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ABSTRACT

Motivation:Missing values are problematic for the analysis of microar-

ray data. Imputation methods have been compared in terms of the

similarity between imputed and true values in simulation experiments

and not of their influence on the final analysis. The focus has been on

missing at random, while entries are missing also not at random.

Results:We investigate the influence of imputation on the detection of

differentially expressed genes from cDNA microarray data. We apply

ANOVA for microarrays and SAM and look to the differentially

expressed genes that are lost because of imputation. We show that

this new measure provides useful information that the traditional root

mean squared error cannot capture. We also show that the type of

missingness matters: imputing 5% missing not at random has the

same effect as imputing 10–30% missing at random. We propose a

new method for imputation (LinImp), fitting a simple linear model for

each channel separately, and compare it with the widely used

KNNimpute method. For 10% missing at random, KNNimpute leads

to twice as many lost differentially expressed genes as LinImp.

Availability:TheR package for LinImp is available at http://folk.uio.no/

idasch/imp

Contact: idasch@math.uio.no

Supplementary information: http://folk.uio.no/idasch/imp

1 INTRODUCTION

Missing values are a predominant problem for the analysis of

microarray data, a high throughput technology to evaluate the

expression of thousands of genes simultaneously (Lee, 2004). Miss-

ing values arise due to technical failure, low signal-to-noise ratio

and measurement error (Lee, 2004; Wit and McClure, 2004). Typ-

ically �1–10% of the data are missing (de Brevern et al., 2004),

affecting up to 95% of the genes. Many available algorithms for the

statistical analysis of microarray data require a full dataset (Wit and

McClure, 2004), because the underlying statistical methodology

is based on balanced data. This includes for example SAM

(Troyanskaya et al., 2001, www-stat.stanford.edu/~tibs/SAM),

PAM (Tibshirani et al., 2001, www-stat.stanford.edu/~tibs/PAM)

and ANOVA for microarrays (Kerr et al., 2000), implemented in

the software MAANOVA (www.jax.org/staff/churchill/labsite/

software). Hence all missing values need to be imputed before,

e.g. testing for differential gene expression between biological sam-

ples. The output of the analysis is seriously influenced by the quality

of the applied imputation method: many of the differentially

expressed genes are lost, and falsely new differentially expressed

genes are generated, compared with the analysis of the true full

dataset. Even the robust measures of family wise errors and false

discovery rates cannot take this into consideration. In his comment

to Sebastiani et al. (2003), Gary A. Churchill wrote ‘Among the

many small problems that have yet to be addressed in microarray

analysis, missing data methods stand out in my mind as one of the

more pressing’. de Brevern et al. (2004) studied the extent of miss-

ing values in eight published microarray experiments. There were

between 0.8 and 10.6% missing values. Genes with at least one

missing value ranged from 3.8 to 94.7%. Kim et al. (2005) studied a

dataset from Gasch et al. (2001) originally containing 6361 genes

and 156 experiments. After removing columns that had >8% miss-

ing values and removing the genes with one or more missing values,

a matrix of dimension 2641 · 44 remained, a reduction of 88% of

the data.

In this paper we concentrate on cDNA microarrays, which are

microchips with more than ten thousands of spots each correspond-

ing to a gene. On each spot hybridization of two samples happens,

resulting in signals from two channels, one dyed red and the other

green. Microarrays are then optically scanned: spots are detected

from the background and red and green signal intensities are meas-

ured. Missing values originate from imperfections at the level of

chip production and treatment, hybridization and scanning. Dust

present on the chip, irregularities in the spot production and

inhomogeneous hybridization all lead to spots which are manually

or automatically flagged, and corresponding signals are then con-

sidered as missing. Because probes are printed on spots in random

order, without consideration of their expected intensities, spatial

noise effects, which are present, cannot be translated into spatially

smooth expected intensities. In addition to such signals missing at

random, available software flags out signals which cannot be dis-

tinguished from the background or have a too irregular form

because the signal itself is too low. In these cases, values are missing

not at random, the missingness depending on the signal intensity.�To whom correspondence should be addressed.
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As a typical example, the AGILENT feature extraction software

G2567AA flags out signals when the intensity is extremely low with

respect to signal intensities in other spots on the same array (called

‘population outliers’) or when the local background is highly irregu-

lar. Normally a mixture of missing at random and not at random will

be present.

K-nearest neighbors (KNNimpute) (Troyanskaya et al., 2001) is

the most commonly used imputation method. It is the only imputa-

tion method implemented in SAM, PAM and MAANOVA, and is

therefore routinely applied. KNNimpute has been shown to impute

values in a satisfactory way for up to 20% of missing log ratios if

missingness is at random, see Troyanskaya et al. (2001). Their paper

compared the imputed values with the true values in a simulated

experiment, where spot ratios were erased at random. The same

simulation and validation setup is used to investigate other com-

peting imputation methods, among which are BPCA (Oba et al.,
2003), LSimpute (Bø et al., 2004), GMCimpute (Ouyang et al.,
2004) and LLSimpute (Kim et al., 2005). Feten et al. (2005)

also compare imputed values with the true values, though in a

more refined way than the common root mean squared error

(RMSE). While comparing imputed values with the true values

is an important measure of performance, it fails to address the

more fundamental question of what is the effect of such imputations

on the final output of the statistical analysis. Only Ouyang et al.
(2004) compared the number of mis-clustered genes for different

methods.

In this paper we propose a simple and natural imputation method,

LinImp, based on a linear model for each channel separately. We

investigate its performance and compare it with KNNimpute when

values are missing both at random and not at random. In the last

case, we model the missingness depending on the signal. We evalu-

ate the method by comparing the resulting list of differentially

expressed genes based on the imputed dataset with the same list

based on an analysis of the true full dataset. Hence we count how

many of the genes in the list are lost and added when analyzing the

imputed dataset. In our experiments 47–97% of the differentially

expressed genes are lost if nothing is done when 10% of the data are

missing. Up to 90% of this is recovered when imputing. KNNimpute

shows up to three times as many lost differentially expressed genes

as LinImp.

2 SYSTEMS AND METHODS

2.1 LinImp: linear model-based imputation

The imputation method we propose, LinImp, is based on the linear model for

yijkg, the base 2 logarithm of the intensity in array i, channel (dye) j, variety k

and gene g

yijkg ¼ mþ Ai þ Dj þ Gg þ ADij þ AGig þ DGjk þ VGkg þ «ijkg‚ ð1Þ

where «ijkg are independent normally distributed error terms with mean zero

and variance s2. For simplicity we assume that each gene is printed only

once on each array, such that one gene is represented by only one spot on

each array. The varieties are the experimental conditions under study, such

as for example type of tissue. If we have a arrays, 2 channels (dyes) on each

array, v varieties and N genes, then i = 1, . . . , a, j¼ 1, 2, g¼ 1, . . . , N and k¼
1, . . . , v and there are 2aN observations. m is the overall mean, Ai is the effect

of array i, Dj is the effect of dye j, Gg is the overall effect of gene g, ADij is the

interaction between array i and dye j, AGig is the interaction between array i

and gene g, DGjg is the interaction between dye j and gene g and VGkg is

the interaction between variety k and gene g. Model (1) was proposed in

Kerr et al. (2000) to find differentially expressed genes. Written in matrix

form the model is

y ¼ Xbþ «‚ ð2Þ

where y is a vector of length 2aN and X is a matrix of zeros and ones. Denote

AT ¼ (A1, . . ., Aa)
T, DT ¼ (D1, D2)T etc., then b¼ (m, AT, DT, GT, ADT, AGT,

DGT, VGT)T. Each pair of i and j corresponds to only one variety k. Because

of this, the effects V and AD are confounded, so it is wise to have only one of

the two in the model. We chose (1) with AD instead of V because it saturates

the design space (Kerr et al., 2002).

LinImp works as follows. Let Y be the N · 2a observed data matrix with

observed and missing values. We initialize the imputation (e.g. we used

KNNimpute) with a full data matrix Y0. Then we estimate the parameter

vector b in model (2) using the dataset Y0. Denote this estimated parameter

vector as b̂b0. Next, we impute the missing values in Y with their expected

values using (2) and b̂b0 to obtain the new full data matrix Y1. We iterate the

procedure until convergence, for example until at iteration M in some

norm kYM � YM�1k < d, where d is a fixed small value. The full data matrix

Yimp ¼ YM is then the final imputed dataset. The pseudocode of the algorithm

is given in Figure 1. Running LinImp requires a couple of minutes for the

largest dataset in this paper. LinImp is practically an automatic imputation

method. Of course the small value d must be chosen, but to our experience

the results are very robust with respect to this choice. Also, KNNimpute is a

reasonable and simple choice for initial imputation. Linear model imputation

in general has been proposed before, see for instance Pyle (1999). Notice that

estimating b in (2) is easy when data are complete because then it is possible

to simplify the estimation algorithm. In the case of missing values, and hence

unbalanced design, the estimation of b becomes a formidable computational

task.

2.2 KNNimpute

KNNimpute (Troyanskaya et al., 2001) is widely used, for instance it is the

only imputation method available in SAM, PAM and MAANOVA. Hence it

is important to analyze the effect KNNimpute has on detecting differentially

Fig. 1. Pseudocode for the algorithm for LinImp.
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expressed genes. KNNimpute works as follows. For each row i in the data

matrix, corresponding to gene g, with one or more missing values, the

k nearest neighbor rows are found. It is necessary that the k nearest neigh-

bors have data in the columns where row g had missing data. To define a

neighborhood structure between rows, a metric is necessary. The distance

dgg0 from row g to row g0 is the Euclidean distance of the two vectors

omitting the entries for which row g and row g0 have missing values. If

there are one or more missing entries in row g0 in places where row g has

non-missing entries, the squared difference for these entries is set to the

average of the squared difference for the non-missing entries. When the

k nearest neighbors are found, the missing entry in column c in row g is

imputed as the weighted average of the values in column c in the k-nearest

neighbor rows, the weights being the inverse distances.

There seems to be some confusion in the literature about the KNNimpute

algorithm. Some authors (Lee, 2004; Ouyang et al., 2004) describe an

algorithm where neighbors are not allowed to have any missing values.

This can create problems in datasets with a lot of missing values because

only a few, or none, neighbors actually are free of missing values and the

imputation becomes impossible or poor. Others, for instance Oba et al.

(2003), describe algorithms where the neighbors are allowed to have missing

values, but the corresponding missing differences are not imputed when

calculating the distance dgg0. This will cause falsely low distances for neigh-

bors with a lot of missing values. These versions of KNNimpute are too

simplistic and less efficient than full KNNimpute, which is used in our

comparisons. In this paper we use the KNNimpute implementation available

in the R package impute (by Hastie, T., Tibshirani, R., Narasimhan, B. and

Chu, G., available at http://cran.r-project.org/). This implementation does

not suffer from any of the abovementioned weaknesses.

While traditionally KNNimpute is applied to the N · a data matrix of log

ratios of intensities, in this paper we apply KNNimpute to the N · 2a data

matrix of log intensities.

2.3 Detecting differentially expressed genes

There are various ways of detecting differentially expressed genes. In this

paper we use two such common approaches to evaluate imputation. When

using the linear model (1), the quantity of interest is VG1g � VG2g for

determining if gene g is differentially expressed between varieties 1 and 2.

For example, VG1g � VG2g ¼ 1 equals a 2-fold change between the two

tissues, because yijkg is the base 2 logarithm of the intensity. The linear model

(1) is presented in Kerr et al. (2000) as ANOVA for microarrays, and it is

implemented in MAANOVA. An alternative approach is based on hypo-

thesis testing directly on the matrix of log ratios, as done by Significance

Analysis of Microarrays (SAM) (Tusher et al., 2001).

2.4 Data

We have used two spotted cDNA microarray datasets for exploring the new

imputation method and the overall recovery rate of missing differentially

expressed genes. LinImp imputes missing values separately in each channel,

and hence uses the channel data directly, not their log ratios. Such data are

more rarely published. The first dataset is based on a study of human cell

lines and the other dataset is typical for clinical studies on primary tumors.

The intensities and log ratios are generally higher in experimental studies on

cell lines than in clinical studies based on primary tumors.

The dataset based on human cell lines is composed of three dye-swaps,

thus six arrays. The data are from the NIEHS experiment comparing treated

and control human cell lines, as described in Kerr et al. (2002). It is publicly

available at http://www.jax.org/staff/churchill/labsite/datasets/expression/

niehs. The dataset based on primary tumors is based on samples from cer-

vical tumors before and after radiotherapy and is composed of 16 dye-swaps

and thus 32 arrays and is available from our Supplementary information web

page. In the NIEHS dataset there were 1907 genes and no missing values,

thus a full intensity data matrix of dimension 1907 · 12. In the original

cervical cancer dataset 22% of the data were missing, affecting 70% of the

14 229 genes. We have removed the genes with one or more missing values,

leaving data from 4246 genes. The resulting intensity data matrix is of

dimension 4246 · 64. These truths are then used as bases for simulating

missing values.

When genes with at least one missing value are removed from the ana-

lysis, the effect can be dramatic. When missing at random, the percentage of

lost differentially expressed genes will be approximately the same as the

percentage of genes with one or more missing values. When missing not at

random, the percentage of lost differentially expressed genes can be even

higher since genes that are differentially expressed are more likely than

others to have missing values.

2.5 More realistic models of the missingness

A value in a data matrix is missing at random, MAR, or missing completely

at random (MCAR), if the probability of it being missing does not depend on

the value that is missing. A value is missing not at random, MNAR, if the

probability of it being missing is dependent on the value that is missing.

When missing at random, usually both channel signals from the spot are

missing, which means that we are in the MAR situation. A basic reason for

microarray data to be missing not at random is that the foreground intensity is

lower than the background intensity. Another reason is that low intensities

are per se sometimes considered too noisy and conservatively flagged out.

Missing not at random happens most often for just one of the two channel

signals in a spot. Of course this means that when analyzing log ratios the

whole spot is missing. We have separated the analysis of imputation of

values missing at random and not at random in order to see differences

in the effects of imputation for the two types of missing.

When simulating datasets with values missing at random, we have

assumed both channels from the spot to be missing. Therefore, to simulate

a total of r% of the entries missing at random, we have drawn r/2% of the

spots at random and made both channel signals missing. For both the cervical

cancer data and the NIEHS data we have chosen the missing percentages r to

be 1, 5, 10, 15, 20, 25, 30, 35 and 40. We have simulated 50 independent

missing datasets for each percentage missing.

Our mechanism creating values missing not at random favors missingness

of low intensities. We proceed as follows. For each spot the lowest of the two

signals is considered. These lowest signals are ordered and the s% percentile

is found, say 5%. We then produce a dataset with r% of the total number of

entries missing (say 1%) by drawing at random exclusively from below the

s% percentile and making the lowest channel signal from these spots miss-

ing. A histogram of the lowest base 2 log intensity for each spot for both

datasets can be seen in Figure 2. On the basis of this we have chosen the

threshold s¼ 25 for the NIEHS dataset and for the cervical cancer dataset the

threshold s ¼ 5. For the NIEHS dataset the missing percentages r run over

1, 2.5, 4, 5.5, 7, 8.5, 10, 11.5 and 13. For the cervical cancer dataset the

missing percentages r run over 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5.

2.6 Measures of performance of imputation methods

Imputation methods for microarray data are discussed in the literature in

terms of the RMSE, where the error is the difference between the imputed

value and the true one. Troyanskaya et al. (2001) normalize the RMSE by

dividing it by the average value over all observations in the true full dataset,

which is useful because it enables comparisons across different datasets. This

is denoted by NRMSE and is adopted in this paper. Oba et al. (2003) and Kim

et al. (2005) normalize the RMSE by dividing it by the standard deviation of

the values in the true full dataset. This measure is denoted here by NRMSE2.

Ouyang et al. (2004) normalize the RMSE by dividing it by the root mean

square of all the observations in the true full dataset. This measure is denoted

here by NRMSE3. Bø et al. (2004) do not normalize.

Unfortunately none of the various RMSE measures describe the real

effect of imputation on the final analysis. We are interested in evaluating

the effect imputation has on the final output of the statistical analysis in

question, and a different measure is needed. A typical end-product of a

statistical analysis is a list of interesting genes. How is such a list affected

by the errors of imputation? A way to produce such a list is by hypothesis

I.Scheel et al.

4274

http://cran.r-project.org/
http://www.jax.org/staff/churchill/labsite/datasets/expression/


testing, using for example the linear model (1) as in Kerr et al. (2000). Here

we measure the success of imputation by looking to lost and added differ-

entially expressed genes compared with the list of differentially expressed

genes from an analysis of the true full dataset. That is we look for genes

which would be on the list if we knew the true full dataset but are lost due to

imputation errors and genes which enter the list by mistake again as an effect

of imputation errors.

When using the linear model (1) to analyze a dataset with two different

varieties, we test for each gene g if VG1g� VG2g significantly differs from 0.

To facilitate comparison of methods, we fixed the length of the list of

differentially expressed genes for both datasets to 100. When the list length

is fixed, the numbers of lost and added differentially expressed genes are

the same.

In addition we evaluate the effect of intensity-based imputation when

analyzing ratio datasets. For that we used the methods of Tusher et al.

(2001) implemented in SAM. When using SAM for testing on one-class

data each gene is assigned a score, the average log ratios for that gene divided

by a sum of the standard deviation for that gene and a small positive constant.

We also here fixed the length of the lists to 100. This gave an estimated FDR

of 1% for the NIEHS dataset.

The lists of length 100 of differentially expressed genes for the true full

NIEHS dataset when analyzing using the linear model and using SAM agree

for 97 genes.

3 RESULTS

In Figure 3 we compare the percentage of lost differentially

expressed genes when analyzing the datasets using the linear

model (1). The figure is based on the average of the 50 runs,

and results for both LinImp and KNNimpute are shown. The ratios

between the average percentage lost genes for KNNimpute and

LinImp can be seen at the top of the plots. The averages of the

percentages of potentially lost differentially expressed genes are

also shown at the top of the plots. That is the differentially expressed

genes based on the true full dataset that have one or more missing

values in the simulated dataset and thus are lost if genes with one

or more missing values were deleted.

Imputing missing values clearly makes a vast improvement on

identifying differentially expressed genes with the linear model (1).

For the NIEHS dataset when 10% of the data are missing at random,

at least 47% of the differentially expressed genes would be missing

if instead of imputing, genes with one or more missing values were

deleted. By imputing with KNNimpute 80.8% of these genes are

recovered and 89.4% by imputing with LinImp. When 10% of the

NIEHS data are missing not at random, at least 48.3% of the dif-

ferentially expressed genes would be missing if genes with one or

more missing values were deleted. By imputing with KNNimpute

75.1% of these genes are recovered and 83.4% by imputing with

LinImp. For the cervical cancer dataset when 10% of the data are

missing at random, at least 97.1% of the differentially expressed

genes would be missing if genes with one or more missing values

were deleted. By imputing with KNNimpute 89.7% of these genes

are recovered and 88.7% by imputing with LinImp. When 5% of the

cervical cancer data are missing not at random, at least 62% of the

differentially expressed genes would be missing if genes with one or

more missing values were deleted. By imputing with KNNimpute

62.9% of these genes are recovered and 74.2% by imputing with

LinImp.

For the NIEHS data, LinImp outperforms KNNimpute for all

missing percentages, for both missing at random and missing not

at random. KNNimpute shows 50–100% more lost differentially

expressed genes than LinImp. For the cervical cancer data, the

results are quite similar for LinImp and KNNimpute for missing

at random, but for missing not at random KNNimpute shows

20–40% more lost differentially expressed genes than LinImp.

Of course, LinImp might have an advantage with respect to

KNNimpute since analysis is done by the same model used for

imputation. Still, if the linear model is to be used for the analysis,

the comparison is fair. Because of the possible advantage LinImp

has when analyzing by the linear model, we also did an analysis

using SAM, which is done on log ratio data. As an example of

alternatives to KNNimpute, here we also imputed using LSimpute
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Fig. 2. A histogram of the lowest log2 intensity for each spot for the NIEHS dataset with a vertical line indicating the 25% quantile (a) and a histogram of the

lowest log2 intensity for each spot for the cervical cancer dataset with a vertical line indicating the 5% quantile (b).
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(Bø et al., 2004). LSimpute is an imputation method for log ratio

data which utilizes the correlation structure. It is based on regression

with non-missing log ratios as explanatory variables. Note that

LinImp is based on a different type of regression model with the

explanatory variables describing the experimental conditions. In

Figure 4 we compare the percentage of lost differentially expressed

genes when analyzing the NIEHS dataset using SAM. LinImp

performs better than KNNimpute for the NIEHS data also when
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Fig. 3. Percentage lost differentially expressed genes when analyzing the datasets by using the linear model, the averages of the 50 runs. At the top of each plot

ratios between the average percentage lost for KNNimpute and LinImp are shown, as well as the average percentage potentially lost differentially expressed genes

when imputation is not done.
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imputation is not done.
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analyzing with SAM instead of the linear model. LSimpute shows

better results than KNNimpute for low percentages missing at ran-

dom, but worse for missing not at random.

For the same percentage of missing, the percent lost differentially

expressed genes is higher for missing not at random than for missing

at random. This is the case for both analysis methods and both

imputation methods. For the NIEHS data the results for 10% miss-

ing not at random are approximately the same as the results for 20%

missing at random, for both imputation methods. For the cervical

cancer data the results for 5% missing not at random are approx-

imately the same as the results for 10% missing at random when

imputing with LinImp. When imputing with KNNimpute the results

for 5% missing not at random are approximately the same as the

results for 30% missing at random. The reason for the difference

between missing at random and not at random is that in simulating

missing not at random genes that have low values have a higher

probability of having missing values than other genes. When a gene

that is differentially expressed when comparing two varieties is very

low expressed for one of the two varieties, all the intensities of that

particular gene for that variety, that is half of all the intensities for

that gene, are likely to be very low and thus missing at the same

time. This results in a lot of imputed values for that gene and makes

it more vulnerable in the analysis. It also indicates that imputing low

values is difficult for both imputation methods, even though LinImp

does a better job than KNNimpute for missing not at random for

both analysis methods.

How serious is the loss? Where are the genes that are lost located

in the list of differentially expressed genes based on the true full

dataset? In Figure 5 we have plotted the position of the lost genes in

the list based on the true full dataset when analyzing using the linear

model. Specifically we plot the average position the lost genes

would have had in the list of differentially expressed genes if

there were no missing values. The figure shows the average of

the 50 runs for each percent missing. Rank 1 means top of the

list and most significant and rank 100 means bottom of the list

and least significant, thus the lower the number the more serious

the loss is. As expected the curves decrease with increasing per-

centage. The fact that the curves of LinImp are always above those

of KNNimpute shows that LinImp performs better than KNNim-

pute, which confirms Figure 3. Figure 5 also shows that the loss is

more serious for missing not at random than missing at random for

the same percentage missing. There is a dependency between

Figures 5 and 3, because the more genes lost the higher the average

position in the original list, but Figure 5 provides additional

information. For example, for 1% missing at random and missing

not at random in the NIEHS dataset, there is a clear difference

between LinImp and KNNimpute in favor of LinImp, whereas in

Figure 3 there is no difference. This means that the genes that are

lost when imputing with KNNimpute are more significant in the

original list than those that are lost when imputing with LinImp. The

loss is less serious using LinImp than KNNimpute.

Since most studies use RMSE values in the evaluation of imputa-

tion performance, we have plotted the average of the NRMSE

values for the 50 runs in Figure 6. Results for both LinImp and

KNNimpute are shown. Also here LinImp outperforms KNNim-

pute. For the same percentage of missing, the NRMSE values for the

cervical cancer data are better for missing at random than missing

not at random, which coincides with the results from the lost dif-

ferentially expressed genes. Still, the conclusions from Figures 3

and 4 are somewhat different from those of Figure 6. For the NIEHS
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Fig. 5. The average of the rank the genes that are lost have in the list based on the true full dataset (original rank), when analyzing by using the linear model. The

plot shows the average of the 50 runs.
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data the NRMSE values are actually a bit better for missing not at

random than missing at random. Whereas NRMSE is quite stable for

both LinImp and KNNimpute for both datasets for missing not at

random and for the cervical cancer data for missing at random, the

increase in percentage lost is more dramatic. Also, the NRMSE

values are 10% higher for KNNimpute than LinImp for the

NIEHS data for missing not at random, whereas Figure 3 using

the linear model implies that KNNimpute leads to up to 60%

more lost differentially expressed genes than LinImp and

Figure 4 using SAM implies that KNNimpute leads to up to

twice as many lost differentially expressed genes than LinImp.

The new way of evaluating imputation performance thus seems

to provide useful information that NRMSE cannot capture.

Almost all the differences between the imputation methods in

Figures 3, 4 and 6 are significantly larger than 0, even when cor-

recting for multiple testing. This means that LinImp is significantly

better than KNNimpute most of the time. The only exception is 1%

missing and some of the other percentages missing at random for the

cervical cancer data, which is not surprising in light of the figures.

KNNimpute is never significantly better than LinImp. The average

of the differences between the results of the imputation

methods together with their estimated standard errors can be seen

in Tables 1–3 available on our Supplementary information

web page.

4 DISCUSSION AND CONCLUSION

Though KNNimpute is the most used imputation method several

alternatives have been proposed, all for log ratio datasets. Oba et al.
(2003) present a Bayesian principal component analysis approach,

BPCA, based on an EM-like algorithm. Datasets with 1–20% entries

missing at random are simulated from original full datasets and the

performance is evaluated by computing the NRMSE2. BPCA shows

better NRSME2 values than KNNimpute when the number of sam-

ples is large, though possibly a suboptimal version of KNNimpute

was used. When the number of samples is <40 KNNimpute per-

forms equally well or better than BPCA. Also, for one dataset the

NRMSE2 for the BPCA is tripled from 1 to 20% missing values,

while KNNimpute is much more stable. Zhou et al. (2003) invest-

igate imputation based on linear and non-linear regression with

Bayesian gene selection. The results are better for both versions

compared with KNNimpute, though only 1 and 5% of missing data

are investigated. Bø et al. (2004) show 15–20% smaller RMSE

values for LSimpute than for KNNimpute for 10% entries missing

at random. Ouyang et al. (2004) impute with GMCimpute, model-

ing data with a Gaussian mixture and using the EM algorithm. The

number of mixture components is determined empirically. The

simulation includes only very low missing probabilities in

the range 0.003–0.04. The performance is evaluated by computing

NRMSE3 and the number of mis-clustered genes. GMCimpute

shows better results than KNNimpute, but the version of KNNim-

pute utilized requires the neighbors to be complete. It is possible to

improve on this, so that KNNimpute could have performed better.

Nguyen et al. (2004) compare KNNimpute to imputation via OLS

and PLS regression with other genes as explanatory variables. The

methods are evaluated by looking to the relative estimation error as

a function of the true expression value. KNNimpute performs best

near the median of the true expression values, while PLS seems best

for the more extreme expression values. Kim et al. (2005) introduce

a local least squares imputation method, LLSimpute, imputing a

missing value for a gene by a linear combination of similar genes.

It is called local because it uses only the most similar genes.
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The method differs from LSimpute in that they use also the L2-norm

for determining similarity between genes, while LSimpute uses only

the Pearson correlation. LLSimpute shows lower NRMSE2 values

than KNNimpute and BPCA with 1–20% entries missing. Specifica-

tions on KNNimpute do not allow to understand whether KNNim-

pute has been implemented at best. Feten et al. (2005) investigate

six imputation methods, four based on regression with other genes

as explanatory variables and KNNimpute both with genes and

observations as neighbors. The conclusion is that for datasets

with strong correlation structure, KNNimpute with genes as neigh-

bors performs best. LinImp outperforms KNNimpute when the

linear model captures linear relationships within the log intensities

that KNNimpute cannot capture. As Feten et al. (2005) concluded

KNNimpute works well for highly correlated data. A possible

improvement on LinImp for such datasets is to exploit the correla-

tion between genes. When assuming uncorrelated data, as in

LinImp, the expectation of the error term conditioned on informa-

tion from other genes is 0. If the correlation structure would be

considered, the multinomial distribution would give a conditional

expectation for the error term different from 0. Conditioning should

be done on information from other genes that are highly correlated

with the gene which value is to be imputed. For computational

reasons one cannot condition on information from all the other

genes, thus it would not be completely automatic, since the number

of correlated genes to consider when imputing for another gene

would need to be decided.

In addition to erasing data at random Nguyen et al. (2004) also

have an experiment where the probability of a gene having a miss-

ing value depends on the expression level. The conclusion is that the

results are similar to the missing at random case. We have seen that

imputing values that are missing not at random has a more serious

effect on the final analysis than imputing values that are missing at

random. Of course, in reality the missingness in a microarray dataset

is a mixture of missing at random and missing not at random. We

have introduced a new imputation method, LinImp. In most of our

experiments we have found that LinImp performs better than the

widely used KNNimpute, in particular when comparing resulting

lists of differentially expressed genes. Finally, we conclude that

looking to the actual effect imputation has on the final analysis

gives valuable information in addition to the traditional RMSE.
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