Selection

DiPerent methods have been reported in the literature for selecting the programs that either repro-
duce or are transformed by crossover. The basic idea is to bias the selection process towards the best
programs through a so-called 3tness-proportionate selection scheme, where the selection probability
prbi of program i is proportional to its 3tness fi. Namely:

prbi =
fi∑P
j=1 fj

:

In this equation, the denominator sums the 3tness values over all programs in the current population.



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1037

+×C1

C3

C4

+

+×

-

C5

/

C1
C2

C1

+×

C0

C3

C4

×

-

C5

×

C0 /

C1
C2

Crossover

Fig. 3. Crossover in genetic programming.

2.5. Reproduction and crossover

A new generation of programs is obtained through the action of reproduction and crossover. Other
secondary operators can also be applied to the programs, like mutation.

2.5.1. Reproduction
Reproduction simply makes a copy of the selected program in the new population, without any

modi3cation.

2.5.2. Crossover
Crossover applies to two selected programs. A crossover point, namely a function or terminal in

the tree, is randomly selected within each parent. This crossover point de3nes a fragment consisting
of the crossover point plus the entire subtree lying below the crossover point. Two new oPspring
programs are then produced by exchanging the two fragments, as depicted in Fig. 3. In this example,
the mathematical operators / and × are selected in the 3rst and second tree, respectively. Then, the
subtrees are exchanged to create two new programs. Obviously, when both crossover points are



1038 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

terminals (i.e., leaves of their respective tree), the ePect of crossover is simply to exchange the
two terminals. Typically, the probability distribution for the selection of a crossover point favors the
exchange of subtrees rather than terminals.

2.6. Mutation

Mutation is a unary operator aimed at restoring diversity in a population by applying random
modi3cations to individual structures. Given that the trees manipulated by GP are more complex
than the linear structures of GAs, the loss of diversity is not a primary concern here. In particular,
applying crossover to two identical programs is unlikely to lead to oPspring which are identical to
their parents, as long as the cross points are diPerent on both parents. The mutation operator is
de3ned as follows in a GP. First, a random point is chosen in the tree. This point, as well as the
subtree below it, are then removed and replaced by a new, randomly generated, subtree.

3. Generating trading rules with GP

Based on the description provided in the previous section, the adaptation of GP for our application
is now presented. The GP will generate trading rules encoded as programs or tree structures. These
rules are boolean functions which return either a buy (True) or a sell signal (False).

3.1. Encoding

The set of functions G is made of classical arithmetic, boolean and relational operators, plus the
boolean function if–then–else and a number of real functions. The set of terminals T correspond to
numerical and boolean constants, plus constants and variables related to stock prices and volumes.
They are described in the following.

Functions:

Arithmetic operators: +;−; =;×;
Boolean operators: and, or, not;
Relational operators: ¡;¿;
Boolean functions: if–then–else.
Real functions

In the functions presented below, variable s stands either for constant Price or Volume.

norm(r1; r2): absolute value of the diPerence between two real numbers;
avg(s; n): average of price or volume over the past n days;
max(s; n): maximum value of price or volume over the past n days;
min(s; n): minimum value of price or volume over the past n days;
lag(s; n): price or volume is lagged by n days;
volatility(n): variance in daily returns over the past n days;
RSI(n): relative strength index;
ROC(n): rate of change.



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1039

The last two functions, which are often used in technical analysis, are de3ned as

ROC(n) =
(
closing price of current day
closing price n days ago

− 1
)
× 100;

and

RSI(n) = 100−
(

100
1 + RS(n)

)
; where RS(n) =

∑
i∈D+(n) ri

−∑
i∈D−(n) ri

and where D+(n) is the set of days (over the past n days) with rising stock prices, D−(n) is the
set of days (over the past n days) with falling stock prices and ri is the return of day i, which is
positive when the stock price is rising and negative otherwise.

Terminals:
Constants

Real: chosen in the interval [0,250], where 250 is the approximate number
of working days in a year;

Boolean: True, False;
Others: Price, Volume.

Real variables

p: stock price of the current day;
v: transaction volume of the current day.

Clearly, the functions and terminals chosen to construct the trading rules violate the closure as-
sumption of GP. That is, a given function cannot necessarily accept as argument the value returned
by another function in set G, given that both boolean and real functions are found in that set. This
particularity imposes restrictions on the structure of the trading rules. Consequently, real functions
are always found in the lower part of the tree, boolean functions and operators in the upper part (in-
cluding the root) and relational operators make the transition between the two. A relational operator
may also be found at the root of the tree.

A typical tree representing a trading rule is illustrated in Fig. 4. In this example, the rule sends a
buy (True) signal if the average stock price over the past 50 days is greater than the current price
or the current transaction volume is less than 20. A sell (False) signal is sent otherwise. This rule
is applied as follows. If, at the end of the current day, the position on the market is “open” and a
buy signal is sent by the rule, the stock is bought at the opening of the market the next day and
the position switches to “close”. Conversely, if the current position is “close” and a sell signal is
sent, the stock is sold and the position switches to “open”. Otherwise, the current position does not
change.

3.2. Fitness evaluation

The raw 3tness of a trading rule is its excess return over the buy-and-hold approach, as evaluated
on historical data. For an investment period extending from day 0 to day t, the return of the
buy-and-hold approach is simply the price of day t minus the price of day 0. In the case of the



1040 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

>

Price

avg

50

p

or

<

v 20

Fig. 4. Example of a trading rule.

trading rules generated by GP, the gains or losses (if any) are evaluated on a daily basis and summed
up. The latter minus the former correspond to the excess return of the trading rule.

3.3. Initial population

A mix of trees produced by the Full and Grow methods is used. Due to the particular structure of
our trees, the recursive construction process (from the root to the leaves) must observe the following
guidelines.

(1) The root of the tree is selected among the boolean functions and operators.
(2) Once the root has been selected, its descendants may be selected among boolean constants,

boolean functions, boolean or relational operators.
(3) When a relational operator is selected, its descendants must be selected among real functions or

terminals.

In the case of the Full method, the trees must be fully developed to a prede3ned depth, hence
terminals can only be selected when that depth is reached. In the case of the Grow method, the trees
need not be fully developed and terminals can be selected at any level (although terminals must be
chosen when the prede3ned depth is reached).

3.4. Selection

In this work, a rank-based method is used (Baker [26], Whitley [27]). First, all programs in the
current population are sorted from best (rank 1) to worst (rank P) based on their “raw” 3tness
value. A new 3tness value fi is then associated with the program of rank i as follows:

fi =Max −
[
(Max −Min) i − 1

P − 1

]
:



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1041

Hence, the best program gets 3tnessMax, the worst program gets 3tnessMin and the 3tness values
of the remaining programs are equally spaced between Min and Max. In our experiments, Max and
Min were set to 1.8 and 0.2, respectively. For example, when the population is composed of P = 5
programs, these programs are evaluated from best to worst as follows: f1 = 1:8, f2 = 1:4, f3 = 1:0,
f4 = 0:6 and f5 = 0:2. Stochastic universal sampling (Baker [28]), a variant of 3tness-proportionate
selection where all parents are selected at once in a single trial, is then invoked on the transformed
3tness values.

The ranking method basically modi3es the raw 3tness values before stochastic universal sampling
is called upon. Otherwise, a “super-program” with high 3tness would typically be overselected
(leading to premature convergence on a possibly suboptimal solution). Conversely, a random selection
process would occur when all programs have similar 3tness values. Through ranking, the gap between
very close 3tness values is enlarged, thus alleviating the random selection behavior, while the impact
of a super-program is greatly reduced by bounding its 3tness to the Max value.

3.5. Reproduction and crossover

The classical reproduction and crossover operators presented in Section 2 were used in this study.
Due to the particular layered structure of our trees (see Section 3.1), a special care was given to the
crossover operator. Once a cross point is chosen on the 3rst parent, the subset of compatible cross
points is identi3ed on the other parent and only this subset is considered for crossover. If there is
no compatible cross point, two other parents are selected.

4. Computational results

In this section, we present results obtained with our GP on stocks of Canadian companies. First,
the data at our disposal are described in Section 4.1. Then, Section 4.2 presents the parameter settings
for the GP. Section 4.3 reports numerical results obtained with each stock.

4.1. Data

For the study, Canadian companies were chosen from the TSE 300 index which spans 14 diPerent
activity sectors. One company was selected in each sector, but only among those which were active
on the market before 1990. The companies used for the study are listed in Table 1. The historical
data included the stock price and the transaction volume for each working day between June 30,
1992 and June 30, 2000, for a total of 2003 days.

We considered both a long training period and a short one. In each case, an initial period of
250 days was put aside to start the process (given that some of the primitive functions used by the
trading rules, such as avg, may require data from the last 250 days in the worst case, see Section
3.1). The trading rules obtained on the training period were then evaluated on previously unseen
data associated with a testing period. The exact time periods used for the experiments are reported
below.



1042 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

Table 1
Canadian companies in the study

Activity sector Company Symbol

Mining Alcan Aluminium Ltd AL
Precious metals Barrick Gold Corporation ABX
Oil and gas Cdn. Occidental Petroleum Ltd CXY
Forestry Abitibi-Consolidated Inc A
Consumer products Molson Inc MOL
Industrial products Bombardier Inc BBD
Real estate Cambridge Shopping Centers CBG
Transportation and env. Trimac Corporation TMA
Pipelines TransCanada Pipelines Ltd TRP
Utilities Canadian Utilities Ltd CU
Communications The Seagram Company Ltd VO
Merchandising Sears Canada Inc SCC
Financial services Royal Bank of Canada RY
Diversi3ed (conglomerate) Canadian Paci3c Ltd CP

Short training period:

Initial (for training): June 25, 1997 to June 22, 1998 (250 days),
Training: June 22, 1998 to June 25, 1999 (256 days),
Initial (for testing): July 07, 1998 to June 25, 1999 (250 days),
Testing: June 28, 1999 to June 30, 2000 (256 days).

Long training period:

Initial (for training): June 30, 1992 to July 02, 1993 (250 days),
Training: July 02, 1993 to June 25, 1999 (1498 days),
Initial (for testing): July 07, 1998 to June 25, 1999 (250 days),
Testing: June 28, 1999 to June 30, 2000 (256 days).

4.2. Parameter settings

Preliminary experiments were performed to determine the best parameter settings for the GP.
Based on these experiments, the parameter values shown in Table 2 were 3nally selected.

Tests with populations of size 100, 250 and 500 were performed. In all cases, the best results
were achieved with the largest populations. However, the computation times also increased from
an average of 5 min for P = 100 to more than 1 h for P = 500. Thus, populations with more than
500 individuals were not considered. The number of generations was 3xed to 50, as no signi3cant
improvement was observed beyond that point. In fact, most of the improvement was achieved before
generation 40 (see Table 5 in Section 4.3). Apart from the maximum number of generations, the
GP was also stopped after 15 consecutive generations without any improvement to the best solution.
DiPerent values were also tried for the other parameters shown in Table 2, but the best solutions
were obtained with the values suggested in Koza [13].



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1043

Table 2
Parameter settings

Population size 500
Number of generations 50
Initialization method Equal mix of Full and Grow
Selection method Ranking + SUS
Reproduction rate 0.35
Crossover rate 0.60
Mutation rate 0.05
Probability of choosing an internal point (crossover) 0.90
Probability of choosing a terminal (crossover) 0.10
Maximum depth of programs in initial population 6
Maximum depth of programs in following generations 17

Table 3
Numerical results for the short training period

Symbol Training Testing

A 144.16% 15.29%
ABX 202.16% 38.12%
AL 135.95% 15.79%
BBD 123.04% −34:92%
CBG 174.01% −75:09%
CP 120.70% 0.86%
CU 56.69% 7.88%
CXY 183.40% −102:16%
MOL 99.23% 17.38%
RY 125.68% 3.25%
SCC 110.80% −21:84%
TMA 211.93% 42.27%
TRP 85.78% 36.04%
VO 146.78% −10:83%

Average 131.17% −4:85%
Number of positive returns 14 9

4.3. Numerical results

Computational tests were run on a 300 MHz Pentium II PC. The results obtained with GP on the
14 stocks for the short and long training periods are shown in Tables 3 and 4. For each stock, the
numbers are the average of 10 diPerent runs.

As expected, the results obtained on the training period are much better than those obtained on the
testing period. In fact, the overall average return on the testing period is negative for both the short
and long training periods, which indicates that the trading rules do not provide any improvement over
the buy-and-hold approach. The positive returns on the training data for the short period (131.17%)



1044 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

Table 4
Numerical results for the long training period

Symbol Training Testing

A 31.00% 18.55%
ABX 34.27% 7.69%
AL 21.99% 19.83%
BBD 18.30% −79:46%
CBG 33.15% −35:58%
CP 19.67% 12.11%
CU 9.77% 6.45%
CXY 30.39% −44:85%
MOL 19.36% 13.74%
RY 19.59% 8.13%
SCC 16.53% −7:33%
TMA 30.57% 54.80%
TRP 16.57% 21.09%
VO 19.88% −45:41%

Average 22.93% −3:59%
Number of positive returns 14 9

are much higher than those obtained for the long period (22.93%), although the results are very
similar when the trading rules are evaluated on the testing period.

Due to the smaller amount of data in the case of the short training period, the GP may have
developed trading rules too tightly 3tted to those data. An intermediary control period was thus
introduced to stop the training when a new best rule on the training period degraded the excess
returns by more than 25% on the control period or when a degradation was observed for three
consecutive iterations. Although this additional control mechanism allowed the GP to stop earlier in
many cases, no signi3cant improvement was observed on the testing period.

The optimization capabilities of the GP are illustrated in Table 5 on each stock. In this table, we
show the best and average trading rules in the initial population, as well as the best and average
trading rules in the 3nal population. We also indicate the generation number where the best trading
rule was found. These results correspond to those observed with the long training period. From the
start to the end of the GP, the best rule has improved on average from 11.22% to 22.93%, while
the average rule in the population has improved from −8:64% to 16.19%.

The results in Tables 3 and 4, although disappointing at 3rst glance, hide some interesting 3ndings.
First, nine stocks out of 14 show positive returns on the testing period. Also, a few stocks with
negative returns, like CBG and CXY, have a signi3cant impact on the overall results. In Table 3, for
example, a positive average return of 9.1% is observed on the 12 stocks other than CBG and CBX.
In these two cases, important discrepancies in the transaction volumes and prices over the training
and testing periods are observed (i.e., relatively stable market during the training period versus a
rising market during the testing period), which may explain the poor results.

By collecting the results obtained over all runs on the testing period, the graph of Fig. 5 was
obtained. It shows the excess returns generated by the various trading rules over the buy-and-hold,



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1045

Table 5
Evolution of the trading rules over the long training period

Symbol Generation Initial population Final population

Best (%) Average (%) Best (%) Average (%)

A 37 15.08 −3:53 27.48 21.89
ABX 42 20.76 3.28 31.76 27.13
AL 36 8.53 −10:32 20.03 14.93
BBD 36 3.50 −37:89 14.80 8.53
CBG 37 24.73 10.86 31.90 28.38
CP 34 7.34 −8:80 17.36 12.13
CU 37 2.57 −10:21 8.72 5.16
CXY 37 18.02 −7:09 29.23 24.28
MOL 38 9.73 −2:44 17.51 13.61
RY 33 8.70 −14:91 17.85 12.44
SCC 40 4.90 −24:99 14.50 9.66
TMA 37 18.69 2.26 29.17 24.09
TRP 39 7.41 −3:73 14.62 11.45
VO 40 7.09 −13:42 17.78 12.94

Average 37 11.22 −8:64 22.93 16.19

-120%
-100%

-80%

-60%
-40%
-20%

0%

20%

40%
60%

80%

100%

-40% -20% 0% 20% 40% 60% 80%

Buy-and-hold returns

E
xc

es
s 

re
tu

rn
s

Fig. 5. Excess returns versus buy-and-hold returns on the testing period.

as compared with the returns of the buy-and-hold alone. The most interesting feature in this graph is
the performance of the trading rules in situations where the buy-and-hold approach generates small
positive returns close to 0% or negative returns (i.e., when the market falls or is relatively stable). In
these cases, the excess returns generated by the trading rules are generally positive. This observation
is interesting as it indicates an appropriate context or “timing” for triggering the application of
technical trading rules.



1046 J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047

It is worth noting that the raw trading rules produced through GP are rather intricate, but can often
be greatly simpli3ed (e.g., boolean expressions which can be reduced to True or False). The rule
illustrated in Fig. 4, for example, was one of the rules produced through GP during our simulations.
However, in its raw form, the decision tree contained more than 30 nodes distributed over eight
hierarchical levels.

5. Conclusion

In this paper, an application of the GP paradigm for automatically generating trading rules on the
stock markets was described. The results show that the trading rules generated by GP are generally
bene3cial when the market falls or when it is stable. On the other hand, these rules do not match
the buy-and-hold approach when the market is rising.

Acknowledgements

Financial support was provided by the Canadian Natural Sciences and Engineering Research Coun-
cil (NSERC) and by the Quebec Fonds pour la Formation de Chercheurs et l’Aide Xa la Recherche
(FCAR). This support is gratefully acknowledged.

References

[1] Alexander SS, Price movements in speculative markets: trends or random walks. In: P.H. Cootner (Ed.) The random
character of stock market prices, vol. 2. Cambridge, MA: MIT Press, 1964. p. 338–72.

[2] Fama EF, Blume ME. Filter rules and stock market trading. Journal of Business 1966;39:226–41.
[3] Fama EF. EDcient capital markets: a review of theory and empirical work. Journal of Finance 1970;25:383–417.
[4] Jensen M, Bennington G. Random walks and technical theories: some additional evidences. Journal of Finance

1970;25:469–82.
[5] Pruitt SW, White RE. The CRISMA trading system: who says technical analysis can’t beat the market? Journal of

Portfolio Management 1988;14:55–8.
[6] Brock W, Lakonishok J, LeBaron B. Simple technical trading rules and the stochastic properties of stock returns.

Journal of Finance 1992;47:1731–64.
[7] Bessembinder H, Chan K. The pro3tability of technical trading rules in the Asian stock markets. Paci3c Basin

Finance Journal 1995;7:257–84.
[8] Sweeney RJ. Beating the foreign exchange market. Journal of Finance 1986;14:163–82.
[9] Levich R, Thomas L. The signi3cance of technical trading rule pro3ts in the foreign exchange market: a bootstrap

approach. Journal of International Money and Finance 1993;12:451–74.
[10] Osler CL, Chang PHK, Head and shoulders: not just a 2aky pattern. StaP Paper No. 4. Federal Reserve Bank of

New York, 1995.
[11] Holland JH. Adaptation in natural and arti3cial systems. Ann Arbor, MI: The University of Michigan Press, 1975.
[12] Bauer RJ. Genetic algorithms and investment. New York: Wiley, 1994.
[13] Koza JR. Genetic programming: on the programming of computers by means of natural selection. Cambridge, MA:

MIT Press, 1992.
[14] Chen S-H, Yeh C-H. Toward a computable approach to the eDcient market hypothesis: an application of genetic

programming. Journal of Economic Dynamics & Control 1996;21:1043–63.
[15] Allen F, Karjalainen R. Using genetic algorithms to 3nd technical trading rules. Journal of Financial Economics

1999;51:245–71.



J.-Y. Potvin et al. / Computers & Operations Research 31 (2004) 1033–1047 1047

[16] Neely C, Weller P, Dittmar R. Is technical analysis in the foreign exchange market pro3table? a genetic programming
approach. Journal of Financial and Quantitative Analysis 1997;32:405–26.

[17] Neely C, Weller P. Technical trading rules in the European monetary system. Journal of International Money and
Finance 1999;18:429–58.

[18] Marney JP, Tarbert H, Fyfe C. Technical trading versus market eDciency—a genetic programming approach.
Computing in Economics and Finance, Society for Computational Economics, Barcelona, Spain, July 2000 (paper
#169).

[19] Marney JP, Fyfe C, Tarbert H, Miller D. Risk adjusted returns to technical trading rules: a genetic programming
approach. Computing in Economics and Finance, Society for Computational Economics, Yale University, USA, June
2001 (paper #147).

[20] Koza JR. Genetic programming II: automatic discovery of reusable programs. Cambridge, MA: MIT Press, 1994.
[21] Koza JR, Bennett III FH, Andre D, Keane MA. Genetic programming III: Darwinian invention and problem solving.

San Francisco, CA: Morgan Kaufmann, 1999.
[22] Goldberg DE. Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley,

1989.
[23] Davis L. Handbook of genetic algorithms. New-York, NY: Van Nostrand Reinhold, 1991.
[24] Chambers L, editor. Practical handbook of genetic algorithms: applications. Boca Raton, FL: CRC Press, 1995.
[25] Michalewicz Z. Genetic algorithms + data structures = Evolution Programs:, 3rd ed. Berlin: Springer, 1996.
[26] Baker JE. Adaptive selection methods for genetic algorithms. In: Proceedings of the First International Conference

on Genetic Algorithms and their Applications. Hillsdale, NJ: Lawrence Erlbaum, 1985. p. 101–111.
[27] Whitley D. The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best.

In: Proceedings of the Third International Conference on Genetic Algorithms. San Mateo, CA: Morgan Kaufmann,
1981. p. 116–121.

[28] Baker JE, Reducing bias and ineDciency in the selection algorithm. In: Proceedings of the Second International
Conference on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum, 1987. p. 14–21.


	Generating trading rules on the stock markets withgenetic programming
	Introduction
	Genetic programming
	Encoding
	Fitness evaluation
	Initial population
	Selection
	Reproduction and crossover
	Reproduction
	Crossover

	Mutation

	Generating trading rules with GP
	Encoding
	Fitness evaluation
	Initial population
	Selection
	Reproduction and crossover

	Computational results
	Data
	Parameter settings
	Numerical results

	Conclusion
	Acknowledgements
	References


