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This article presents new computational techniques for multivariate longitudinal or
clustered data with missing values. Current methodology for linear mixed-effects models
can accommodate imbalance or missing data in a single response variable, but it cannot
handle missing values in multiple responses or additional covariates. Applying a multivariate
extension of a popular linear mixed-effects model, we create multiple imputations of missing
values for subsequent analyses by a straightforward and effective Markov chain Monte Carlo
procedure. We also derive and implement a new EM algorithm for parameter estimation
which converges more rapidly than traditional EM algorithms because it does not treat
the random effects as “missing data,” but integrates them out of the likelihood function
analytically. These techniques are illustrated on models for adolescent alcohol use in a
large school-based prevention trial.
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1. INTRODUCTION

1.1 THE MODEL

Multivariate longitudinal or clustered data are characterized by multiple responses
measured (a) at multiple occasions for each subject or (b) for subjects nested within naturally
occurring groups. Examples include multiple exam or test scores recorded for students
across time, and multiple items at a single occasion for students in more than one school.
Sensible methods for analyzing such data will appreciate both the relationships among the
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response variables and potential correlations among observations from the same individual
or cluster. This article discusses a multivariate version of a popular linear mixed-effects
model for longitudinal or clustered data and applies this model to datasets with missing
values.

Let yi denote an ni × r matrix of multivariate responses for sample unit i, i =
1, 2, . . . ,m, where each row of yi is a joint realization of variables Y1, Y2, . . . , Yr. We
consider situations where portions of y1, . . . , ym are ignorably missing in the sense de-
scribed by Rubin (1976) and Little and Rubin (1987). Our model for the complete data
is

yi = Xiβ + Zibi + εi, (1.1)

where Xi (ni × p) and Zi (ni × q) are known covariate matrices, β (p × r) is a matrix
of regression coefficients common to all units, and bi (q × r) is a matrix of coefficients
specific to unit i. In popular terminology, β and bi are called “fixed effects” and “random
effects,” respectively. We assume that the ni rows of εi are independently distributed as
N(0,Σ), and that the random effects are distributed as vec(bi) ∼ N(0,Ψ) independently
for i = 1, . . . ,m (the “vec” operator vectorizes a matrix by stacking its columns). Without
conditioning on b1, . . . , bm, the implied model for vec(yi) is normal with mean vec(Xiβ)
and covariance matrix

W−1
i = (Ir ⊗ Zi)Ψ(Ir ⊗ Zi)T + (Σ ⊗ Ini). (1.2)

In longitudinal applications, times of measurement may be incorporated into Xi and Zi,
allowing relevant aspects of the growth curves (e.g., intercepts and slopes) to vary by subject.

1.2 PREVIOUS WORK

The univariate (r = 1) version of our model,

yi ∼ N(Xiβ, ZiψZ
T
i + σ2Ini

), (1.3)

and more general univariate models have been extensively treated by Laird and Ware (1982);
Jennrich and Schluchter (1986); Laird, Lange, and Stram (1987); Lindstrom and Bates
(1988); and others. A variety of software is available for fitting these linear mixed-effects
models. Commercial packages include HLM (Bryk, Raudenbush, and Congdon 1996) and
MLn (Multilevel Models Project 1996). Similar procedures are now found in SAS (Littell,
Milliken, Stroup, and Wolfinger 1996), S-Plus (Mathsoft, Inc. 1997), and STATA (Stata
Corporation 1997). These programs can handle unbalanced longitudinal data, with mea-
surements taken at an arbitrary set of time points for each subject. Responses that are
missing, either unintentionally or by design, are ignored in the computations along with the
corresponding rows of Xi and Zi. An important limitation of these methods is that missing
values must be confined to the single response variable; missing values on predictors are
not allowed.
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Despite the popularity of single-response models, multivariate versions have received
scant treatment in the literature. A model similar to (1.1) was considered by Reinsel (1984)
who derived closed-form estimates with completely observed yi and balanced designs. More
recently, Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm of Laird and
Ware (1982) to a bivariate (r = 2) setting. In common econometric terminology, their model
is analogous to “seemingly unrelated regression” (Zellner 1962) whereas ours corresponds
to “standard multivariate regression.” The added generality of the seemingly unrelated
model comes at a high cost, making the resulting algorithms impractical for more than a
few response variables. In certain situations, it may be possible to recast the multivariate
model as a univariate one by stacking the columns of yi and applying existing software
(e.g., SAS Proc Mixed) with a user-specified covariance structure. In most applications,
however, this approach quickly becomes impractical. Examples for only r = 2 response
variables with complete data (Shah, Laird, and Schoenfeld 1997) and incomplete data
(Verbeke and Molenberghs 2000) require complicated SAS macros. As the number of
variables and number of individuals or time-points per cluster grow, the dimension of the
response increases rapidly, and usage of SAS Proc Mixed becomes practically impossible.

Perhaps one reason why little attention has been paid to the multivariate models is that
it is often natural to regard one of the variables as a response and the others as potential
predictors. When the predictors have missing values, however, joint modeling of the multiple
responses becomes helpful or even necessary; some type of modeling assumptions must
be applied to Y1, . . . , Yr to achieve an efficient solution, even if the parameters of interest
pertain only to the conditional model for one variable given the others.

In panel studies where individuals are assessed at a common set of occasions, models
equivalent to ours may be formulated as latent growth curves (McArdle 1988; Meredith
and Tisak 1990) and fit with structural-equations software. Two programs for structural
equations, Mx (Neale 1994) and Amos (Arbuckle 1995), perform ML estimation from
datasets with missing values. In principle, missing values can also be accommodated in other
structural-equations software using a multiple groups approach (Allison 1987; Muthén,
Kaplan, and Hollis 1987) but the implementation can be tedious. A disadvantage of the
latent growth-curve formulation is that the measurements must be taken at a small number
of common time points for all subjects. The method does not apply to clustered situations
where the rows of yi represent subjects nested within a group.

Schafer (1997) derived likelihood-based and Bayesian methods for independent multi-
variate observations with arbitrary patterns of missing values. In certain cases, this method-
ology can be applied to longitudinal data by treating the same outcome at different time
points as distinct variables. Because this approach does not take into account the longi-
tudinal structure, it may introduce more parameters than can be well estimated from the
observed data.

1.3 SCOPE OF THIS ARTICLE

In the following sections, we develop computational techniques for applying the
multivariate linear mixed model (1.1) to datasets with missing values. Two approaches
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are discussed. The first one, described in Section 2, is to generate multiple imputations for
the missing values using Markov chain Monte Carlo (MCMC). We extend the methodology
of Schafer (1997) to groups of correlated multivariate observations, making it applicable to
a variety of cluster samples and panel studies. In one sense, the material in Section 2 could
be regarded as straightforward application of existing MCMC methods described elsewhere
(e.g., Gilks, Richardson, and Spiegelhalter 1996). However, many of the the details of our
implementation—especially where missing data are involved—might not be obvious even
to readers familiar with MCMC. With careful attention to these computational details, the
method is very effective and may be applied to datasets that are quite large.

Section 3 describes a second set of techniques which produce maximum-likelihood
estimates or posterior modes. These methods may be used to estimate the parameters of
model (1.1) directly from the incomplete data. They may also be used in conjunction with
the MCMC methods of Section 2, helping the user to obtain good quality starting values and
to select prior distributions for unknown variance components. Mode-finding algorithms are
also helpful for testing model fit. The major innovation of Section 3 is a newly formulated
EM algorithm which performs substantially better than previous methods.

Section 4 illustrates our methods by applying them to data from the Adolescent Alcohol
Prevention Trial, a longitudinal study of substance-use attitudes and behaviors. Finally,
Section 5 discusses the limitations of our model and future extensions. Procedures discussed
here will be made available in a stand-alone program called PAN (Schafer and Yucel 2001)
which operates in the Windows environment. PAN can be downloaded free of charge from
http://www.stat.psu.edu/∼jls/misoftwa.html.

2. METHODS FOR MULTIPLE IMPUTATION

2.1 MULTIPLE IMPUTATION BY MCMC

Suppose that portions of Y = (y1, y2, . . . , ym) are ignorably missing. Let yi(obs)

and yi(mis) denote the observed and missing parts of yi, respectively, and let Yobs =
(y1(obs), y2(obs), . . . , ym(obs)) and Ymis = (y1(mis), y2(mis), . . . , ym(mis)) denote all observed
and missing responses. Unknown parameters are denoted by θ = (β,Σ,Ψ). For the fixed
effects and residual covariances, we assume that β ∈ Rpr and Σ > 0. Depending on the
application, we may allow Ψ to be either (a) unstructured or (b) block diagonal with r

nonzero blocks of size q × q corresponding to the individual columns of bi.
Multiple imputation, developed by Rubin (1987, 1996), is an increasingly popular

method for handling missing values. For multiple imputation, we generate M independent
draws Y (1)

mis , . . . , Y
(M)

mis from a posterior predictive distribution for the missing data,

P (Ymis |Yobs) =
∫

P (Ymis |Yobs, θ)P (θ |Yobs) dθ, (2.1)

where P (θ |Yobs) is the observed-data posterior density, which is proportional to the product
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of a prior density π(θ) and the observed-data likelihood function

L(θ |Yobs) =
∫

L(θ |Y ) dYmis.

After imputation, the resulting M versions of the complete data are analyzed separately
by complete-data methods, and the results are combined using simple arithmetic to obtain
inferences that effectively incorporate uncertainty due to missing data. As shown by Rubin
(1987), quality inferences can often be obtained with a very small number (e.g., M = 5)
of imputations. Methods for combining the results of the complete-data analyses are given
by Rubin (1987, 1996) and reviewed by Schafer (1997, chap. 4).

When a model is used as a device for imputation, the meaning or interpretation of its
parameters is not crucial; the utility of the model lies in its ability to predict and simu-
late missing observations. A sensible imputation method for multivariate longitudinal or
clustered data should preserve basic relationships among variables and correlations among
observations from the same subject or cluster. The model (1.1) is capable of preserving these
effects. In many cases, post-imputation analyses will be based on models less elaborate;
for example, a model for one response variable given the others. In other cases, effective
analyses may be carried out under a model somewhat different from that used to impute
missing values. The performance of multiple imputation when the imputer’s and analyst’s
models differ was addressed by Meng (1994) and Rubin (1996). In practice, inference by
multiple imputation is fairly robust to departures from the imputation model because that
model effectively applies not to the entire dataset but only to its missing parts. We have used
(1.1) as the basis for imputing binary and ordinal responses, rounding off the continuous
imputed values to the nearest category. Simulations have shown that the biases incurred by
such rounding procedures may be minor (Schafer 1997). At best this is only an approximate
solution; a more principled but complicated approach may involve introducing random ef-
fects into the general location model for multivariate data with continuous and categorical
variables (Olkin and Tate 1961; Schafer 1997).

Except in trivial special cases, the posterior predictive distribution (2.1) for our model
cannot be simulated directly. We create random draws of Ymis from P (Ymis | Yobs) by
techniques of Markov chain Monte Carlo (MCMC). In MCMC, one generates a sequence of
dependent random variates whose distribution converges to the desired target. Overviews of
MCMC were given by Gelfand et al. (1990); Smith and Roberts (1993); Tanner (1993); and
in the chapters of Gilks, Richardson, and Spiegelhalter (1996). Schafer (1997) described
MCMC for multivariate continuous and categorical missing data problems, but did not
consider mixed models with random effects. Applications of MCMC to univariate linear
mixed models have been made by a number of authors, including Gelfand, Hills, Racine-
Poon, and Smith (1990); Zeger and Karim (1991); Liu and Rubin (1995); and Carlin (1996).
These MCMC methods rely on simplifications that result when the random effects are
assumed known. If B = (b1, b2, . . . , bm) were known, then inferences about θ would
separate into two simpler problems: (a) a normal-theory inference about Ψ based on B,
and (b) a normal-theory inference about (β,Σ) based on (yi − Zibi), i = 1, . . . ,m. This
simplification is also an underlying feature of conventional EM algorithms for random-



442 J. L. SCHAFER AND R. M. YUCEL

effects model as well, to be discussed in Section 3. Unlike EM, however, MCMC allows
us to circumvent manipulations on large matrices by alternately conditioning on simulated
values of the random effects and the missing data.

2.2 A GIBBS SAMPLER

In a slight abuse of notation, let A∗ ∼ P (A) denote simulation of a random variate A∗

from a distribution or density function P (A). Consider an iterative simulation algorithm
in which current versions of the unknown parameters θ(t) = (β(t),Σ(t),Ψ(t)) and missing
data Y

(t)
mis are updated in three steps: first,

b
(t+1)
i ∼ P

(
bi | Yobs, Y

(t)
mis , θ

(t)
)

(2.2)

independently for i = 1, . . . ,m; next,

θ(t+1) ∼ P
(
θ | Yobs, Y

(t)
mis , B

(t+1)
)

; (2.3)

and finally,

y
(t+1)
i(mis) ∼ P

(
yi(mis) | Yobs, B

(t+1), θ(t+1)
)

(2.4)

for i = 1, . . . ,m. Given starting values θ(0) and Y
(0)

mis , these steps define one cycle of
an MCMC procedure called a Gibbs sampler. Executing the cycle repeatedly creates se-
quences {θ(1), θ(2), . . .} and {Y (1)

mis , Y
(2)

mis , . . .} whose limiting distributions are P (θ | Yobs)
and P (Ymis |Yobs), respectively.

Implementing (2.3) requires a prior distribution for θ. It is known that in mixed-effects
models, improper prior distributions for the covariance components may lead to Gibbs
samplers that do not converge to proper posteriors, even though each step of the cycle
is well-defined. For this reason, proper prior distributions for the covariance matrices are
highly recommended. For simplicity, we apply independent inverted Wishart priors Σ−1 ∼
W (ν1,Λ1) and Ψ−1 ∼ W (ν2,Λ2), where W (ν,Λ) denotes a Wishart variate with ν > 0
degrees of freedom and meanνΛ > 0. This prior is appropriate for a model with unstructured
Ψ; versions for block-diagonal Ψ will be discussed later. These priors exist provided that
Λ1 > 0, Λ2 > 0, ν1 ≥ r and ν2 ≥ qr. In choosing values for the hyperparameters, it
is helpful to regard ν−1

1 Λ−1
1 and ν−1

2 Λ−1
2 as prior guesses for Σ and Ψ with confidence

equivalent to ν1 and ν2 degrees of freedom, respectively. Small values for ν1 and ν2 make
the prior densities relatively diffuse, reducing their impact on the final inferences. For β,
we use an improper uniform “density” over Rpr.

Under these priors, each of the steps (2.2)–(2.4) is derived by straightforward applica-
tion of Bayes’ theorem. In our model, the pairs (yi, bi) are distributed as

vec(yi) | bi, θ ∼ N( vec(Xiβ + Zibi), (Σ ⊗ Ini) ),

vec(bi) | θ ∼ N(0,Ψ)
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independently for i = 1, . . . ,m. It follows that

vec(bi) |yi, θ ∼ N(vec(b̃i), Ui),

where

vec(b̃i) = Ui (Σ−1 ⊗ ZT
i ) vec(yi − Xiβ), (2.5)

Ui = ( Ψ−1 + (Σ−1 ⊗ ZT
i Zi) )−1. (2.6)

Simulation of θ in (2.3) proceeds as follows: First, draw Ψ−1 from a Wishart distribution
with degrees of freedom ν′

2 = ν2 + m and scale Λ′
2 = (Λ−1

2 + BTB)−1. Next, calculate
the ordinary least-squares coefficients

β̂ =

(
m∑

i=1

XT
i Xi

)−1( m∑
i=1

XT
i (yi − Zibi)

)

and residuals ε̂i = yi −Xiβ̂−Zibi, and draw Σ−1 from a Wishart distribution with degrees
of freedom ν′

1 = ν1 − p +
∑m

i=1 ni and scale Λ′
1 =

(
Λ−1

1 +
∑m

i=1 ε̂
T
i ε̂i

)−1
. Finally, draw

β from a multivariate normal distribution centered at β̂ with covariance matrix Σ ⊗ V ,
where V =

(∑m
i=1 X

T
i Xi

)−1
. For simulating β, it is helpful to note that if G and H are

upper-triangular square roots of Σ and V , respectively (GTG = Σ and HTH = V ), then
G ⊗ H is an upper-triangular square root of Σ ⊗ V .

To carry out the final step (2.4) of the Gibbs sampler, notice that the rows of εi = yi −
Xiβ−Zibi are independent and normally distributed with mean zero and covariance matrix
Σ. Therefore, in any row of εi, the missing elements have an intercept-free multivariate
normal regression on the observed elements; the slopes and residual covariances for this
regression can be quickly calculated by inverting the square submatrix of Σ corresponding
to the observed variables. Drawing the missing elements in εi from these regressions and
adding them to the corresponding elements of Xiβ + Zibi completes the simulation of
yi(mis).

2.3 IMPLEMENTATION ISSUES

The Gibbs sampler defined by (2.2)–(2.4) is not the only one that could be implemented
for this problem; as noted by Liu and Rubin (1995) in the univariate case, a wide variety of
alternative MCMC algorithms are possible. If any of the steps (2.2)–(2.4) could be carried out
without conditioning on simulated values of Ymis or B, then the algorithm could be made
to converge in fewer iterations. De-conditioning may greatly increase the computational
cost per iteration, however, and some limited experience suggests that the additional effort
required to do so is not worthwhile. With modern computers, iterations of (2.2)–(2.4) can
be performed quickly even with the large datasets provided that sufficient physical memory
is available to store Yobs, Y

(t)
mis , and the covariate matrices Xi and Zi.

The convergence behavior of this algorithm is governed by two factors: the amount of
information about θ carried in Ymis relative to Yobs; and the degree to which the random
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effects bi can be estimated from yi. If the missing portions of yi exert high leverage over
components of θ, or if the bi are poorly estimated (i.e., if the within-unit precision matrices
Σ−1 ⊗ZT

i Zi tend to be small relative to ψ−1), then convergence can be slow. Convergence
may also be slow when the number of subjects m is large, because for large m the posterior
distribution for Ψ given b1, . . . , bm becomes very tight, causing the drawn value for Ψ to be
close to its previous value. When producing multiple imputations, slow convergence is not
disastrous because in most cases only a few independent draws of Ymis are needed. If the
algorithm is believed to achieve approximate stationarity byT cycles, thenM imputations of
Ymis can be generated in MT cycles. Convergence can be informally assessed by examining
time-series plots, autocorrelations, and so on. for individual elements or functions of θ. In
particular, one should pay close attention to the elements of Ψ because these parameters tend
to exhibit high autocorrelations. Formal and informal convergence diagnostics for MCMC
were discussed by Gilks, Richardson, and Spiegelhalter (1996) and Schafer (1997, chap.
4).

Notice that any row of yi that is completely missing may be omitted from consideration,
along with the corresponding rows ofXi andZi, without changing the form of the complete-
data model (1.1). Ignoring these rows will eliminate unnecessary computation at each cycle
and reduce the rate of missing information, speeding the overall convergence. These rows of
data may be restored at the final imputation step (2.4) to produce a fully completed dataset.

2.4 PRIOR GUESSES AND ALTERNATIVE COVARIANCE STRUCTURES

When specifying values for the hyperparameters, our usual practice is to set ν1 = r and
ν2 = qr to make the priors as dispersed as possible and minimize their subjective influence.
We typically set Λ−1

1 = ν1Σ̂ and Λ−1
2 = ν2Ψ̂, where Σ̂ and Ψ̂ are reasonable prior guesses

for Σ and Ψ. If no prior guesses are available, the data themselves may be used to obtain
them; the EM algorithms of Section 3 are excellent tools for pursuing these guesses.

Excellent prior guesses for Σ and Ψ may also be obtained by temporarily supposing
that Σ is diagonal and Ψ is block-diagonal. Under these conditions, the multivariate model
separates into independent univariate models for each of the r columns of yi, and ML
or RML estimates of the variance components may be quickly calculated using existing
software for linear mixed-effects models. When data are sparse and some aspects of Σ or Ψ
are not well estimated, diagonal and block-diagonal prior guesses for Σ and Ψ, respectively,
tend to stabilize the computational procedures in much the same way that ridge regression
stabilizes estimated coefficients when collinearity is present. The use of ridge-like priors
with incomplete and sparse multivariate data was described by Schafer (1997).

When modeling a large number of response variables at once, it may be advantageous to
restrict Ψ to a block-diagonal structure—not only for the purpose of obtaining prior guesses,
but also when running the Gibbs sampler itself. If Ψ is block-diagonal, then independent
inverted Wishart prior distributions may be applied to the q × q nonzero blocks, Ψ−1

j ∼
W (νj ,Λj) for j = 1, 2, . . . , r. Weak priors are obtained by setting νj = q and Λ−1

j = νjΨ̂j ,
where Ψj is an estimate or prior guess for Ψj . The distributions for these blocks in step
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(2.3) become Ψ−1
j ∼ W (ν′

j ,Λ
′
j), where ν′

j = νj +m, Λ′ −1
j = Λ−1

j +
∑m

i=1 bijb
T
ij , and bij

is the jth column of bi.
The choice between an unstructured or block-diagonalΨwill depend on both theoretical

and practical considerations. A block diagonal structure indicates no a priori associations
between the random effects for any two response variables Yj and Yj′ . In a multivariate
cluster sample with many variables, many units per cluster, but relatively few clusters, it may
simply not be possible to estimate covariances among the random effects for all response
variables. It is important to note that even if Ψ is block-diagonal, the columns of bi are not
independent in an a posteriori sense because (2.6) is not block-diagonal. A formal likelihood
ratio test to choose between the unstructured and block-diagonal forms for ψ is possible
with the EM procedures in Section 3.

3. ALGORITHMS FOR MODE-FINDING

3.1 IMPORTANCE OF MODE-FINDING PROCEDURES

The Gibbs sampler of Section 2 is an effective method for imputing missing values
in the yi matrices under the multivariate model (1.1). In principle it may also be used to
simulate Bayesian estimates for θ, but in many cases estimates are more easily found with
EM. Deterministic parameter estimation or mode-finding algorithms are a desirable accom-
paniment to MCMC simulation procedures (Gelman, Carlin, Stern, and Rubin 1995; Carlin
1996; Schafer 1997). MCMC requires starting values for the unknown model parameters;
ML estimates can provide excellent starting values. As described earlier, ML estimates
may provide guidance for specifying prior distributions required by MCMC. Finally, an
algorithm for ML estimation can help to reveal pathological situations where the likelihood
function is unusually shaped, with multiple modes or suprema on the boundary.

The first method is a Fisher scoring procedure which applies when y1, . . . , ym are
fully observed. The second method, discussed in Section 3.3, is a new EM algorithm which
incorporates Fisher scoring into the M-step; this procedure may be used when the response
matrices yi are partially missing. This new EM algorithm tends to converge more quickly
than conventional EM algorithms for mixed-effects models because the random effects are
not included in EM’s formulation of “missing data.” Implementation of the new algorithm
is somewhat more complicated, but the per-iteration execution time compares favorably to
that of conventional EM in many examples. In a few cases, this new algorithm is less stable
than conventional EM. A hybrid procedure that combines stability with rapid convergence
is described in Section 3.4.

3.2 FISHER SCORING

After the general presentation of EM by Dempster, Laird, and Rubin (1977), EM and
its extensions have been extensively applied to the univariate model (1.3). EM is designed
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for ML estimation with incomplete data and in situations that can be formulated as missing-
data problems. Conventional applications of EM to mixed-effects models treat the random
coefficients as missing data, capitalizing on a factorization of the augmented-data likelihood,

L(θ |Y,B) = L(Ψ |B)L(β, σ2 |Y,B). (3.1)

The overall maximum of (3.1) with respect to θ can be found by maximizing each of the
two factors separately, neither of which requires iteration. Each cycle of EM maximizes the
expected logarithm of (3.1), where the expectation is taken with respect to the conditional
distribution of B given Y with the parameters fixed at their current estimates. With some
effort, these EM conventional algorithms for the univariate model can be extended to the
multivariate case. Shah, Laird, and Schoenfeld (1997) extended the EM-type algorithm
of Laird and Ware (1982) to a bivariate (r = 2) response, both for complete yi and for
incomplete yi.

Conventional EM algorithms which operate on (3.1) may suffer from very slow con-
vergence. We have found that when there are no missing values in yi—or, more generally,
when entire rows in yi are missing—the likelihood can be maximized more quickly by
Fisher scoring.

The likelihood function arising from the marginal normal distribution for yi is

L(θ) ∝
m∏

i=1

|Wi|1/2 exp

{
−1

2
δT
i Wiδi

}
,

where δi = vec(yi − Xiβ) and Wi is defined by (1.2). Using the relationship |Wi| =
|Σ⊗Ini

|−1|Ψ|−1|Ui| and ignoring constants of proportionality, the logarithm of L becomes

'(θ) = −N

2
log |Σ| − m

2
log |Ψ| +

1
2

m∑
i=1

log |Ui| − 1
2

m∑
i=1

δT
i Wiδi. (3.2)

Fisher scoring updates the current estimate θ(t) by solving the linear system Cθ(t+1) = d,
where C = −E'′′(θ(t)) and d = Cθ(t) + '′(θ(t)). Upon convergence, the final value of
C−1 provides an estimated covariance matrix for θ̂.

For convenience, we take derivatives with respect to β and the nonredundant elements
of Ψ−1 and Σ−1. These matrices can be expressed as

Ψ−1 =
g∑

j=1

ωjGj ,

Σ−1 =
h∑

j=1

σjFj ,

where G1, G2, . . . , Gg and F1, F2, . . . , Fh are known symmetric matrices of dimensions
rq × rq and r × r, respectively. The number of free parameters in Ψ is g = rq(rq + 1)/2
when Ψ is unstructured and g = rq(q+1)/2 when it is block-diagonal. The first derivatives
of '(θ) are ∂'/∂vec(β) = −Γ−1vec(β − β̃),

∂'

∂ωj
=

1
2

m∑
i=1

tr
(
Ψ − Ui − vec(b̃i)vec(b̃i)T

)
Gj ,
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and

∂'

∂σl
=

1
2

m∑
i=1

tr
(
niΣFl − (Fl ⊗ ZT

i Zi)Ui − vec(ε̃i)Flvec(ε̃i)T
)
,

where vec(ε̃i) = vec(yi − Xiβ − Zib̃i), and β̃ is obtained by generalized least squares
(GLS),

vec(β̃) = Γ
m∑

i=1

(Ir ⊗ Xi)TWi vec(yi),

Γ−1 =
m∑

i=1

(Ir ⊗ Xi)TWi(Ir ⊗ Xi).

Taking expectations over the distribution of yi for fixed θ, one can show that E(β̃) =
β, E(vec(b̂i)) = 0, and E(vec(b̂i)(vec(b̂i))T )=Ψ − Ui. Using these facts and algebraic
manipulation, it follows that

E

(
∂2'

∂vec(β)∂(vec(β))T

)
= −Γ

and

E

(
∂2'

∂ωj∂(vec(β))T

)
= E

(
∂2'

∂σj∂(vec(β))T

)
= 0.

Moreover,

E

(
∂2'

∂ωj∂ωk

)
= −1

2

m∑
i=1

tr(Ψ − Ui)Gj(Ψ − Ui)Gk,

E

(
∂2'

∂ωj∂σk

)
= −1

2

m∑
i=1

trUi(Fk ⊗ ZT
i Zi)UiGj ,

E

(
∂2'

∂σj∂σk

)
= −1

2

m∑
i=1

tr
(
niΣFjΣFk

− (Fk ⊗ ZT
i Zi)Ui(Fk ⊗ ZT

i Zi)

− 2(FjΣFk ⊗ ZT
i Zi)Ui

)
.

Because the cross-derivatives of β with the covariance parameters have zero expec-
tation, the scoring step for θ separates into independent linear updates for β and (Ψ,Σ).
The updated estimate for β is the GLS estimate β̃ under the current estimated covariance
parameters. Collecting the free covariance parameters into vectors, ω = (ω1, ω2, . . . , ωg)T ,
σ = (σ1, σ2, . . . , σh)T , and η = (ωT , σT )T , the updated covariance estimates are found
by solving Cη(t+1) = d with

C = −




E

(
∂2'

∂ω∂ωT

)
E

(
∂2'

∂ω∂σT

)

E

(
∂2'

∂σ∂ωT

)
E

(
∂2'

∂σ∂σT

)
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and d = Cη(t) + '′(η). Updated estimates for Ψ and Σ are obtained by inversion of∑
j ωjGj and

∑
j σjFj . In typical situations, the algorithm converges by 10–15 cycles.

Note that scoring-updated estimates for Ψ and Σ are not guaranteed to be positive definite;
if the estimates stray outside the parameter space, a step-halving procedure is used to bring
them back in.

3.3 EM ALGORITHM

We now discuss a procedure that can be used when arbitrary portions of the response
matrices Y = (y1, y2, . . . , ym) are ignorably missing. We embed our scoring procedure
within an EM algorithm which augments the observed data with missing portions of yi

but not random effects. The performance of this algorithm is best when the proportion of
partially observed rows in yi is small, and degrades if the observed data become very sparse;
however, it does not tend to slow down merely when the random effects are poorly estimated.
The E-step calculates the expectation of the complete-data log-likelihood function (3.2)
with respect to the conditional distribution of Ymis given Yobs under a current estimate of θ.
The M-step updates the estimate of θ, maximizing this expected log-likelihood by scoring.
Details are provided below.

For the E-step, note that (3.2) is a linear function of the sufficient statistics vec(yi)
and vec(yi)vec(yi)T . It follows from (1.1) that vec(yi) and vec(bi) are jointly normal with
covariance matrix [

(Ir ⊗ Zi)Ψ(Ir ⊗ Zi)T (Ir ⊗ Zi)Ψ
Ψ(Ir ⊗ Zi)T Ψ

]
. (3.3)

One way to find the necessary expectations is to begin with (3.3), whose dimension is
(rq + rni) × (rq + rni), and apply an orthogonalization method (e.g. sweep) for i =
1, 2, . . . ,m. This strategy may work in small examples but becomes prohibitively expensive
as ni or r grows. Instead, we capitalize on the fact that the rows of yi are conditionally
independent given bi with constant covariance.

Consider the expectation of the first complete-data sufficient statistic,

E(yi | yi(obs)) = E
(
E(yi | yi(obs), bi) | yi(obs)

)
.

This calculation requires access to the distributions of yi(mis) given (yi(obs), bi) and bi given
yi(obs). The former is simple because, given bi, the rows of y∗

i = yi − Xiβ − Zibi are
independent and identically distributed as N(0,Σ). Therefore, the missing elements in
any row of y∗

i have, given the observed elements and bi, an intercept-free regression on
the observed elements; the parameters of this regression can be obtained by inverting the
square submatrix of Σ corresponding to the observed elements. Letting y∗

ij(mis) and y∗
ij(obs)

denote the missing and observed portions of the jth row of y∗
i , we have

E(y∗
ij(mis) | yi(obs), bi) = Σ21Σ−1

11 y∗
ij(obs),

where Σ11 is the square submatrix of Σ corresponding to the observed elements and Σ21 is
the rectangular submatrix of covariances between the missing and observed elements.
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Finally, because y∗
i is a linear function of bi, the expectation of yi without conditioning

on bi is obtained by direct substitution ofE(bi | yi(obs)) for bi. Notice that the value ofΣ21Σ11

varies by missingness pattern but not by observational units i = 1, 2, . . . ,m; computations
can be reduced by grouping rows with identical missingness patterns across units. The
parameters of the distribution of bi given yi(obs) are obtained by applying a reverse-sweep
procedure to b̂i and Ui, as defined in Section 2.2, to de-condition upon yi(mis).

For the second sufficient statistic vec(yi)vec(yi)T , one can apply a similar argument,
first calculating the conditional expectation given bi and yi(obs), then averaging over the
distribution of bi given yi(obs). Let yijk denote the kth element of the jth row of yi. The
formula for the expectation of yijkyij′k′ depends on whether yijk and yij′k′ are observed
or missing, and whether they are in the same (j = j′) or different (j �= j′) rows. It is
easy to see that the expectation of yijkyij′k′ given yi(obs) is given by: yijkyij′k′ if both are
observed; yijkE(yij′k′ |yi(obs)) if yijk is observed and yij′k′ is missing; and

E(yijk |yi(obs))E(yij′k′ |yi(obs)) + cov(yijk, yij′k′ |yi(obs))

if both are missing. The covariance between yijk and yij′k′ given yi(obs) is equal to

cov(Aijk, Aij′k′ | yi(obs)) + [Σ22·1]kk′

if they are in the same row, and

cov(Aijk, Aij′k′ | yi(obs))

if they are in different rows, where

Aijk = E(yijk | bi, yi(obs))

comes from the regression predictions for the missing elements in the jth row of yi given
the observed elements. The covariance cov(Aijk, Aij′k′ | yi(obs)) is obtained by noting that
it is a linear function of the elements of the covariance matrix for bi given yi(obs).

The M-step requires us to maximize the expected log-likelihood computed in the E-
step. This expected log-likelihood has nearly the same form as (3.2) and can be maximized
by a slight modification of the Fisher scoring procedure. Minor changes must be made to
the function ' and its first derivatives, but the expected second derivatives remain the same.
The first derivatives of 'e = E(' | Ymis) with respect to the elements of θ are

∂'e

∂vec(β)
= −

(
m∑

i=1

(Ir ⊗ Xi)TWi(Ir ⊗ Xi)

)
vec(β − β̃),

∂'e

∂ωj
=

1
2

m∑
i=1

tr
(
Ψ − Ui − (Σ−1 ⊗ ZT

i Zi)

UiTiUi(Σ−1 ⊗ ZT
i Zi)

)
Gj ,

∂'e

∂σl
=

1
2

m∑
i=1

tr
(
niΣFl − (Fl ⊗ ZT

i Zi)Ui

−Wi(ΣFjΣ ⊗ Ini)WiTi

)
,
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where

vec(β̃) = Γ
m∑

i=1

(Ir ⊗ Xi)TWiE(vec(yi) | θ, yi(obs)),

Ti = E
{

vec(yi − Xiβ)vec(yi − Xiβ)T |yi(obs), θ
}
.

After calculating these derivatives, we update the parameters in the same fashion as in
Section 3.2.

In practice, it is not necessary to iterate until the scoring procedure converges within
each M-step; one step of scoring is usually sufficient, provided that 'e has increased. The
resulting procedure becomes a generalized EM (GEM) algorithm rather than EM, in the
terminology of Dempster, Laird, and Rubin (1977), and is usually well-behaved. Slightly
faster convergence can often be achieved by a simple reparameterization, taking logarithms
of the diagonal elements of Ψ−1 and Σ−1 for scoring, which seems to help when the
maximum lies near the boundary of the parameter space. Derivatives with respect to these
parameters are found by the expressions above and a chain rule.

3.4 FURTHER POINTS

Mode-finding algorithms, especially scoring, may require good starting values. We
obtain starting values as follows: For each response variable Yj , we fit univariate linear
mixed model (1.3) using the cases for which Yj is observed. Fast and stable algorithms
described in a technical report (Schafer 1998) provide ML estimates for the portions of Σ,
Ψ and β pertaining to Yj . Off-diagonal elements of Σ and blocks of Ψ are initially set to
zero.

Although our algorithm converges more quickly than conventional EM methods for
mixed-effects models, it may be less stable when the log-likelihood is oddly shaped. To
improve stability, we combine our method with a conventional EM procedure based on the
augmented-data likelihood (3.1), substituting one step of conventional EM if a single step
of scoring fails to increase the log-likelihood.

If random effects are eliminated (Ψ = 0), the model reduces to a standard multivariate
regression yi = Xiβ + εi where the rows of ε are independently distributed as N(0,Σ).
In this situation, ML estimates of (β,Σ) may be found by a straightforward extension
of EM algorithms for incomplete multivariate normal data (Schafer 1997, chap. 5). Note
that a hypothesis test for Ψ = 0 should not be performed by standard likelihood-ratio
methods because the null model places rq parameters on on the boundary of the parameter
space, making the limiting distribution under null hypothesis rather complicated (Stram and
Lee 1995). The standard chi-square limiting distribution does apply when testing the null
hypothesis that Ψ is block-diagonal versus the unstructured alternative.

As an alternative to Fisher scoring, one might consider optimizing the expected log-
likelihood by a sequence of constrained maximizations. For example, one could maximize
with respect to β holding (Ψ,Σ) constant; then with respect to Ψ holding (β,Σ) constant;
and then with respect to Σ holding (β,Ψ) constant. This would produce an ECM algorithm,
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a useful generalization of EM described by Meng and Rubin (1993). In this example,
however, two of the three constrained maximizations would require an iterative method
such as Newton–Raphson, leading to no substantial simplification.

As with any EM algorithm, the procedure of Section 3.3 does not automatically pro-
duce correct standard errors for parameter estimates. If necessary, standard errors could be
found by the supplemented EM (SEM) method of Meng and Rubin (1991). In most cases,
however, multiple imputation as described in Section 2 will produce standard errors in a
more straightforward and less cumbersome fashion.

Finally, consider the related problem of restricted maximum likelihood (RML) esti-
mation, which maximizes the indefinite integral of the likelihood with respect to β. This
function is

L1(θ) ∝ |Γ|1/2
m∏

i=1

|Wi|1/2 exp

{
−1

2
vec(yi − Xiβ̃)T Wivec(yi − Xiβ̃)

}
,

where Γ and β̃ are as defined in Section 3.2. Our algorithms for ML estimates may be
modified to compute RML estimates. One may approximate the expected second derivatives
of '1(θ) = logL1(θ) by the expected second derivatives of '(θ), but first derivatives are
more complicated because β̃ is a function of the unknown covariance parameters. These
changes affect both the scoring procedure for complete yi and the M-step for incomplete
yi.

4. EXAMPLE

4.1 ADOLESCENT ALCOHOL PREVENTION TRIAL

Data for this example were taken from the Adolescent Alcohol Prevention Trial (AAPT),
a longitudinal school-based intervention study of substance use in the Los Angeles, CA,
area (Hansen and Graham 1991). A sample of 3,574 school children received question-
naires yearly in grades 5–10 to measure substance-use attitudes and behaviors. We exam-
ined three important variables derived from the AAPT questionnaire: Y1 = DRINKING, a
composite measure of self-reported alcohol use;Y2 = POSCON, a measure of the perceived
positive consequences of use; and Y3 = NEGCON, a measure of the perceived negative
consequences of use. Many values of these variables were missing due to absenteeism and
attrition, which we will assume to be ignorable (Little and Rubin 1987; Rubin 1976). The ig-
norability assumption has been considered in detail by Graham, Hofer, and Piccinin (1994)
and is thought to be somewhat plausible; the primary reasons for attrition were ordinary
moving and migration of students among schools and districts. Moreover, a large portion of
truly ignorable missing data were missing by design; in some years, Y2 and Y3 were omitted
at random from one-third of the questionnaires, and in other years these measures were not
collected at all. Missingness rates for the three variables are shown in Table 1, and means
and standard deviations by year are shown in Table 2.
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Table 1. Missingness Rates (%) by Grade

Grade

5 6 7 8 9 10

DRINKING 2 24 24 33 35 44
POSCON 47 55 62 100 66 63
NEGCON 48 56 62 100 100 100

For one analysis, researchers wanted to fit linear growth curves to predict Y1 from Y2,
Y3, and other important covariates including gender. This analysis was not a straightforward
application of a linear mixed-effects model because of the high rates of missing values on the
covariates Y2 and Y3. We multiply imputed values for Y1, Y2, and Y3 under our multivariate
model, allowing the growth modeling to proceed with standard software. Our imputation
model specified linear trends over time with random slopes and intercepts for each of the
r = 3 variables, a fixed effect for gender, and a gender by time interaction. Each Xi matrix
had p = 4 columns corresponding to an intercept, grade, gender, and gender × grade; and
each Zi had q = 2 columns corresponding to intercept and grade. Notice from Table 2 that
both the average level of DRINKING and its variation increase dramatically over time. To
make the assumption of a constant residual covariance matrix Σ more plausible, reported
alcohol use was re-expressed as the logarithm of (DRINKING+5).

Because NEGCON is entirely missing for the last three years of the study, the likely
values of this variable for grades 8–10 are being inferred from two sources: extrapolation
from grades 5–7 based on the assumption of linear growth, and the residual covariances
among the three response variables which are assumed to be constant across time. Neither
of these assumptions can be effectively tested from the data at hand, so inferences pertaining
to NEGCON are heavily model-based.

4.2 MODE FINDING AND IMPUTATION

Prior to imputation, we examined alternative covariance structures using the estima-
tion procedures of Section 3.3. Despite the high rates of missingness, our EM algorithm
converged to a maximum relative parameter change of 0.0001 in only 104 iterations for
the unstructured-Ψ model and 95 for the block-diagonal version. Without random effects

Table 2. Means (standard deviations) of Observed Variables by Grade

Grade

5 6 7 8 9 10

DRINKING −1.43 −1.12 −0.57 0.09 1.29 1.97
(1.33) (1.96) (2.73) (3.47) (4.40) (4.78)

POSCON 1.30 1.34 1.48 — 1.84 1.96
(0.61) (0.62) (0.74) — (0.89) (0.91)

NEGCON 2.94 3.05 3.07 — — —
(0.76) (0.75) (0.77) — — —



MULTIVARIATE MIXED MODELS WITH MISSING VALUES 453

iteration number

ob
se

rv
ed

 lo
g-

lik
el

ih
oo

d

0 20 40 60 80 100 120 140

-2
00

00
-1

80
00

-1
60

00
-1

40
00

-1
20

00

0 20 40 60 80 100 120 140

unstructured
block-diagonal
fixed-effects only

Figure 1. Convergence behaviors under different covariance structures.

(Ψ = 0) EM again converged in approximately 100 steps. Values of the log-likelihood
for all iterations are plotted in Figure 1. The likelihood-ratio statistic for testing the block-
diagonal model against the unstructured alternative is 776.86; comparing this value to χ2

12

yields a p value of essentially zero.

In contrast to these EM algorithms, we anticipated that the Gibbs sampler of Section 2

would converge rather slowly, because that procedure augments the observed data by sim-

ulated random effects at each cycle. With only six occasions, the individual random slopes

and intercepts for Y1, Y2, and Y3 are not well estimated; moreover, the large sample size

causes the augmented-data posterior distribution for Ψ to become very tight, inducing a high

degree of correlation from one cycle to the next. To assess convergence, we ran our Gibbs

sampler for an initial 2,000 cycles using an unstructured Ψ and mild prior distributions; we

set ν1 = 3, Λ−1
1 = 3Σ̂, ν2 = 6, and Λ−1

2 = 6Ψ̂, where Σ̂ and Ψ̂ were obtained from EM.

Time-series plots and sample autocorrelations for the elements of Ψ suggested that several

hundred cycles were needed for the dependence to die out. Based on this information, we

continued the Gibbs sampler for a total of 11,000 cycles, taking the simulated values of

Ymis stored at cycles 2,000, 3,000, . . . , 11,000 as multiple imputations. Re-estimating the

autocorrelations from cycles 1,001–11,000, we verified that the dependence in the elements

of θ had indeed died down by lag 200, so the ten stored imputations could reasonably be re-

garded as independent draws from P (Ymis |Yobs). Each 1,000 cycles required approximately

17 minutes on a 400 MhZ Pentium II workstation.
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Table 3. Estimated Coefficients, Standard Errors, Degrees of Freedom, and Percent Missing Informa-
tion From Multiply-Imputed Growth-Curve Analysis

est. SE df % missing

intercept −2.572 0.084 19 71
grade (1=5th, . . ., 6=10th) 0.386 0.011 35 53
sex (0=female, 1=male) 0.370 0.046 324 17
sex × grade −0.105 0.013 88 33
POSCON 0.549 0.023 17 76
NEGCON −0.090 0.023 15 80

4.3 POST-IMPUTATION ANALYSIS

After imputation, we analyzed the data by a conventional mixed-effects model for the

logarithm of (DRINKING+5). The model was a version of (1.3) with fixed effects for

gender, grade, gender×grade, POSCON and NEGCON, plus random intercepts and slopes

for grade. ML estimates were computed from each imputed data set and combined using

Rubin’s (1987) rules for multiple-imputation inference for scalar estimands. Results of this

procedure are summarized in Table 3. The point estimates are simply the averages of the

ML estimates across the ten imputations. The standard errors incorporate uncertainty due

to missing data as well as ordinary sampling variability. The degrees of freedom shown

are the estimated degrees of freedom appropriate for hypothesis tests and interval estimates

based on a Student’s t-approximation. All coefficients are highly statistically significant.

Table 3 also displays the estimated percent rate of missing information for each estimand

as derived by Rubin (1987). The high rates of missing information indicate that inferences

for all coefficients (except sex) may be highly dependent upon the form of the imputation

model and the assumption of ignorable nonresponse. The latter assumption is not particularly

troubling for these data, because the majority of missing values are missing by design.

Certain assumptions of the imputation model, however—in particular, the assumed linear

growth for NEGCON and constancy of the residual covariances across time—are not really

testable from the observed data, so results from this analysis should be interpreted with

caution.

Despite these strong caveats, the estimates in Table 3 provide some intriguing and

plausible interpretations about the behavior of this cohort. The positive coefficient for sex

indicates that boys reported higher average rates of alcohol use than girls in the initial

years of the study. The negative effect for sex×grade, however, shows that girls exhibit

higher rates of increase than boys, so that the girls’ average overtakes the boys’ by grade

8. The large positive effect of POSCON indicates that increasing perceptions about the

positive consequences of alcohol use are highly associated with increasing levels of re-

ported use. The negative coefficient for NEGCON suggests that increasing beliefs about

negative consequences do tend to reduce levels of use, but the effect is much smaller than

that of POSCON. These results are consistent with those of previous studies (MacKinnon

et al. 1991) which demonstrated that perceived positive consequences may be influential
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determinants of substance-use behavior, but beliefs about negative consequences have little

discernible effect.

5. DISCUSSION
The algorithms developed here represent an important step in helping researchers to

analyze multivariate longitudinal or clustered data with missing values. If the dataset con-
tains only a few large clusters, the MCMC procedure described in Section 2 will converge
rapidly. With many small clusters the algorithm works very reliably but convergence may
be slow. The EM methods of Section 3 were designed specifically for many small clusters
and perform best in that setting.

It is straightforward to show that the multivariate mixed-effects model (1.1) implies a
conditional univariate model of the form (1.3) for each response variable given the others,
where the others are incorporated into the columns ofXi. Thus, the imputation procedures in
Section 2 are appropriate for longitudinal analyses with partially missing covariates, when
those covariates are later going to be incorporated into an analytic model as linear fixed
effects. In many studies, however, one would like to preserve and detect certain nonlinear
associations and interactions. For example, in the first analysis of Section 4, it would have
been interesting to see whether the association between POSCON and DRINKING may
have been increasing or decreasing over time; the imputation model, however, imputed
the missing values under an assumption of a constant POSCON×DRINKING association.
Extensions of the multivariate model to allow more elaborate fixed associations such as
POSCON × DRINKING × grade, or random associations such as POSCON × DRINKING
× subject, are an important topic of ongoing research.

Another limitation of our methods is that they currently allow only two levels of nesting.
Many studies involve multivariate longitudinal data that are clustered further into larger units
(e.g., repeated multivariate measurements on students within schools). Extending the Gibbs
sampler of Section 2 to accommodate additional levels of random effects is a simple matter,
but extending the scoring and EM procedures of Section 3 is not.

Another important limitation pertains to missing covariates at the subject or cluster
level, for example, non-time-varying covariates. If these covariates have no missing values,
they can be handled under the current model by simply moving them to the matrixXi. When
missing values are present, however, they should be explicitly modeled and imputed. More
specifically, let Vi = (vi1, vi2, . . . , vik)T denote a set of variables describing unit i that
appear in some form in the columns of Xi. If one is willing to impose a simple parametric
distribution on Vi such as multivariate normal, then Gibbs sampler given by (2.2)–(2.4) can
easily be extended in the following fashion. Given Vi, the conditional distribution of yi is
be given by (1.1), and marginally the distribution of Vi is a multivariate normal distribution.
Conditionally upon the random effects bi, the joint distribution for Vi and yi is still a
multivariate normal with (yi − Zibi) appended to the variables in Vi.

Our model assumes that the rows of yi are conditionally independent given bi with
common covariance matrix Σ. In the univariate case, this assumption is commonly relaxed
by allowing a residual covariance matrix of the form σ2Vi, where Vi has a simple (e.g.,
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autoregressive or banded) pattern with a small number of unknown parameters. Sensible
multivariate extensions of these patterned covariance structures produces models and al-
gorithms that are complicated even apart from missing data. For example, the obvious
extension of vec(εi) ∼ N(0, (Σ⊗ Ini

) ) to vec(εi) ∼ N(0, (Σ⊗Vi) ) seems too restrictive
for many longitudinal datasets, because the response variablesY1, . . . , Yr would be required
to have an identical autocorrelations. Accounting for autocorrelated residuals in a plausible
manner may prove be a daunting task in the multivariate case. In many cases, apparent
nonzero correlations among the rows of εi may arise because of a misspecified model for
the mean structure over time. The problem may sometimes be reduced or eliminated by
including additional (e.g., higher-order polynomial) terms for time in the covariate matrices
Xi or Zi.
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