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KEYWORDS Summary
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Ensemble; Object: The classification of cancer based on gene expression data is one of the most
Diversity; important procedures in bioinformatics. In order to obtain highly accurate results,
Classification ensemble approaches have been applied when classifying DNA microarray data.

Diversity is very important in these ensemble approaches, but it is difficult to apply
conventional diversity measures when there are only a few training samples available.
Key issues that need to be addressed under such circumstances are the development
of a new ensemble approach that can enhance the successful classification of these
datasets.

Materials and methods: An effective ensemble approach that does use diversity in
genetic programming is proposed. This diversity is measured by comparing the
structure of the classification rules instead of output-based diversity estimating.
Results: Experiments performed on common gene expression datasets (such as lym-
phoma cancer dataset, lung cancer dataset and ovarian cancer dataset) demonstrate
the performance of the proposed method in relation to the conventional approaches.
Conclusion: Diversity measured by comparing the structure of the classification rules
obtained by genetic programming is useful to improve the performance of the
ensemble classifier.

© 2005 Elsevier B.V. All rights reserved.

1. Introduction tant step in determining treatment and prognosis
[1,2]. Accurate diagnosis leads to better treatment
The classification of cancer is a major research area  and toxicity minimization for patients. Current mor-

in the medical field. Such classification is an impor- ~ Phological and clinical approaches that aim to clas-
sify tumors are not sufficient to recognize all the
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A disease like a tumor is fundamentally a malfunc-
tion of genes, so utilizing the gene expression data
might be the most direct diagnosis approach [1].

DNA microarray technology is a promising tool for
cancer diagnosis. It generates large-scale gene
expression profiles that include valuable informa-
tion on organization as well as cancer [3]. Although
microarray technology requires further develop-
ment, it already allows for a more systematic
approach to cancer classification using gene expres-
sion profiles [2,4].

It is difficult to interpret gene expression data
directly. Thus, many machine-learning techniques
have been applied to classify the data. These tech-
niques include the artificial neural network [5—8],
Bayesian approaches [9,10], support vector
machines [11—13], decision trees [14,15], and k
nearest neighbors [16].

Evolutionary techniques have also been used to
analyze gene expression data. The genetic algo-
rithm is mainly used to select useful features, while
the genetic programming is used to find out a clas-
sification rule. Li et al. proposed a hybrid model of
the genetic algorithm and k nearest neighbors to
obtain effective gene selection [16], and Deutsch
investigated evolutionary algorithms in order to find
optimal gene sets [17]. Karzynsci et al. proposed a
hybrid model of the genetic algorithm and a percep-
tron for the prediction of cancer [18]. Langdon and
Buxton applied genetic programming for classifying
DNA chip data [19]. Ensemble approaches have been
also attempted to obtain highly accurate cancer
classification by Valentini [20], Park and Cho [21],
and Tan and Gilbert [22].

Highly accurate cancer classification is difficult
to achieve. Since gene expression profiles consist
of only a few samples that represent a large number
of genes, many machine-learning techniques are
apt to be over-fitted. Ensemble approaches offer
increased accuracy and reliability when dealing
with such problems. The approaches that combine
multiple classifiers have received much attention
in the past decade, and this is now a standard
approach to improving classification performance
in machine-learning [23,24]. The ensemble classi-
fier aims to generate more accurate and reliable
performance than an individual classifier. Two
representative issues, which are ‘““how to generate
diverse base classifiers” and “how to combine base
classifiers” have been actively investigated in the
ensemble approach.

The first issue “how to generate diverse base
classifiers” is very important in the ensemble
approach. As already known, ensemble approaches
that use a set of same classifiers offer no benefit in
performance to individual ones. Improvement might

be obtained only when the base classifiers are com-
plementary. Ideally, as long as the error of each
classifier is less than 0.5, the error rate might be
reduced to zero by increasing the number of base
classifiers. However, the results are different in
practical experiments, since there is a trade-off
between diversity and individual error [25]. Many
researchers have tried to generate a set of accurate
as well as diverse classifiers. Generating base clas-
sifiers for ensemble approaches is often called
ensemble learning. There are two representative
ensemble-learning methods: bagging and boosting
[26].

Bagging (bootstrap aggregating) was introduced
by Breimen. This method generates base classifiers
by using a randomly organized set of samples from
the original data. Bagging tries to take advantage of
the randomness of machine-learning techniques.
Boosting, introduced by Schapire, produces a series
of base classifiers. A set of samples is chosen based
on the results of previous classifiers in the series.
Samples that were incorrectly classified by previous
classifiers are given further chances to be selected
to construct a training set. Arching and Ada-Boosting
are currently used as promising boosting techniques
[25,26].

Various other works have been used in an attempt
to generate diverse base classifiers. Webb and Z
heng proposed a multistrategy ensemble-learning
method [25], while Optiz and Maclin provided an
empirical study on popular ensemble methods [26].
Bryll et al. introduced attribute bagging, which
generates diverse base classifiers using random fea-
ture subsets [24]. Islam et al. trained a set of neural
networks to be negatively correlated with each
other [27]. Other works have tried to estimate
diversity and to select a subset of base classifiers
for constructing an ensemble classifier [28,29].

The second issue “how to combine base classi-
fiers” is important together with the first one. Once
base classifiers are obtained, a choice of a proper
fusion strategy can maximize the ensemble effect.
There are many simple combination strategies,
including majority vote, average, weighted aver-
age, minimum, median, maximum, product, and
Borda count. These strategies consider only the
current results of each classifier for a sample.
Instead, other combination strategies (such as Naive
Bayes, behavior-knowledge space, decision tem-
plates, Dempster—Shafer combination, and fuzzy
integral) require a training process to construct
decision matrices. On the other hand, the oracle
strategy, which requires only one classifier to clas-
sify a sample correctly, is often employed to provide
a possible upper bound on improvement to classifi-
cation accuracy.
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There has been much research on combination
strategies. Verikas et al. comparatively tested var-
ious fusion methods on several datasets [30], and
Kuncheva provided a formula for classification
errors in simple combination strategies [23]. Tax
compared averaging and multiplying as combining
multiple classifiers [31], while Alexandre et al. com-
pared sum and product rules [32]. Decision tem-
plates strategy, which was proposed by Kuncheva
et al., has been compared with conventional meth-
ods [33]. Kim and Cho applied fuzzy integration of
structure adaptive self-organizing maps (SOMs) for
web content mining [34]. Shipp and Kuncheva tried
to show relationships between combination meth-
ods and measures of diversity [29].

In this paper, we would like to address diversity in
ensemble approaches and propose an effective
ensemble approach by considering further diversity
in genetic programming. A set of classification rules
was generated by genetic programming, and then
diverse ones were selected from among them in
order to construct an ensemble classifier. In contrast
to the conventional approaches, diversity was mea-
sured by matching the structure of the rules based
on the interpretability of genetic programming. The
paper also examines several representative feature
selection methods and combination methods. Three
popular gene expression datasets (lymphoma cancer
dataset, lung cancer dataset and ovarian cancer
dataset) were used for the experiments.

2. Ensemble genetic programming

Genetic programming was proposed by Koza in order
to automatically generate a program that could
solve a given problem [35]. It was originally similar
to the genetic algorithm in many ways, but it was
different in representation. An individual was repre-
sented as a tree composing of functions and terminal
symbols. Various functions and terminal symbols
were developed for the target application, and
classification was one of the goals of genetic pro-
gramming.

There are several works on ensemble approaches
that use genetic programming. Zhang and Bhatta-
charyya used genetic programming for classifying
the connection data of a simulated US Air Force LAN
[36]. Brameier and Banzhaf evolved a set of classi-
fiers by using genetic programming and combined
them with several fusion methods [37], while Fer-
nandez et al. studied the multi-population genetic
programming empirically [38]. Imamura et al. pro-
posed behavioral diversity in ensemble genetic pro-
gramming [39].

Given training samples, functions, and terminal
symbols, there is a set of decision boundaries that
separate the data in the induced feature space F.
This set of consistent hypotheses is called the ver-
sion space [40]. Hypothesis f is in the version space
if “f(x;)>0andy;=1"or “f(x;) <0andy;=—-1",
where y; indicates the class label of x;. Classification
using genetic programming can be regarded as
searching for a hypothesis f that satisfies the con-
dition with a given set of functions and terminal
symbols.

Definition 1 (A set of possible functions). Fu =
{fu|fuc{+, —, x, +}}, where the functions can
be extended according to applications.

Definition 2 (A set of possible terminal sym-
bols). TS = {ts |ts C Fe}, where Fe is a given set of
features {f4, f2, ..., fn}

Definition 3 (A set of possible hypothe-

ses). H={f | f(xi) = tu, ts, deptn)(X), Where t € T},
where our tree space T is simply equal to F.

Definition 4 (The version space V). V={f ¢ H|
vie {1, ..., myyif(x;) > 0}, where m is the number
of training samples.

Definition 5 (The redefined version space V'). V' =
{t € T|vi(tu, ts, depthy(X))) >0, =1, ..., m}.

Since H is a set of hyperplanes, there is a
bijection between unit vectors t and hypotheses
f in H. Aversion space only exists when the training
samples are linearly separable in the feature
space. Thus, linear separability of the training
samples in the feature space is required. Since
there is a duality between the feature space F
and the tree space T (originally from the para-
meter space W in Vapnik’s works), points in T
correspond to hyperplanesin F. That is, if a training
sample x; is observed in the feature space, the set
of separating hyperplanes is restricted to classify x;
correctly.

Definition 6 (An ensemble hypothesis). EH =
{eh | eh(x;) = Majority_vote(t4(x;), ..., ti(x;)), where
t; e T, Lis the ensemble size}.

Definition 7 (Volume of version space V'). Vol(t) =
the size of version space V' that satisfies t.

Definition 8 (Accuracy of t).

- Vol(y;tj(x;) > 0)
Acc(x;) = Vol(y;t;(x;) >0) J+ Vol(yit;(xj) <0)
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If a test sample x; with label y; is given, each ¢;
generates tjy, ts, depth)(Xi). When the majority vote
is considered as the fusion strategy, eh may produce
a correct result if there are more than (/2 t;’s that
satisfy Vitjiu, ts, depth)(Xi) > 0. Thus, each yitjsy, ts,
depth)(Xj) > 0 defines a half space in T, and t;y, ts,
depth)(Xi) = 0 represents a hyperplane in T that acts
as one of the boundaries to version space V. This
means that if we can guarantee more than (/2 t;’s
with an accuracy of over 0.5, the result of an
ensemble hypothesis might be correct.

Definition 9 (Intersection between t; and t;). Int-
Sec(t;, tj) = Vol(t;) U VOl(t])

Definition 10 (Union between t; and t;). Union(t;,
tj) =Vol(t;) U VOl(tJ)

Definition 11 (Diversity between t; and t;). D(t;,
t;) =Union(t;, t;) — IntSec(t;, t;) ~ Distance(fu;,
fu;) + Distance(ts;, ts;) + Distance(depth;, depth;).

Suppose the ideal hypothesis tijgea and t; might be
a subset of t;qea. If there are infinite t;’s, an ensem-
ble hypothesis of them approaches the ideal hypoth-
esis. In practice, only a finite set of t;’s is
manageable. Reducing interaction between the
hypotheses may lead an ensemble hypothesis
approach to the ideal hypothesis rather than the
others. Finally, increasing diversity results in
improvement of classification performance. The
following formula intuitively describes the effects
of diversity.

glEenid e it el
Data with all features

| Selecting informative features

i)

Data with selected features

| Generating classification rules ‘

00 ©0 6« O
Individual classification rules
Generating individual
classification rules

Figure 1

e Vol(t;, t;) = Vol(t;) < Vol(t;, t;), where t; and ¢t; are
different.

e D(eh;) < D(ehj), where eh; is composed of [ same
ti’s and eh; is composed of t; (0 <i <{).

¢ Vol(eh;) = Vol(t;) < Vol(eh;) ~ Vol(tigeal)-

3. Diversity-based ensembling for
accurate cancer classification

The proposed method consists of two parts: gen-
erating individual classification rules and combin-
ing them to construct an ensemble classifier as
shown in Fig. 1. The process of generating indivi-
dual classification rules is similar to approaches
that have been used in previous work [41]. Feature
selection is performed first to reduce the dimen-
sionality of data, and a classification rule is gener-
ated by ensemble genetic programming. A number
of individual classification rules are prepared by
repeating the generation process. To combine
these rules, a subset of diverse rules is constructed
from the pool of individual classification rules, and
then combined to produce a final decision. Con-
ventional measures for estimating diversity are
based on the output code of classifiers for training
data, so diversity might depend on the character-
istics of the training data. Instead, in this paper,
diversity is estimated directly by comparing the
structure of the rules. It does not distort the deci-
sion boundaries of base classifiers, and it does not
need to concern itself with side effects from the
training data.

@] 00O
Individual classification rules

| Estimating diversity between rules l

'

| Selecting a subset of diverse rules |

+
L0 RE BAS

A subset of most diverse rules

{

| Combining the subset of rules |

Combining individual
classification rules

The overview of the proposed method.
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3.1. Generating multiple classification
rules

DNA microarray data includes the expression infor-
mation of thousands or even tens of thousands of
genes, but only a small portion of them are related
to the target cancer. A subset of informative genes
can be selected by using the feature selection pro-
cess. Cutting down the number of features to a
sufficient minimum is required to improve classifi-
cation performance [42].

We defined two ideal markers, obtained a stan-
dard of good features, and utilized the features by
scoring the respective similarity with each ideal
marker (as shown in Fig. 2). We showed that two
ideal markers are negatively correlated to represent
two different aspects of classification boundaries.
The first marker is high in class A and low in class B,
and the second marker is low in class A and high in
class B. The first marker is a binary vector which
consists of 1 for all the samples in class Aand O for all
the samples in class B, while the second marker is
another binary vector which is composed of 0 for all
the samples in class A and 1 for all the samples in
class B. Five popular measures are employed. These
measures are Euclidean distance, cosine coeffi-
cient, Spearman correlation, Pearson correlation,
and signal-to-noise ratio [48—50]. Thirty genes are
selected by each feature selection method: the first
15 for the ideal marker 1 and the rest for the ideal
marker 2.

The similarity between an ideal marker ideal and
a gene g can be regarded as a distance, while the
distance represents how far they are located from
one another. A gene is regarded as an informative
gene if the distance is small, while the gene is
regarded as an uncorrelated gene if the distance

Class A Class B
AAAAAABBBBBB

1 Gene
expression
0 level

Ideal marker 2 H

L 1P
eI

Class label

Ideal marker 1

Gene correlated to
Ideal marker 1

Gene correlated to
Ideal marker 2

Uncorrelated gene

Figure 2 Negatively correlated features.

is large. The following formula shows the five mea-
sures used in this paper:

Pearson correlation (PC)

30 (dealy x g;) — 20 21
n . 2
<27_1 ideal? — (20 1et). )

(EL g - (ha) gf)l)

Spearman correlation (SC)

_ 637 (ideal; —g))’
nx(nt-1) ~’

; (M

2)

n
Euclidean distance (ED) = Z(ideal,- - g,-)z, (3)
i=1

n : . .
Cosine coefficient (CC) = \/ it ldeai, okl ;
>iqideal; Y57, ¢
(4)

signal-to-noise ratio (SN) = Zz:::g; :LZ;:‘:::((:)),

©)

where n is the number of samples; wqass i(g) the
mean of g and ideal whose label is class i; o¢ass i(9)
the standard deviation of g; and ideal whose label is
class i.

With the genes selected, genetic programming
generates cancer classification rules. Arithmetic
operations are employed to figure out the regulation
of genes. Genetic programming uses the following
procedures: initialization, evaluation, selection and
genetic operation. First, the population is randomly
initialized. At the evaluation stage, a fitness func-
tion evaluates individuals by estimating their fitness
with regard to the target problem. Then, individuals
are selected to generate the next population in
proportion to the fitness. A fitter individual has more
chance of being selected by the principles of natural
selection and survival of the fittest. After the selec-
tion process, genetic operators such as crossover,
mutation and permutation are applied to selected
individuals to generate new individuals. Genetic
programming repeats the process, until it finds a
good solution or reaches the maximum number of
generations.

In genetic programming, an individual is repre-
sented as a tree that consists of the function set {+,
—, X, =} and the terminal set {f{, f2, ..., fn
constant} where n is the number of features. The
function set is designed to model the up-and-down
regulations of the gene expression. The classifica-
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tionruleis: G={V={EXP, OP, VAR}, T={+, —, x, +,
f1, f2, - .., fn, constant}, P, {EXP}}, and the rule set P
is as the following:

e EXP — EXP OP EXP|VAR.
e OP — +| —| x| =+.
e VAR — f1|f2|...]|fn| constant.

Classification of an instance is determined by
evaluating it with the rule. An instance will be clas-
sified as class 1 if the evaluated value is larger than 0,
while it will be classified as class 2 if the value is
smaller than 0. Conventional genetic operators for
genetic programming are employed for evolution.
Crossover randomly selects and changes sub-trees
from two individuals, mutation changes a sub-tree
into new one, and permutation exchanges two sub-
trees of an individual. All genetic operations are
conducted according to predefined probabilities.

A bagging approach to genetic programming gen-
erates multiple rules as shown in Fig. 1. At each
evolution process, four-fifths of the training data is
randomly selected to construct a training dataset.
The classification accuracy of the training data is
used as the fitness of an individual.

3.2. Combining diverse rules

Diversity among base classifiers is necessary to
improve ensemble performance. There are various
diversity measures from pair-wise to non-pair-wise
such as the Q-statistic, the correlation coefficient,
the Kohavi—Wolpert variance, and the entropy mea-
sure. Many researchers have studied diversity mea-
sures for improving ensemble performance. Zenobi
and Cunningham used diversity based on different
feature subsets [43]. Shipp and Kuncheva analyzed
relationships between fusion methods and diversity
measures [29], and Kuncheva and Whitaker com-
pared various diversity measures in classifier ensem-
bles [44]. Windeatt conducted an empirical analysis
on diversity measures for the multiple classifier
system [45].

When using conventional diversity approaches,
there is a tradeoff (known as the accuracy—diversity
dilemma) between diversity and accuracy [45].
When base classifiers have the highest levels of
accuracy, diversity must decrease so that the effects
of the ensemble can be reduced. The accuracy—
diversity dilemma is caused by estimating the diver-
sity of the classification results (based on the train-
ing data.) If base classifiers classify all the training
data correctly, they are the same from the view-
point of these conventional diversity measures.
Moreover, it is hard to estimate diversity correctly
with a few training samples like gene expression
profiles. Fig. 3 shows the usefulness of the proposed
method compared to the conventional diversity
measure approach.

In the proposed method, a subset of diverse rules
is selected in a different manner from that used in
conventional approaches. The diversity among base
classification rules is measured by comparing the
structure of the rules. The proposed approach does
not require any training data, and it is not also
affected by the accuracy—diversity dilemma.
Genetic programming generates an interpretable
classification rule to estimate the diversity. There
are several diversity measures used in genetic pro-
gramming, such as pseudo-isomorphs and edit dis-
tance [46]. A simplified edit distance is used to
calculate the diversity between the classification
rules, and the distance between two rules r;and r; is
estimated as follows:

distance(r;, r;)
d(p,q)
if neitherr; norrjhave any children,
d(p,q) + distance(RS ofr;,
RS ofr;) + distance(LS ofr;, LS ofr;)
otherwise(RS : right subtree, LS :
left subtree)

1 if pandqgoverlap
{ 0 if pandgdo not overlap

)

whered(p, q)

Structure
Rue1 [ A A
rRie2 [ A H A - C

Proposed 2 differences

method

Classifying results on

training data
01101100

01101100

Conventional

No difference diversity measure

Figure 3 A comparison between the proposed method and the conventional diversity measure.
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The appearance of genes in the rules is also used
to measure diversity. Diversity decreases when two
rules use a same gene, while it increases if the rules
are different genes. Finally, five classification rules
are selected to compose an ensemble classifier as
follows:

R: A set of extracted rules {rq, ry, ..
S: A set of selected rules {s4, s;, ..
int calculate_diversity(r;, r;) {
cfj; = common_feature_number(r;, rj);
df;; = different_feature_number(r;, rj);
ed;; = distance(r;, r;);
return df;; — cf;; — a x ed;;;
3
Fori=1ton{
Forj=i+1ton{
dj; = calculate_diversity(r;, rj);

o In}
- Sm}

3

Find a set S in which rules’ diversity is maximized
S ={S17 S2, -y Sm}

A fusion method combines these rules to generate
the final classification results. Five simple combina-
tion methods that do not require training are major-
ity vote (MAJ), maximum (MAX), minimum (MIN),
average (AVG) and product (PRO). Three sophisti-
cated combination methods that do require training
are Naive Bayes (NB), behavior-knowledge space
(BKS), and decision templates (DT). Oracle (ORA)
is only used to show a possible upper limit to classi-
fication accuracy. Detailed explanations of the
fusion methods can be found in [23].

4. Experimental results
4.1. Experimental environment

There are several DNA microarray datasets from
published cancer gene expression studies. These
include breast cancer datasets, central nervous
system cancer datasets, colon cancer datasets, leu-
kemia cancer datasets, lung cancer datasets, lym-
phoma cancer datasets, NCI60 datasets, ovarian
cancer datasets, and prostate cancer datasets.
Among them, three representative datasets were
used in this paper. The first and second datasets

involve samples from two variants of the same
disease and the third involves a tumor and normal
samples of the same tissue.

e Lymphoma cancer dataset [47]: Diffuse large B-
cell lymphoma (DLBCL) is a disease, which is the
common sub-type of non-Hodgkin’s lymphoma.
There are various subtypes of lymphoma cancer
that require different treatment, but it is not
easy to distinguish them clinically. Hence,
the lymphoma cancer classification using gene
expression profiles has been investigated [48].
The gene expression data (http://lUlmpp.nih.-
gov/lymphoma/; accessed: 30 April 2005) con-
tains 4026 genes across 47 samples: 24 samples
of the germinal center B-like group and 23 sam-
ples of the activated B-like group.

e Lung cancer dataset [51]: This gene expression
data has been used to classify malignant pleural
mesothelioma (MPM) and adenocarcinoma (ADCA)
of the lung. There are 181 tissues: 31 MPM tissues
and 150 ADCA tissues, while each tissue has
12,533 gene expression levels.

e Ovarian cancer dataset [52]: This gene expression
data aims to identify proteomic patterns in serum
to distinguish ovarian cancer. It has 91 controls
(normal) and 162 ovarian cancer tissues. Each
sample has 15,154 gene expression levels.

Each feature selection method scores genes, and
selects 30 top-ranked genes as the feature of the
input pattern. For classification, genetic program-
ming is set (as shown in Table 1). We conducted a
five-fold cross-validation for each dataset. In five-
fold cross-validation, one-fifth of all samples is
evaluated as test data while the others are used
as training data. The training data is used to select
informative features. This process is repeated 100
times to obtain the average results with 500
(5 x 100) experiments in total.

4.2. Results on classification accuracy

Tables 2—4 summarize the predictive accuracy of
the proposed method for each cancer dataset; the
highlighted values represent high accuracy. ‘10 clas-
sifiers’ and ‘5 classifiers’ are based on ensembling

Table 1 Experimental environments

Parameter Value Parameter Value
Population size 200 Mutation rate 0.1-0.3
Maximum generation 3000 Permutation rate 0.1
Selection rate 0.6—0.8 Maximum depth of a tree 3-5
Crossover rate 0.6—0.8 Elitism Yes
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Table 2 Test accuracy on lymphoma cancer dataset (%)

Features Fusion 10 classifiers 5 classifiers 5 diverse Individual
method classifiers classifier
PC MAJ 95.0 93.2 97.1 91.3
MAX 96.7 95.2 97.6
MIN 81.7 82.5 83.7
AVG 96.7 94.4 96.9
PRO 80.5 72.0 78.1
NB 65.7 72.5 70.7
BKS 95.0 93.2 97.1
DT 95.8 95.1 97.0
ORA 100 100 100
SC MAJ 90.7 91.0 92.1 88.1
MAX 91.9 89.7 93.9
MIN 81.4 80.2 79.0
AVG 91.8 89.4 94.2
PRO 84.7 82.4 81.0
NB 61.2 66.7 67.4
BKS 90.7 91.0 92.1
DT 92.2 88.6 94.4
ORA 100 98.4 99.3
ED MAJ 91.6 93.3 95.6 88.2
MAX 92.2 90.1 93.2
MIN 77.7 81.8 80.2
AVG 93.4 92.7 95.2
PRO 80.9 79.0 78.5
NB 60.8 69.2 65.8
BKS 91.6 93.3 95.6
DT 93.7 92.6 94.3
ORA 98.4 98.4 97.8
cc MAJ 91.6 93.3 94.1 88.8
MAX 90.6 90.6 91.6
MIN 80.1 82.9 81.8
AVG 91.4 92.9 92.6
PRO 84.5 79.4 77.6
NB 63.6 74.7 70.5
BKS 91.6 93.3 94.1
DT 92.9 93.0 93.1
ORA 100 98.4 100
SN MAJ 94.5 94.8 94.8 90.4
MAX 97.6 94.7 96.5
MIN 81.9 83.7 80.8
AVG 96.0 95.6 96.2
PRO 88.0 83.9 84.9
NB 60.6 72.0 69.0
BKS 94.5 94.8 94.8
DT 96.0 94.2 95.0
ORA 100 100 100

from random forest, while ‘5 diverse classifiers’ is  the 10 rules and the 5 rules. It signifies that con-
the result of the proposed method. The results show  sidering diversity improves the performance of the
that the ensemble classifier performs better than ensemble.

the individual classifier. In most cases, 1—10% incre- The ensemble that uses 10 classification rules is
ments are observed when using ensemble techni- sometimes inferior to the ensemble that uses 5
ques. In addition, the proposed method shows  classification rules, even though the former proce-
superior classification performance when combining  dure includes more information than the latter.
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Table 3 Test accuracy on lung cancer dataset (%)
Features Fusion 10 classifiers 5 classifiers 5 diverse Individual
method classifiers classifier
PC MAJ 98.9 99.1 99.2 98.2
MAX 99.5 98.9 99.4
MIN 96.0 96.7 96.7
AVG 99.4 99.3 99.4
PRO 96.5 95.1 94.6
NB 93.7 95.5 95.4
BKS 98.9 99.1 99.2
DT 99.1 99.0 99.2
ORA 100 99.8 99.8
SC MAJ 98.8 98.8 99.0 97.8
MAX 99.3 99.2 99.4
MIN 94.3 95.9 96.1
AVG 99.3 99.2 99.4
PRO 96.3 95.4 94.4
NB 91.4 94.2 94.2
BKS 98.8 98.8 99.0
DT 99.0 98.9 99.1
ORA 99.8 99.7 99.6
ED MAJ 94.7 94.8 95.1 94.6
MAX 94.8 94.6 94.3
MIN 94.8 94.8 94.4
AVG 94.4 94.6 94.6
PRO 92.8 92.7 93.4
NB 95.4 95.3 94.9
BKS 95.6 95.3 95.8
DT 94.6 94.1 94.3
ORA 97.2 96.7 96.6
cc MAJ 99.4 99.3 99.3 98.5
MAX 99.3 99.2 99.3
MIN 97.2 97.3 96.9
AVG 99.4 99.3 99.4
PRO 97.7 96.8 97.1
NB 95.7 96.6 96.3
BKS 99.4 99.3 99.2
DT 99.1 98.7 98.7
ORA 99.6 99.5 99.6
SN MAJ 99.1 98.9 99.3 98.0
MAX 99.3 99.3 99.4
MIN 94.8 96.3 96.1
AVG 99.4 99.2 99.3
PRO 96.5 95.0 95.0
NB 91.4 94.6 94.3
BKS 99.1 98.9 99.3
DT 99.2 99.1 99.2
ORA 99.9 99.8 99.8

This implies that error is increased with increasing
number of base classifiers. Theoretical proof of this
can be found in [28]. In this experiment, however,
most cases show that the 10-classifier ensemble is
better than the 5-classifier ensemble. Finally, the
proposed approach not only supports the same
degree of useful information with the ensemble that

uses 10 classification rules, but also minimizes the
increment of the error.

In fusion methods, MAX and AVG distinguish them-
selves by combining multiple classification rules
obtained by genetic programming, while BKS and
DT also show good performance. Since the proposed
method classifies samples with a linear boundary
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Table 4 Test accuracy on ovarian cancer dataset (%)

Features Fusion 10 classifiers 5 classifiers 5 diverse Individual
method classifiers classifier
PC MAJ 97.0 97.2 97.1 96.9
MAX 97.4 97.4 97.4
MIN 95.1 95.8 95.6
AVG 97.4 97.3 97.5
PRO 94.2 93.9 94.0
NB 96.2 96.7 96.4
BKS 97.0 97.1 97.1
DT 97.8 98.0 98.0
ORA 98.3 97.9 98.2
SC MAJ 97.1 97.1 96.9 96.9
MAX 97.2 97.1 97.3
MIN 95.7 95.9 95.9
AVG 97.2 97.1 97.3
PRO 95.5 95.5 95.2
NB 97.2 97.1 97.3
BKS 97.1 97.1 97.0
DT 97.6 97.5 97.5
ORA 97.9 97.7 97.9
ED MAJ 93.8 93.9 94.3 94.2
MAX 94.9 94.7 95.1
MIN 93.7 93.8 93.8
AVG 94.3 94.5 95.0
PRO 86.7 86.9 86.9
NB 94.3 94.3 94.5
BKS 93.8 93.9 94.0
DT 94.3 94.3 94.4
ORA 95.8 95.4 95.8
cc MAJ 84.6 84.8 84.9 84.4
MAX 85.4 85.3 85.4
MIN 82.8 83.4 82.8
AVG 85.4 85.4 85.4
PRO 75.7 75.5 75.0
NB 84.5 84.6 84.5
BKS 84.4 84.6 84.9
DT 82.9 82.1 81.9
ORA 86.5 86.3 86.5
SN MAJ 97.0 96.2 97.0 96.7
MAX 97.2 96.2 97.2
MIN 94.9 92.4 95.5
AVG 97.2 97.2 97.3
PRO 94.9 93.7 93.9
NB 95.9 96.4 96.2
BKS 97.0 97.0 97.0
DT 97.7 97.6 97.8
ORA 97.6 97.5 97.6

obtained by genetic programming, the margin
affects the performance of these fusion methods.
MAX selects a rule with the maximum margin, while
AVG sums up the margins of all rules. However, MIN,
PRO and NB work poorly in classification, since their
approach is to minimize the risk. If there is poor
classification among the pool of rules, the overall

performance of the ensemble might decline. Espe-
cially, MAX, AVG, PRO and DT are improved when the
ensemble combines more classification rules. This
signifies that these fusion methods are dependent
on the number of classifiers, so it might be helpful to
generate more classifiers when using the fusion
methods.
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Figure 4 Test accuracy for lymphoma cancer dataset according to the number of base classification rules: (a) Pearson
correlation; (b) Spearman correlation; (c) Euclidean distance; (d) cosine coefficient; (e) signal-to-noise ratio.

The relationship between the number of base
classification rules and the performance of the
ensemble is examined and shown in Fig. 4. Perfor-
mance increases with the number of base classifica-
tion rules, but it is almost converged when using four
to six rules. BKS shows an oscillation between even
and odd numbers. When the ensemble uses the odd
number of rules, it shows better performance than
when using even numbers. The accuracy of MIN and
NB is decreased with the increment of the number of
base classification rules, since they are subject to
noise. Even though PRO is poorer than the individual

classification rule, the accuracy of PRO is gradually
increased with the addition of base classification
rules. Especially, the performance of MIN and NB
falls down, since they are sensitive to noise.

The performance of the features for three data-
sets is compared in Fig. 5. The PC and the SN work
better than the others, while the SC shows a wide
variance of classification. The PC shows good per-
formance for the lymphoma cancer dataset. The PC,
SC and SN work well for the lung cancer dataset, and
the SC and SN obtain a high accuracy for the ovarian
cancer dataset. We can find out a correlation
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method so that the PC, SC and SN might work better
than a simple distance measurement such as ED and
CC for the three datasets.

4.3. Results on performance by diversity

The relationship between diversity and perfor-
mance is also analyzed and shown in Fig. 6. The
results indicate that classification accuracy
increases according to the increment of diversity
in most cases. A decline in accuracy occasionally
appears, because diversity is apt to increase
when there is a peculiar rule. This can be solved
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by a non-pair-wise approach for estimating diversity

in ensemble genetic programming.
Experiments on conventional diversity measure-
ments such as the Q-statistics, the correlation coef-

ficient, the disagreement measure, the double-fault
measure, the Kohavi—Wolpert variance, measure-
ment of interrater agreement, the entropy mea-
the measure of difficulty,
diversity, and coincident failure diversity were con-

sure,

ducted to compare with the proposed method.

These diversity measurements are explained in

generalized

As mentioned before, conventional diversity
measurements have limitations in applying cancer
classification when using gene expression data. They
require a number of samples to measure diversity
correctly, and there is less enhancement when base
classifiers are highly accurate. Most gene expression
datasets provide only a few samples, and the clas-
sification rules obtained by genetic programming
produce high accuracy (as shown in Tables 2—4).
In most cases, the individual classification rules
obtain 100% accuracy for training data, so conven-
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Figure 7 The improvement of accuracy according to the diversity measurement for the lymphoma cancer dataset: (a)
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Table 5 Comparison on lymphoma cancer dataset (%)

Features Fusion Ensemble 5 diverse

method neural networks classifiers
(5 classifiers)

PC MAJ 93.1 97.1
MAX 92.8 97.6
AVG 93.1 96.9
BKS 93.1 97.1
DT 93.2 97.0
ORA 94.2 100

SC MAJ 93.3 92.1
MAX 92.9 93.9
AVG 93.3 94.2
BKS 93.3 92.1
DT 92.9 94.4
ORA 93.3 99.3

ED MAJ 92.8 95.6
MAX 93.3 93.2
AVG 92.8 95.2
BKS 92.8 95.6
DT 92.6 94.3
ORA 97.1 97.8

cc MAJ 93.3 94.1
MAX 92.6 91.6
AVG 93.3 92.6
BKS 93.3 94.1
DT 92.9 93.1
ORA 94.2 100

SN MAJ 93.3 94.8
MAX 93.6 96.5
AVG 93.3 96.2
BKS 93.3 94.8
DT 93.4 95.0
ORA 94.2 100

possible combinations of classification rules. Instead,
since the proposed method does not consider the
training data, it produces improved performance in
the ensemble. Fig. 7 shows the proposed method
compared to conventional diversity measurements.
In most cases, classification rules classify all training
data correctly. The proposed method obtained higher
accuracy than the ensemble without diversity while
the other diversity measurements did not provide any
improved accuracy.

4.4, Comparison with the neural networks

In order to compare with the other representative
machine learning technique, we classified the lym-
phoma cancer dataset using the neural networks. As
similar to the proposed method, five neural net-
works are combined to generate a final output.
Table 5 shows the result of the experiment, and
the proposed method produced better performance
than the neural networks in most cases.

5. Conclusion

The classification of cancer, based on gene expression
profiles, is a challenging task in bioinformatics. Many
machine-learning techniques have been developed
to obtain highly accurate classification performance.
In this paper, we have proposed an effective ensem-
ble approach that uses diversity in ensemble genetic
programming to classify gene expression data. The
ensemble helps improve classification performance,
but diversity is also an important factor in construct-
ing an ensemble classifier. Contrary to conventional
diversity-based ensemble approaches, diversity in
this paper was measured by comparing the structure
of classification rules. The proposed method is inde-
pendent from the training data, so that it can be
effective in cancer classification using gene expres-
sion data with only a few training samples. Experi-
ments on three representative DNA microarray
datasets have demonstrated the usefulness of the
proposed method. Moreover, several rank-based fea-
ture selection methods and fusion methods were also
compared. The SC, PC and SN showed good perfor-
mance in classifying the datasets while the MAX, AVG,
BKS and DT effectively combined base classification
rules so as to obtain high accuracies.

In this work, a simple distance measurement was
used to estimate diversity among classification
rules, so there was a limitation when calculating
the correct diversity. In future work, a more sophis-
ticated distance measurement for ensemble genetic
programming will be developed for measuring accu-
rate diversity. Moreover, a non-pair-wise approach
will be also studied for estimating diversity.
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