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Abstract—Most of the prototype reduction schemes (PRS),
which have been reported in the literature, process the data
in its entirety to yield a subset of prototypes that are useful in
nearest-neighbor-like classification. Foremost among these are the
prototypes for nearest neighbor classifiers, the vector quantization
technique, and the support vector machines. These methods suffer
from a major disadvantage, namely, that of the excessive computa-
tional burden encountered by processing all the data. In this paper,
we suggest a recursive and computationally superior mechanism
referred to as adaptive recursive partitioning (ARP) PRS. Rather
than process all the data using a PRS, we propose that the data
be recursively subdivided into smaller subsets. This recursive
subdivision can be arbitrary, and need not utilize any underlying
clustering philosophy. The advantage of ARP PRS is that the PRS
processes subsets of data points that effectively sample the entire
space to yield smaller subsets of prototypes. These prototypes
are then, in turn, gathered and processed by the PRS to yield
more refined prototypes. In this manner, prototypes which are
in the interior of the Voronoi spaces, and thus ineffective in the
classification, are eliminated at the subsequent invocations of the
PRS. We are unaware of any PRS that employs such a recursive
philosophy. Although we marginally forfeit accuracy in return for
computational efficiency, our experimental results demonstrate
that the proposed recursive mechanism yields classification
comparable to the best reported prototype condensation schemes
reported to-date. Indeed, this is true for both artificial data sets
and for samples involving real-life data sets. The results especially
demonstrate that a fair computational advantage can be obtained
by using such a recursive strategy for “large” data sets, such as
those involved in data mining and text categorization applications.

Index Terms—Prototypes for nearest neighbor classifiers (PNN),
prototype reduction schemes (PRS), recursive prototype reduction,
support vector machines (SVM), vector quantization (VQ).

I. INTRODUCTION

A. Overview

THIS PAPER proposes a family of recursive Prototype Re-
duction Schemes relatively novel to the field of statistical

pattern recognition. It can be used advantageously for medium
and large data sets.
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Let be a set of feature vectors in
dimensions. We assume that is a labeled data set, so that

can be decomposed into, say, subsets such that
. Our goal is to design a

classifier with this training data set. Specifically, we are inter-
ested in classifiers of a nearest neighbor (NN) or nearest proto-
type family [1]. Thus, we need one or more prototypes (vectors
in ) that will represent each . The limiting case comprises
using all of the input vectors as prototypes, but in many cases,
this will impose an unacceptable computational burden on the
classifier.

In nonparametric pattern classification which use the NN
or the -nearest neighbor ( -NN) rule, each class is described
using a set of sample prototypes, and the class of an unknown
vector is decided based on the identity of the closest neighbor(s)
which are found among all the prototypes [1]. For applications
involving large data sets, such as those involved in data mining,
financial forecasting, retrieval of multimedia databases and
biometrics, it is advantageous to reduce the number of training
vectors while simultaneously insisting that the classifiers that
are built on the reduced design set perform as well, or nearly
as well, as the classifiers built on the original data set. Various
prototype reduction schemes, which are useful in NN-like clas-
sification, have been reported in the literature—two excellent
surveys are found in [2] and [3]. Bezdek et al. [3], who com-
posed the second and more recent survey of the field, reported
that there are “zillions!” of methods for finding prototypes (see
page 1459 of [3]).

Rather than embark on yet another survey of the field, we
mention here a few representative methods of the “zillions”
that have been reported. One of the first of its kind is the
condensed nearest neighbor (CNN) rule [4]. The reduced set
produced by the CNN, however, customarily includes “interior”
samples, which can be completely eliminated, without altering
the performance of the resultant classifier. Accordingly, other
methods have been proposed successively, such as the reduced
nearest neighbor (RNN) rule [5], the prototypes for nearest
neighbor (PNN) classifiers [6], the selective nearest neighbor
(SNN) rule [7], two modifications of the CNN [8], the edited
nearest neighbor (ENN) rule [9], and the nonparametric data
reduction method [10], [11]. Besides these, in [12], the vector
quantization (VQ) and the bootstrap [13] techniques have
also been reported as being extremely effective approaches to
data reduction. Recently, support vector machines (SVM) [14]
have proven to possess the capability of extracting vectors that
support the boundary between any two classes. Thus, they have
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been used satisfactorily to represent the global distribution
structure.

In designing NN classifiers, however, it seems to be intu-
itively true that prototypes near the separating boundary be-
tween the classes play more important roles than those which are
more interior in the feature space. In creating or selecting pro-
totypes, vectors near the boundaries between the classes have
to be considered to be more significant, and the created pro-
totypes need to be moved (or adjusted) toward the classifica-
tion boundaries so as to yield a higher performance. Based on
this philosophy, namely that of selecting and adjusting the re-
duced prototypes, we recently proposed a new hybrid approach
that involved two distinct phases [15], [16]. In the first phase,
initial prototypes are selected or created by any of the con-
ventional reduction methods mentioned earlier. After this se-
lection/creation phase, the technique in [15], [16] suggests a
second phase in which the proposed reduced prototypes are mi-
grated to their “optimal” positions by adjusting them by in-
voking an LVQ3-type learning scheme. The relative advantages
of the scheme in [15], [16] have been demonstrated on both ar-
tificial and real-life data sets.

All the PRS methods reported in the literature, [2], [3], (in-
cluding the one proposed in [15] and [16]) are practical as long
as the size of the data set is not “too large.” The applicability
of these schemes for large-sized data sets is limited because
they all suffer from a major disadvantage—they incur an ex-
cessive computational burden encountered by processing all the
data points. It should be noted, however, that points in the in-
terior of the Voronoi space1 of each class are usually processed
for no reason—typically, they do not play any significant role
in NN-like classification methods. Indeed, it is not unfair to
state that processing the points in the “interior” of the Voronoi
space becomes crucial only for “smaller” instantiations of the
problem.

To overcome this disadvantage for large-sized2 data sets,
in this paper, we suggest a recursive mechanism. Rather than
process all the data using a PRS, we propose that the data be
recursively subdivided into smaller subsets. As will be ex-
plained presently, we emphasize that the smaller subsets need
not be obtained as the result of invoking a clustering operation
on the original data sets. After this recursive subdivision, the
smaller subsets are reduced with any traditional PRS. The
resultant sets of prototypes obtained are, in turn, gathered and
processed at the higher level of the recursion to yield more
refined prototypes. This sequence of divide-reduce-coalesce
is invoked recursively to ultimately yield the desired reduced

1Typically, the Voronoi hyperplane between two classes is an equi-bisector
of the space, partitioning the points of each class on either side. Classification
is achieved by assigning a class index to a sample being tested, and in our con-
text, this is done by computing the location of the tested sample in the Voronoi
space, for example, by determining the class of its NN using any well-estab-
lished metric.

2First of all, we request the freedom to use this “non-English” phrase. More
importantly, it is our opinion that the issue of when a data set can be perceived
to be of “large size” is a subjective one. In certain domains, Huber [30] says that
a data set is “large” if its cardinality is of the order of 10 . However, data sets of
these sizes are not usually encountered in pattern recognition, where it is often
hard to get an adequate number of training samples. In this paper, we shall call
the data set “medium-sized” if it involves thousands of data points, and “large”
if it involves tens of thousands of data points.

prototypes. We refer to the algorithm presented here as the
adaptive recursive partitioning (or ARP) PRS.

The paper is organized as follows. In Section II, we briefly
review a few representative PRSs. A complete survey is impos-
sible here—the interested reader would find more comprehen-
sive surveys in [2], [3]. Section III presents ARP PRS, our re-
cursively enhanced PRS, and it is followed by a description of
two recently-reported methods. Both of them are distinct from
our present scheme, but, in terms of philosophy, are probably,
the most related reported papers. This is followed by a short
section concerning complexity issues. Experimental results for
small, medium, and “large-sized” data sets, and related discus-
sions are provided in Sections IV and V. Finally, Section VI con-
cludes the paper.

B. Contributions of the Paper

The main contribution of this paper is the demonstration that
the speed of data condensation schemes can be increased by
recursive computations—which is crucial in large-sized data
sets. This has been done by introducing the ARP PRS, and by
demonstrating its power in both speed and accuracy.

The first main advantage of this mechanism, when compared
to the corresponding nonrecursive versions, is that this PRS can
select more refined prototypes in significantly less time. This
is achieved without sacrificing either the classification accuracy
or the prototype reduction rate (which is the percentage of the
number of retained prototypes) in any significant manner. This
is primarily because the new scheme does not process all the
data points at any level of the recursion. The leaf-levels of the
recursion process the original data points, but not in their en-
tirety. Each leaf-level recursion processes only a subset of the
original points, the outputs of which are merged to constitute
the higher levels of the recursion.

A second advantage of this scheme is that the recursive sub-
division can be arbitrary. It need not be obtained as a result of
utilizing any clustering philosophy. In this manner, prototypes,
which are in the interior of the final Voronoi spaces, and which
are thus ineffective in the classification, are typically eliminated
at the leaf-level invocations of the PRS, and do not participate
in any higher level of the PRS. Furthermore, all subsequent re-
cursive partitionings do not have to necessarily and explicitly
involve (or invoke) a clustering operation. Finally, the higher
level PRS invocations, typically, do not involve any points inte-
rior to the Voronoi space because they are eliminated at the leaf
levels.

We believe that, to the best of our knowledge, there is cur-
rently no reported PRS which possesses all of these properties.

The reader should observe that this philosophy is quite dis-
tinct from the partitioning that uses prior clustering methods,
such as those which have been recently proposed in the liter-
ature to solve the travelling salesman problem (TSP) [21]. The
work of [21] first divides the set of cities into subsets by adapting
a clustering mechanism. Hamiltonian paths through these clus-
tered cities are determined, and the solution to the original TSP
is computed by merging the relevant Hamiltonian paths. Ob-
serve that in our present solution, we do not require any such
clustering phase, because the partitioning of the cities into sub-
sets can be quite arbitrary. Indeed, ironically, it is advantageous
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to have the Voronoi spaces of the various subsets to be maxi-
mally overlapping. This will be seen presently.

The experimental results on synthetic and real-life data prove
the power of these enhancements. The real-life experiments in-
clude three “medium-size” data sets, and two “large” data sets
with a fairly high dimensionality. The results we present seem
to be convincing.

II. PROTOTYPE REDUCTION SCHEMES

As mentioned previously, various data reduction methods
have been proposed in the literature—two excellent surveys are
found in [2], [3]. To put the results available in the field in the
right context, we mention, in detail, the contents of the latter.
The survey of [3] contains a comparison of eleven conventional
PRS methods. This comparison has been performed from the
view of error rates, and of the resultant number of prototypes
that are obtained. The experiments were conducted with four
experimental data sets which are both artificial and real.

In summary, the eleven methods surveyed areas follows: a
combination of Wilson’s ENN and Hart’s CNN (W H), the
random selection (RS) method, genetic algorithms (GA), a
tabu search (TS) scheme, a vector quantization-based method
(LVQ1), decision surface mapping (DSM), a scheme which
involves LVQ with training counters (LVQTC), a bootstrap
(BTS) method, a vector quantization (VQ) method, a gener-
alized LVQ-fuzzy (GLVQ-F) scheme, and a hard C-means
clustering (HCM) procedure. Among these, the W H, RS, GA,
and TS can be seen to be selective PRS schemes, and the others
fall into the category of being creative. Additionally, the VQ,
GLVQ-F, and HCM are post-supervised approaches in which
the methods first find prototypes without regard to the training
data labels, and then assign a class label to each prototype,
while the remaining are pre-supervised ones that use the data
and the class labels together to find the prototypes. Finally,
the RS, LVQ1, DSM, BT, VQ, and GLVQ-F are capable of
permitting the user to define the number of prototypes, while
the rest of the schemes force the algorithm to decide this
number.

The claim of [3], from the experimental results, is very easily
stated. Based on the experimental results obtained, the authors
of [3] claim that there seems to be no clear scheme that is uni-
formly superior to all the other PRSs. Indeed, different methods
were found to be superior for different data sets. However, the
experiments showed that the creative methods can be superior to
the selective methods, but are, typically, computationally more
difficult to execute. Also, the experimental results revealed that
pre-supervised methods are generally better than the post-super-
vised ones. Furthermore, there seems to be no reason to believe
that the auto-defined approaches are superior to the user-defined
ones.

The most pertinent methods are reviewed here3 by two
groups: two conventional methods and a newly proposed

3We note that the intention here is not to survey the field, but to merely specify
a few of the representative PRS. In this light, it should be emphasized that our
new recursive philosophy can be invoked using any one of the PRSs explained
below, or for that matter, any of the PRS methods surveyed in [2], [3]. This
should soon be clear to the reader. This brief survey section has been included
on the recommendation of the referees.

hybrid method. Among the conventional methods, the CNN
and the SVM are chosen as representative schemes of selecting
methods. The former is one of first methods proposed, and
the latter is more recent. As opposed to these, the PNN and
VQ (or SOM) are considered to fall within the family of
prototype-creating algorithms. The reviews of these methods
here are necessarily brief.

A. Conventional Methods

1) The CNN Rule: The CNN [4] is suggested as a rule which
reduces the size of the design set, and is largely based on statis-
tical considerations. However, the rule does not, in general, lead
to a minimal consistent set, i.e., a set which contains a minimum
number of samples that are sufficient to optimally classify all the
remaining samples in the given set. The procedure can be for-
malized as follows, where the training set is given by , and the
reduced prototypes constitute the set .

1) The first sample is copied from to .
2) Do the following: increase by unity from 1 to the number

of samples in per epoch:

a) classify each pattern using as the pro-
totype set;

b) if a pattern is classified incorrectly then add the
pattern to , and go to 3.

3) If is not equal to the number of samples in , then go to
2.

4) Else the process terminates.

2) PNN Classifiers: Chang’s algorithm for finding PNNs
[6] can be summarized as follows: Given a training set , the
algorithm starts with every point in as a prototype. Initially,
the set4 is assigned to be empty, and the set is itself. The
algorithm selects an arbitrary point from , and initially assigns
it to . After this, the two closest prototypes from and
from of the same class are merged, successively, into a new
prototype, , if the merging will not degrade the classification
of the patterns in , where is the weighted average of and .
For example, if and are associated with weights and ,
respectively, is defined as , and
is assigned a weight, . Initially, every prototype has
an associated weight of unity. The PNN procedure is sketched
below.

1) Copy to .
2) For all , set the weight .
3) Select a point in , and move it from to .
4) .
5) While is not empty:

a) find the closest prototypes and from and ,
respectively;

b) if ’s class is not equal to ’s class then insert to
and delete it from ;

c) else merge of weight , and of weight , to
yield , where .

4In the spirit of the above notation, the set A should be perceived to be the
set T : To keep things simple, we use this notation to be consistent with the
PNN-related literature.
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Let the classification error rate of this new set of
prototypes be :

• if the is increased then insert to , and
delete it from ;

• else delete and from and , insert
with weight to , and .

6) If MERGE is equal to 0 then output as the set of trained
code-book vectors, and the process terminates;

7) Copy into and go to 3.

Bezdek et al., proposed a modification of Chang’s PNN in
[23]. First of all, instead of using the weighted mean of the
PNN to merge prototypes, they utilized the simple arithmetic
mean. Secondly, the process for searching for the candidates
to be merged was modified by partitioning the distance matrix
into submatrices “blocked” by common labels. This modifica-
tion eliminated the consideration of candidate pairs with dif-
ferent labels. Based on the results obtained from experiments
conducted on the Iris data set, the authors of [23] asserted that
their modified form of the PNN yielded a better consistent re-
duced set for designing multiple-prototype classifiers.5

3) Vector Quantization and the Self-Organizing Map: The
foundational ideas motivating VQ and the SOM are the clas-
sical concepts that have been applied in the estimation of prob-
ability density functions.6 Traditionally, distributions have been
represented either parametrically or nonparametrically. In the
former, the user generally assumes the form of the probability
density function, and the parameters of the function are learnt
using the available data points. In pattern recognition (classifi-
cation), these estimated distributions are subsequently utilized
to generate the discriminant hyper-planes or hyper-quadratics,
whence the classification is achieved.

As opposed to the former, in nonparametric methods, the
practitioner assumes that the data must be processed in its en-
tirety and not just by using a functional form to represent the
data. The corresponding resulting pattern recognition (classifi-
cation) algorithms are generally of the NN (or -NN) philos-
ophy, and are thus computationally expensive.

The concept of VQ [17] can be perceived as one of the earliest
compromises between the above two schools of thought. Rather
than represent the entire data in a compressed form using only
the estimates, VQ opts to represent the data in the actual fea-
ture space. However, as opposed to the nonparametric methods,
which use all or a subset of the data in the training and testing
phases of classification, VQ compresses the information by rep-
resenting it using a “small” set of vectors called the code-book
vectors. The location of these code-book vectors are obtained
by migration in the feature domain so that they collectively
represent the distribution under consideration. We shall refer to

5We believe that the fundamental recursive enhancement that we propose in
this paper, can also be utilized to enhance the scheme proposed in [23]. We
also believe that a similar enhancement can be used for the clustering-based,
genetic, and random search methods proposed in [24]. This is currently being
investigated. The authors are grateful to Professor Jim Bezdek for the instructive
discussions we had in Spain in April 2002.

6This is, of course, arguable. Many would argue that the foundational idea of
the VQ and SOM is to imitate the way arrays of neurons seem to reorganize their
structure to solve a problem. Indeed, their ability to estimate probability density
functions (pdfs) was a subsequent discovery. We are grateful to the anonymous
referee who pointed this out to us.

this phase as the intra-regional polarizing phase [20] explained
below.

In both VQ and the SOM, the polarizing algorithm is repeat-
edly presented with a point from the set of points of a partic-
ular class. The neurons which represent the code-book vectors
attempt to incorporate the topological information present in .
This is done as follows. First, the closest neuron to , is de-
termined. This neuron, and a group of neurons in its neighbor-
hood, , are now moved in the direction of . The set is
called the “Activation Bubble” or the “Update Neighborhood”
in the display lattice. We shall presently specify how this is de-
termined. The actual migration of the neurons is achieved by
rendering the new to be a convex combination of the current

and the data point , for all . More explicitly, the
updating algorithm proceeds as follow :

(1)

where is the discretized (synchronized) time index.
This basic algorithm has two fundamental parameters:

and the size of the bubble , where is the adapta-
tion constant and satisfies . Kohonen and others
[18], [19] recommend steadily decrementing linearly from
unity for the initial learning phase, and then switching it to
small values which decrease linearly from 0.2 for the fine-tuning
phase.

is the parameter which makes the VQ differ from the
SOM. Indeed, the VQ is a special case of the SOM for which

, i.e., if the size of the bubble is always zero.
However, in the SOM, the nearest neuron and the neurons within
a bubble of activation are also migrated, and hence, this widened
migration process permits the algorithm to be both topology
preserving and self-organizing. The size of the bubble is ini-
tially assigned to be fairly large to allow a global ordering to de-
velop. Consequently, all the neurons tend to tie themselves into
a knot for a value of that is close to unity; they subsequently
quickly disperse. Once this coarse spatial resolution is achieved,
the size of the bubble is steadily decreased. Consequently, only
those neurons which are most relevant to the processed input
point will be effected by it. Thus, the ordering, which has been
achieved by the coarse resolution, is not disturbed, but the fine
tuning on this ordering, is permitted. Of course, in the limit, the
SOM reduces to VQ when .

After the location of the code-book vectors of each class have
been computed by the process described above, the inter-class
polarization is optimized by a process which Kohonen refers to
as LVQ3 [19]. This is a fairly straightforward process, and we
omit its details here in the interest of brevity.

4) Support Vector Machines: The SVM [14] is a fairly new
and very promising classification technique developed at the
AT&T Bell Laboratories. The main motivating criterion is to
separate the various classes in the training set with a surface that
maximizes the margin between them. It is an approximate im-
plementation of the structural risk minimization induction prin-
ciple that aims to minimize a bound on the generalization error
of a model, rather than minimizing the mean square error over
the training data set, which is the philosophy that empirical risk
minimization methods often use.
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Training an SVM requires a set of samples. Each sample
consists of an input vector and its label . The SVM func-
tion that has to be trained with the samples contains free
parameters, the so-called positive Lagrange multipliers

. Each is a measure of how much the corresponding
training sample influences the function. Most of the samples do
not affect the function, and consequently, most of the are 0.
To find these parameters, we have to solve a quadratic program-
ming (QP) problem like

(2)

(3)

where is an matrix that depends on and the
functional form of the SVM, and is a constant to be chosen by
the user. A larger value of corresponds to assigning a higher
penalty to the errors.

Solving the QP problem provides the support vectors of the
two classes, which correspond to the samples of . Using
these, we get a hyper-plane decision function ,
which separates the positive samples having as their la-
bels from the negative samples whose labels are all . The
weight vector and the threshold are and

, respectively, where is the number of
support vectors, is the transpose of , and and are
support vectors of the positive and the negative classes, respec-
tively.

Usually, to permit much more general nonlinear decision
functions, we have to first nonlinearly transform the input
vectors into a high-dimensional feature space by a map , and
then invoke a linear separation in that space. In this case, mini-
mizing (2) requires the computation of dot products
in the higher-dimensional space. The expensive calculations,
however, can be avoided by using a kernel function obeying

, that can be evaluated efficiently. The
kernel, , includes functions such as polynomials, radial basis
functions or sigmoidal functions. Details of the SVM can be
found in [14], [22], and [25].

B. A Relatively-New Hybridized Technique

In designing NN classifiers, prototypes near the inter-class
boundaries play more important roles than those which, for each
class, are more interior in the feature space. In creating or se-
lecting the prototypes, therefore, the points near the class bound-
aries are most significant, and the created prototypes need to
be moved or adjusted toward the classification boundaries so as
to yield higher performance. The approach that we proposed in
[15] and [16] is based on this philosophy, namely that of in-
voking creating and adjusting phases. First, a reduced set of
initial prototypes or code-book vectors is chosen by any of the
known methods, and then their “optimal” positions are learned
with an LVQ3-type algorithm, thus, minimizing the average
classification error.

In LVQ3, two generic code-book vectors and , which
are the two NNs to a sample of known identity , are simulta-

neously updated, where and belong to the same class, and
and belong to different classes. Moreover, must fall into

a zone of values called the “window,” which is defined around
the mid-plane of and . Assume that and are the Eu-
clidean distances of from and , respectively. Then is
defined to fall in a window of relative width if

(4)

The updating rules for and ensure that the code-book
vectors continue to approximate the respective class distribu-
tions, and simultaneously enhance the quality of the classifica-
tion boundary. These rules are

(5)

Additionally, even when , and belong to the same
class, the code-book vectors are adjusted to enhance the im-
provement as follows for

(6)

In (5) and (6), is the discretized (synchronized) time index,
and and are called the learning rate and relative
learning rate, respectively. We shall presently demonstrate how
this is done.

1) Specifying the Relevant LVQ3 Criteria: The heart of
the algorithm involves post-processing the results of any
conventional pre-supervised data reduction method using an
LVQ3-type algorithm. However, the more crucial issue is that
of determining the parameters of the LVQ3-type algorithm.
This is accomplished in [15], [16] by partitioning the given data
sets into two subsets, which are, in turn, utilized to optimize
the corresponding LVQ3 parameters.

Let us suppose that the initial data for class is the training
set, , and validation set, . The training set is further
partitioned into two subsets, the placement set, and the op-
timizing set, , where . The intention is
that the union of the placement sets, , is used
to position the condensed prototypes using an LVQ3-type al-
gorithm, and the parameters of the LVQ3-type algorithm are, in
turn, optimized by testing the classification efficiency of the cur-
rent placement, on the union of the optimizing sets, , where

. Thus, the training set plays a triple role: 1) it
is used to obtain the condensed vectors; 2) one portion of this set
is used by the LVQ3-type algorithm to migrate the condensed
vectors; and 3) the other portion of the training set serves the
purpose of “pseudotesting”, so as to obtain the best parameters
for the LVQ3-type algorithm.

2) The Hybrid PRS Algorithm: The Hybrid PRS Algorithm
essentially consists of two steps. First, initial prototypes are se-
lected or created by any of the available conventional pre-super-
vised reduction methods. After this selection/creation phase, we
invoke a phase in which the optimal positions (i.e., with regard
to classification) are learned with an LVQ3-type scheme. The
procedure is formalized below for each class.

1) For every class, , select an initial condensed prototype
set by using any of the available conventional pre-
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supervised reduction methods, and the entire training sets,
.

2) Using as the set of condensed prototype vectors
for class , for all the classes, do the following using the
union of the placement and optimizing sets and ,
respectively:

a) Perform LVQ3 using the points in the overall place-
ment set, . The parameters of the LVQ3 are
obtained by spanning the parameter space in in-
creasing values of from 0.0 to 0.5, in steps of

. The sets (for all ) and are up-
dated in the process. Select the best value after
evaluating the accuracy of the classification rule on

, where the NN-classification is achieved by the
adjusted values of .

b) Perform LVQ3 using the points in the overall place-
ment set, . The parameters of the LVQ3 are
obtained by spanning the parameter space in in-
creasing values of from 0.0 to 0.5, in steps of .
The sets (for all ) and are updated
in the process. Select the best value after evalu-
ating the accuracy of the classification rule on ,
where the NN-classification is achieved by the ad-
justed values of .

c) Repeat the above steps with the current and
until the best values and are obtained.

3) Determine the best prototype set by invoking LVQ3,
times, with the data in , and where the parameters are

and . Again, the “pseudotesting” is achieved using
the {optimizing} set, .

An estimate of the classification accuracy is obtained by
testing the classifier using the final values and the
original testing (validation) data points, .
Other experimental details of the scheme can be found in [15]
and [16], which also reports the results of the scheme for both
artificial and real-life data sets.

III. RECURSIVE INVOCATIONS OF PRSS

A. The Rationale of the Recursive Algorithm

For designing NN classifiers, prototypes near the decision
boundaries play more important roles than prototypes in the
interior of each labeled class. In all the currently reported PRS,
however, points in the interior of the respective Voronoi spaces
are processed for, apparently, no reason. Consequently, all
reported PRS suffer from an excessive computational burden
encountered by processing all the data, which becomes very
prominent in “large” data sets.

To overcome this disadvantage, we propose a recursive
mechanism, whereby the data set is subdivided recursively
into smaller subsets to filter out the less useful internal points.
Subsequently, a conventional PRS processes the smaller
subsets of data points that effectively sample the entire space
to yield subsets of prototypes—one set of prototypes for each
subset. The prototypes which result from each subset are then
coalesced, and processed again by the PRS to yield more
refined prototypes. In this manner, prototypes which are in

the interior to the Voronoi spaces, and are thus ineffective in
the classification, are eliminated at subsequent invocations of
the PRS. A direct consequence of eliminating the “redundant”
samples in the PRS computations, is that the processing time
of the PRS is significantly reduced. This will be clarified by
the example below.

B. An Example

In order to illustrate the functioning of the recursive process,
prior to presenting the recursive algorithm formally, we present
an example for the two-dimensional data set referred to as
“random.” Two data sets, namely the training and test sets, are
generated randomly with a uniform distribution, but with irreg-
ular decision boundaries. In this case, the points are generated
uniformly, and the assignment of the points to the respective
classes is achieved by artificially assigning them to the region
they fall into, as per the manually created “irregular decision
boundary.” The training set of 200 sample vectors is used for
computing the prototypes, and the test set of 200 sample vectors
is used for evaluating the quality of the extracted prototypes.

To demonstrate the properties of the mechanism, we first
select prototypes from the whole training set using the CNN
method. To highlight the difference between the latter and a
recursive mechanism, this is also repeated after randomly7

dividing the training set into two subsets of equal size—each
with 100 vectors. Fig. 1 shows the whole set and the divided
subsets of the “Random” training data set, and Fig. 2 shows
the prototypes selected with the CNN and the recursive PRS
methods, respectively. In each case, we have also shown the
NN separating classification boundaries. The reader should
observe that the separating classification boundary obtained
from the entire set [see Fig. 1(a)] is quite similar to the one
obtained from the subsets of half their sizes [see Fig. 1(b) and
(c)]. This observation is also true about the prototypes obtained
from the entire sets (see the corresponding figures in Fig. 2),
and the prototypes obtained from their subdivided sets.

Observe that in this example, we have invoked the recursive
procedure only twice. This is, of course, only for the sake of the
example. In general, however, the recursion can be invoked at
any depth, whenever the size of the processed set is larger than
permitted.

Fig. 1(d) shows the “marginal” difference between the bound-
aries of subset1 (dotted line) and subset2 (solid line). In Fig. 2,
the set of prototypes of (a), which is extracted from the whole
set of Fig. 1(a), consists of 36 points and has a classification ac-
curacy of 96.25%. The prototypes of (b) and (c), selected from
the subsets of Fig. 1(b) and (c), both consist of 21 vectors, and
have accuracies of 96.00% and 94.50% respectively.

On the other hand, the set of prototypes of (d), which is cre-
ated by combining the prototype sets of Fig. 2(b) and (c), con-
sists of 27 points, and has an accuracy of 97.00%. Moreover, it
should be pointed out that the time involved in the prototype se-
lection of (d), is much less than that of (a), because the number
of sample vectors of the combined sets of (b) and (c) together,
is smaller than that of the whole set of Fig. 1(a).

7This is done by a simple sequential procedure. As the points in “random” are
generated, each of them is sequentially assigned to be either in the first subset
or the second.
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Fig. 1. The entire set and the divided subsets of the “Random” data set, where the vectors of each class are represented by “ ” and “�,”respectively. (a) The entire
set of 200 points. (b) Subset1 containing 100 points. (c) Subset2 containing 100 points. (d) The boundary difference between subset1 (dotted line) and subset2
(solid line). Both subsets of (b) and (c) are obtained by randomly subdividing the whole set of (a).

Fig. 2. Prototypes selected with the CNN and the recursive PRS methods from the data sets shown in Fig. 1. In the pictures, the selected vectors are indicated
by the circled “ ” and “�,” respectively. (a) The prototypes selected by the CNN from the whole set of Fig. 1(a). (b) The prototypes selected by the CNN from the
subset1 of Fig. 1(b). (c) The prototypes selected by the CNN from the subset2 of Fig. 1(c). (d) The final prototypes selected by the recursive PRS method from a
combined data set of the prototypes of (b) and (c).

From these considerations, we observe that the prototypes can
also be selected from the subdivided data sets more efficiently,
rather than selecting them from the original data set. We hope
that this simple example adequately clarifies the motivation and
advantages behind our reasoning.

C. The ARP PRS Algorithm

The algorithm that implements the ARP PRS can be formal-
ized as follows, where the training set is given by , and the
reduced prototypes are found in .
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An informal explanation of the algorithm follows. If the car-
dinality of the original data set is smaller than , a traditional
PRS is invoked to get the reduced prototypes. Otherwise, the
original data set is recursively subdivided into subsets, and
the process continues down toward the leaf of the recursive tree.
Observe that a traditional PRS is invoked only when the corre-
sponding input set is “small enough.” Finally, at the tail end of
the recursion, the resultant output sets are merged, and if the
size of this merged set is greater than , the procedure is again
recursively invoked. Observe that this is executed separately for
each class.

It should be also noted that the traditional PRS, which can be
otherwise time consuming for large data sets, is never invoked
for any sets of cardinality larger than . It is called only at the
leaf levels when the sizes of the sets are “small,” rendering the
entire computation very efficient.

D. Methods With a Comparable Philosophy

Although there are “zillions” of methods which achieve pro-
totype reduction, to the best of our knowledge, the fundamental
strategy of utilizing recursion to subdivide the data points, has
not been used. The reason for this is probably because if the
subdivision of the points is done by means of a clustering phi-
losophy, the resultant scheme need not be too advantageous. In-
deed, it will then reflect the properties of the clustering model
used.

This does not, by any means, imply that clustering is
unimportant. Indeed, a fair body of literature which deals with
clustering in the data mining of “large” data sets is available
[30]–[34]. The application of clustering to information retrieval
from “very large” data bases has also been reported.8 But what
we do observe is that it is not too expedient to apply clustering
as a pre-processing module to a PRS scheme.

Algorithm 1 ARP PRS
Input: The original Training Set, T .
Output: The set of reduced prototypes, YFinal.
Method:

Call Recursive PRS(T; YFinal; K; J)

End Algorithm ARP PRS
Procedure Recursive PRS(InSet;OutSet;K; J)

Input: The subset of the training set, InSet, and a parameter, K ,
which specifies the size of smallest set for which
the procedure is not invoked recursively. This is the “basis” case of the
recursion. InSet is not recursively sub
divided if jInSetj � K . In this case, we invoke a conventional PRS
(referred to by PRS) that yields the extracted
prototypes. Also, at every level, we opt to partition the original set into
J subsets, where J is a user-specified
parameter.

If jInSetj � K

Call PRS(InSet, OutSet)
Return OutSet

8The literature we cite here is not exhaustive. We mention these papers to
demonstrate that we are by no means the pioneers in the field of processing
large data sets. We are grateful to the anonymous referee for providing us with
these references.

Else
Partition InSet into J mutually exclusive Sets InSet1 . . . InSetJ
For i  1 to J Do

Call Recursive PRS(InSeti;OutSeti)

TempSet  OutSet1 [OutSet2 � � � [OutSetJ
Call Recursive PRS(TempSet;OutSet)

End Procedure Recursive PRS

However, to present our work in the overall perspective, we
shall compare our work with two recent PR schemes which, in
one sense, adapt the concept of subdividing the available data
points [27], [28].

The work of [27] can be explained as follows. It is well known
that iterative techniques that use the -means approach, or the
expectation maximization (EM) perspective, are sensitive to the
initial starting conditions of the algorithm. The authors of [27]
propose a refinement procedure in which initial points (for both
discrete and continuous data sets) are specified in such a way
that the corresponding iterative algorithms converge to “better”
solutions.

The refinement algorithm, which is iterative and not re-
cursive, initially chooses small random subsamples of the
data, . These subsamples are clustered using
a -means algorithm with the condition that on termination,
empty clusters will have their initial centers re-assigned
followed by a re-clustering of the subsamples. The sets

are the result of clustering over the subsam-
ples, which collectively constitute the set CM. These are then,
in turn, clustered using a -means strategy initialized with the
sets , producing the final solution . The refined initial
point is then chosen as the , which yields the minimal
distortion over the set CM.

Computational results on small real-world data sets indicate
that the -means solution from the refined points provides twice
as much information as the solution from the random initial
points. Furthermore, the average distortion is decreased by 9%.
The computational results on a large-scale data set in 300 di-
mensions demonstrated a drop in distortion by about 20%, and
the information gain improved by a factor of 4.13.

We clarify the difference between this work and our current
method. First of all, we do not invoke any -means-type algo-
rithm. More importantly, we emphasize, that in our case, the
subdivision of the data points is not achieved by invoking a clus-
tering strategy. This is because a clustering philosophy will sub-
divide the points in terms of their “closeness” to a particular
class. This, unfortunately, includes all the points in the interior
of the various Voronoi spaces, which are irrelevant when com-
puting the classification discriminant function. Thus, we save
time by “short-circuiting” the entire clustering phase.

Another very interesting strategy, which we applaud, was pro-
posed in [28], where the authors presented a new algorithm,
the sequential minimal optimization (SMO), for training SVMs.
Typically, the process of training a SVM requires the solution
of a large QP optimization problem. The authors of [28] intro-
duce SMO by subdividing this large QP problem into a series
of smaller QP problems. In that sense, the philosophy is sim-
ilar to the principles which we have introduced. These reduced
QP problems are, in turn, solved analytically, thus avoiding
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the computation of time-consuming numerical QP optimization
routines.

Unlike the previous methods proposed for SVMs, SMO in-
troduces two Lagrange multipliers to jointly optimize the QP
criterion function, and computes the optimal values for these
multipliers. It then updates the SVM to reflect the new optimal
values for each of the multipliers.

The advantage of the SMO lies in the fact that it allows for
two Lagrange multipliers, which can both be solved for analyti-
cally. Furthermore, the SMO can be used when the user does not
have access to a QP package, and/or does not wish to utilize it.
Experimentally, the SMO performs well for SVMs with sparse
inputs, and even for nonlinear SVMs. This is because the kernel
computation time can be reduced, thus directly enhancing its
performance. The SMO performs well for large problems, be-
cause it “scales” well with the size of the training set. Indeed,
it appears that it is superior to methods that utilize “chunking.”
The authors of [28] assert that the SMO is a strong candidate for
becoming the standard SVM training algorithm.

It is fitting to mention the differences between the SMO
and our present technique. First of all, unlike the SMO, the
strategy that we propose can be used even if the underlying
“primitive” PRS (invoked by the recursive mechanism) is
not the SVM. Thus, it is not a scheme that is particular to
any specific mechanism. Secondly, in achieving the recur-
sive decomposition, we do not require any QP solution, or
optimization using Lagrangians. Indeed, as the pseudocode
of the algorithm demonstrates, no optimization of any sort is
mandatory or recommended. The reason for this is because,
in the recursive subdivision, we are not attempting to get the
best classifier. Rather, we attempt to “discard” the points in the
interior of the classification space, namely, those which are not
of importance in determining the final classifier. Our algorithm
is thus much faster at every level of the recursion. Finally, when
the classifier is ultimately constructed, it is achieved using the
final subset of points which are close to the boundaries of the
respective spaces, further enhancing the computations.

E. Some Thoughts on Complexity Analysis

A formal complexity analysis for the ARP PRS is not easy.
This is because it depends on the specific PRS method that is
utilized on each recursive call. Rather than embark on a gen-
eral formal analysis, we shall now consider two pertinent av-
enues of study. In the first case, we shall consider the number of
prototypes that a traditional PRS (say, trad) would lead to, and
compare it to the number of prototypes that ARP PRS, the re-
cursive scheme, would yield if it were utilizing trad as its basic
“building block”. In the second case, we shall consider the time
involved in a serialized computation, and compare the perfor-
mance of trad with the performance of ARP PRS, again with
the premise that the latter uses trad as its basic PRS module.

To render the analysis tractable, we have to make some simple
but reasonable assumptions. In the first case, we shall assume a
reasonable functional form for the number of prototypes gener-
ated on any specific call of trad. Clearly, this functional form
cannot be assumed to be valid for any arbitrary depth of the re-
cursive tree. But we shall assume that this functional form is
valid at least for the number of levels at which the question of

resorting to recursion is pertinent. In the second case, we shall
assume a reasonable functional form for the time required for
any specific call of trad. Again, clearly, this functional form
may not be valid for any arbitrary depth of the recursive tree.
But here, too, we shall assume that this explicit form is valid as
long as resorting to recursion is meaningful.

In both of these cases, we shall follow the analysis essentially
for the scenario when we resort to recursively calling trad only
for two subsets, and for at most two levels. From the analysis, it
will be clear that the analogous results will also be valid if the
depth of the recursive tree is greater than two.

1) Analysis on the Number of Prototypes Gener-
ated: Consider a system which uses a traditional PRS,
referred to as trad. We assume that the number of prototypes
generated by trad depends on the number of input sample data
points, and that this relationship obeys the following equation:

(7)

Let the original number of points to be processed, (i.e., the
number at the top-level) be . If each set is split into two sub-
sets prior to calling trad, the cardinality of the sets after a single
pass, and after two passes, can be evaluated using (7), and are
given by the two (8) and (9) respectively:

(8)

(9)

where , and is the constant determining the efficiency
of trad, as given by (7). We now consider the condition for the
number of prototypes being generated after a single pass, being
greater than the number of prototypes being generated after two
passes. Indeed, this results in the following inequality:

(10)

which, in turn, leads to the inequality , which
is always true for a sufficiently large value of .

To clarify issues, consider the simple example when .
This is, of course, the scenario encountered in traditional “ge-
ometry” involving compact spaces, where the number of points
on the perimeter of a region is of the order of the square root
of the points in the interior of the region. Going through the
same steps as above, we see that if there are points at the
top level, the number of points after a single pass is ,
and the number of points remaining after two passes obtained
by partitioning the original set into two subsets is

. Consequently, the inequality

(11)

which is true whenever .
2) Analysis on the Computational Time Required: As op-

posed to the above analysis, where we considered the number of
prototypes that are generated, we shall now analyze the compu-
tational time involved in individual and recursive computations
involving trad. Consider a system which uses trad as its primi-
tive PRS. We assume that the time required by trad depends on
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the number of input sample data points, and that this relation-
ship obeys the following equation:

(12)

where is a constant. Let the original number of points to be
processed, (i.e., the number at the top-level) be . If each set
is split into two subsets prior to calling trad, the time after a
single pass, and after two passes, can be evaluated using (12),
and are given by the two equations (13) and (14), respectively,
as follows:

(13)

(14)

Comparing the respective times involved we can see that:

(15)

which, in turn, leads to the inequality , which is al-
ways true whenever . This implies that it is expedient to
split the set of points into two subsets and then invoke trad, as
opposed to allowing the latter to process the entire set of points.

IV. EXPERIMENTAL RESULTS: SMALL AND MEDIUM-SIZED

DATA SETS

A. Experimental Data

The ARP PRS has been tested fairly extensively, and com-
pared with many conventional PRS. This was first done by per-
forming experiments on a number of small and “medium-sized”
data sets, both real and artificial, as summarized in Table I.

The data set named “Non normal (Medium-size),” which has
been also employed in [11], [12], and [13] as a benchmark ex-
perimental data set, was generated from a mixture of four 8-di-
mensional Gaussian distributions as follows:

1) ;
2) ;

where
, and . In these expres-

sions, is the 8-dimensional Identity matrix.
The “Sonar” data set contains 208 vectors. Each sample

vector, of two classes, has sixty attributes which are all con-
tinuous numerical values. The “Arrhythmia” data set contains
279 attributes, 206 of which are real-valued, and the rest
are nominal. In our experiments, the nominal features were
replaced by zeros. The aim of the pattern recognition exercise
was to distinguish between the presence and absence of cardiac
arrhythmia, and to classify the feature into one of the 16 groups.
In our case, in the interest of simplicity, we merely attempted to
classify the total instances into one of two categories, namely,
“normal” and “abnormal.”9

9In one sense, the results presented here are not as strong as they appear. Of
course, the most conclusive proof of our scheme would have been if we were
able to inter-classify all the 16 groups of data. But we opted to classify them
into the “normal” and “abnormal” subgroups, so that each class would have a
reasonably “large” number of data points.

TABLE I
SMALL AND MEDIUM-SIZED BENCHMARK DATA SETS USED IN THE

COMPARATIVE EXPERIMENTS. THE VECTORS ARE DIVIDED INTO TWO SUBSETS

OF EQUAL SIZE, AND USED FOR TRAINING AND VALIDATION, ALTERNATIVELY

The data set “Non normal (Medium-size)”, was generated
randomly with the normal distribution. However, the data sets
“Sonar” and “Arrhythmia”, which are real benchmark data sets,
are cited from the UCI Machine Learning Repository [26].

In the above data sets, all of the vectors were normalized using
their standard deviations. Also, for every class , the data set for
the class was randomly split into two subsets, and , of
equal size. One of them was used for choosing initial code-book
vectors and training the classifiers as explained earlier, and the
other subset was used in the validation (or testing) of the classi-
fiers. The roles of these sets were later interchanged.

In this case, because the size of the sets was not excessively
large, the recursive versions of CNN,10 PNN, VQ, and SVM11

were all invoked only for a depth of two.

B. Experimental Results

We report below the run-time characteristics of the ARP PRS
algorithm for the “Medium-sized” data sets. The experimental
results of the CNN, PNN, VQ, and SVM methods implemented
with the recursive mechanism, for the “Non normal (Medium-
size),”, “Sonar,” and “Arrhythmia” data sets are shown in Ta-
bles II, III, and IV, respectively.

The ARP PRS can be compared with the nonrecursive
versions using three criteria, namely, the processing CPU-time
(CT), the classification accuracy rate (Acc), and the prototype
reduction rate (Re). The reduction rates on the data sets
were computed as

%

where is the cardinality of the corresponding set.
We report below a summary of the results obtained for the

case when one subset was used for training and the second for

10It appears from the literature that the CNN method by Hart is not the best
competitor for prototype selection in terms of both accuracy and effectiveness.
We have chosen this method over the methods surveyed in [2], [3] because of
its relative simplicity and ease of implementation. Of course, the intent is to
demonstrate that any “primitive” method can be enhanced for “large” data sets
by a recursive application. One referee suggested that an alternate candidate
for comparison would be the Minimum Consistent Set algorithm by Dasarathy
[29]. We are grateful for this pointer, and are currently investigating how the
latter would perform if called recursively.

11As mentioned earlier, the SVM does reduce the set of prototypes, but not for
the NN method. This means that the set of prototypes, which are also the sup-
port vectors obtained through the SVM method could be absolutely useless with
1-NN. All the other methods considered in this paper (including those surveyed)
are supposed to select a reference set suitable for the 1-NN method. Thus, from
this perspective, SVM belongs to a completely different group! Thus, although
it is, in one sense, inappropriate for testing it as a basic PRS method, it has ad-
vantages if it is used recursively. This is the rationale for including it in our test
suite. We are grateful to the anonymous referee who commented on this in his
review.
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TABLE II
COMPARISON OF THE NON-RECURSIVE AND THE RECURSIVE CNN, PNN, VQ,
AND SVM METHODS FOR THE “NON NORMAL (MEDIUM-SIZE)” DATA SET.

HERE, DS, CT, NP, AND Acc ARE THE DATA SET SIZE (THE NUMBER

OF SAMPLE VECTORS), THE PROCESSING CPU-TIME (IN SECONDS),
THE NUMBER OF PROTOTYPES, AND THE CLASSIFICATION ACCURACY

RATE (%), RESPECTIVELY. FOR EACH TECHNIQUE, THE RESULTS FOR

THE NON-RECURSIVE VERSION ARE WRITTEN IN THE FIRST ROW, AND

HIGHLIGHTED IN BOLD FONTS. ALSO, THE EXPERIMENTS WITH INDEX

“2” REFER TO THE CASES WHEN THE TRAINING AND TESTING SETS

ARE THE INTERCHANGED VERSIONS OF THE CORRESPONDING SETS

USED IN THE EXPERIMENTS WITH INDEX “1”

TABLE III
EXPERIMENTAL RESULTS OF THE RECURSIVE CNN, PNN, VQ, AND SVM

METHODS FOR THE “SONAR” DATA SET. HERE, DS, CT, NP, AND Acc
ARE THE DATA SET SIZE (THE NUMBER OF SAMPLE VECTORS), THE

PROCESSING CPU-TIME (IN SECONDS), THE NUMBER OF PROTOTYPES, AND

THE CLASSIFICATION ACCURACY RATE (%), RESPECTIVELY. FOR EACH

TECHNIQUE, THE RESULTS FOR THE NON-RECURSIVE VERSION ARE

WRITTEN IN THE FIRST ROW, AND HIGHLIGHTED IN BOLD FONTS. ALSO,
THE EXPERIMENTS WITH INDEX “2” REFER TO THE CASES WHEN THE

TRAINING AND TESTING SETS ARE THE INTERCHANGED VERSIONS OF THE

CORRESPONDING SETS USED IN THE EXPERIMENTS WITH INDEX “1”

testing. The results when the roles of the sets are interchanged
are almost identical. From Tables II, III, and IV, we can see that
the CT index (the processing CPU-time) of the pure CNN, PNN,
VQ and SVM methods can be reduced significantly by merely
employing the recursive philosophy. Indeed, this is achieved
without sacrificing the accuracy, Acc, so much. It should be
mentioned that in the case of the SVM, the Acc always increased
when the recursive philosophy was employed.

TABLE IV
EXPERIMENTAL RESULTS OF THE RECURSIVE CNN, PNN, VQ AND SVM

METHODS FOR THE “ARRHYTHMIA” DATA SET. HERE, DS, CT, NP AND Acc
ARE THE DATA SET SIZE (THE NUMBER OF SAMPLE VECTORS), THE

PROCESSING CPU-TIME (IN SECONDS), THE NUMBER OF PROTOTYPES, AND THE

CLASSIFICATION ACCURACY RATE (%), RESPECTIVELY. AS IN THE PREVIOUS

TABLES, FOR EACH TECHNIQUE, THE RESULTS FOR THE NON-RECURSIVE

VERSION ARE WRITTEN IN THE FIRST ROW, AND HIGHLIGHTED IN BOLD
FONTS. ALSO, THE EXPERIMENTS WITH INDEX “2” REFER TO THE CASES

WHEN THE TRAINING AND TESTING SETS ARE THE INTERCHANGED VERSIONS

OF THE CORRESPONDING SETS USED IN THE EXPERIMENTS WITH INDEX “1”

TABLE V
“LARGE-SIZED” DATA SETS USED FOR EXPERIMENTS. THE VECTORS ARE

DIVIDED INTO TWO SETS OF EQUAL SIZE, AND USED FOR TRAINING

AND VALIDATION, ALTERNATELY

Consider the PNN method for the “Non normal (Medium-
size)” data set. If the 500 samples were processed nonrecur-
sively, the time taken is 81.74 s, the size of the reduced set is
56, and the resulting classification accuracy is 92.4%. How-
ever, if the 500 samples are subdivided into two sets of 250
samples each, processing each subset involves only 7.58 and
7.54 s, leading to 31 and 29 reduced prototypes, respectively.
When these 60 prototypes are, in turn, subjected to a pure PNN
method, the number of prototypes reduced to 46 in just 0.22 s
and yielded an accuracy of 89.2%. If we reckon that the recur-
sive computations can be done in parallel, the time required is
only about one-tenth of the time which the original PNN would
take. Even if the computations were done serially, the advantage
is marked.

To highlight the advantage, we consider another example.
Consider the VQ method for the “Arrhythmia” data set. If the
226 samples were processed nonrecursively, the time taken is
25.91 s, the size of the reduced set is 64, and the resulting clas-
sification accuracy is 99.12%. However, if the 226 samples are
subdivided into two sets of 113 samples each, processing each
subset involves only 0.22 and 0.20 s, leading to 64 and 64 re-
duced prototypes respectively. When these 128 prototypes are
in turn subjected to a pure VQ method, the number of proto-
types reduced to 64 in just 0.14 s, and yielded an accuracy of
97.35%. Again, if the recursive computations are done in par-
allel, the time required is only a small fraction of the time which
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TABLE VI
EXPERIMENTAL RESULTS OF THE RECURSIVE SVM FOR THE “NON NORMAL (LARGE-SIZE)” DATA SET. HERE, Depth(i) MEANS THE DEPTH AT WHICH THE

DATA SET IS SUB-DIVIDED INTO EIGHT SUBSETS. DS, CT, SV, AND Acc ARE THE DATA SET SIZE (THE NUMBER OF SAMPLE VECTORS), THE PROCESSING

CPU-TIME (IN SECONDS), THE NUMBER OF SUPPORT VECTORS, AND THE CLASSIFICATION ACCURACY RATE (%), RESPECTIVELY. AS IN THE PREVIOUS TABLES,
FOR EACH TECHNIQUE, THE RESULTS FOR THE NON-RECURSIVE VERSION ARE WRITTEN IN THE FIRST ROW, AND HIGHLIGHTED IN BOLD FONTS. ALSO, THE

EXPERIMENTS WITH INDEX “2” REFER TO THE CASES WHEN THE TRAINING AND TESTING SETS ARE THE INTERCHANGED VERSIONS OF

THE CORRESPONDING SETS USED IN THE EXPERIMENTS WITH INDEX “1”

the original VQ would take.12 Even if the computations were
done serially, the advantage is undoubtedly, quite significant.

The reader should observe that the computational advantage
gained is noticeable, and the accuracy lost is marginal. It should
be mentioned, however, that a reduced accuracy is not typical.
In the VQ and SVM methods, the resulting accuracy is identical
or slightly higher than that which the original PRS yielded, and
the computation time is significantly lower. These results are
also typical for the other data sets, and can be gleaned from the
tables.

V. EXPERIMENTAL RESULTS: LARGE-SIZED DATA SETS

A. Experimental Data

In order to further investigate the advantage gained by uti-
lizing the proposed recursive PRS for more computationally in-
tensive sets,13 we conducted experiments on “large-sized” data
sets, which we refer to as the “Non normal (Large-size)” and
“Adult” sets.14 The information about these data sets is summa-
rized in Table V. In this case, because the size of the sets was
reasonably large, the recursive version of the SVM was invoked
to a depth of two.

As in the case of the “Non normal (Medium-size)” data set,
the data set “Non normal (Large-size)” was generated randomly
with the normal distributions.

The “Adult” data set extracted from a census bureau data-
base15 was also obtained from the UCI Machine Learning
Repository [26]. The aim of the pattern recognition task here is
to separate people by incomes into two groups: in the first group

12The results of recursive VQ in Table III seem to show that for this special
data set, recursive invocations are not beneficial. We are unable to find a reason
for this.

13The design of PRSs for such data sets was, of course, the intention in
proposing the recursive enhancements in the first place. Fortunately, we can
again report a marked advantage.

14As mentioned earlier, these data sets are not “large” according to Huber’s
classification [30]. But, we would like to refer to them as being “large,” because
training sets of such cardinalities are not typically available in pattern recogni-
tion and classification problems.

15[Online] Available: http://www.census.gov/ftp/pub/DES/www/welcome.
html.

the salary is more than 50 K dollars, and in the second group
the salary is less than or equal to 50 K dollars. Each sample
vector has fourteen attributes. Some of the attributes, such as
the age, hours-per-week, etc., are continuous numerical values.
The others, such as education, race, etc., are nominal symbols.
In the experiments, the nominal attributes were replaced with
numeric zeros.

Due to time considerations, we experimented only with the
recursive SVM method for the large-sized data sets. The results
for the other methods are currently being compiled. The exper-
imental results for the “Non normal (Large-size)” and “Adult”
data sets are shown in Tables VI and VII, respectively.

Consider the results of Table VI. At the depth 1, the data set
of 10 000 samples required a CPU time, CT, of 436.96 s, and
yielded an Acc of 94.87% with the reduction, Rl, of 87.27%.
However, if the 10 000 samples are subdivided into eight sets
of 1250 each at the depth 2, processing each of these takes only
the times given in the third column, whose average is 5.34 s,
leading to 158, 160, 157, 166, 157, 144, 185, and 154 reduced
prototypes, respectively. When these 1281 samples were sub-
jected to a pure SVM method, the number of reduced samples
fell to 1268 in 15.82 s, and yielded an accuracy of 94.87%. The
recursive computations were done serially, and the time required
was 58.56 s, which is only 13.4% of the time which the original
SVM would take. If the computations were done in parallel, the
advantage is even more marked.

From Table VII, we also observe the same characteristics as
those seen in Table VI. At the depth 1, the data set of 16 665
samples required a computation time of 3 825.46 s, and gave
an accuracy of 82.84% with a reduction of 61.31%. However, if
the 16 665 samples were first subdivided into eight subsets of 2
083 each at the depth 2, processing each of these involves only
the times given in the third column, whose average is 18.06 s,
leading to 846, 819, 825, 821, 836, 807, 853, and 814 reduced
prototypes, respectively. When these 6621 samples are, in turn,
subjected to a pure SVM method, the number of reduced sam-
ples decreases to 6270 in 256.80 s, with an accuracy of 81.28%.
The recursive computations were done serially, and so the time
required was 401.26 s, which is only 10.5% of the time which
the original SVM would take. Hopefully, these results demon-
strate the power of our new recursive philosophy.
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TABLE VII
EXPERIMENTAL RESULTS OF THE RECURSIVE SVM FOR THE “ADULT” DATA SET. HERE, Depth(i) MEANS THE DEPTH AT WHICH THE DATA SET IS SUB-DIVIDED

INTO EIGHT SUBSETS. DS, CT, SV, AND Acc ARE THE DATA SET SIZE (THE NUMBER OF SAMPLE VECTORS), THE PROCESSING CPU-TIME (IN SECONDS), THE

NUMBER OF SUPPORT VECTORS, AND THE CLASSIFICATION ACCURACY RATE (%), RESPECTIVELY. AS IN THE PREVIOUS TABLES, FOR EACH TECHNIQUE, THE

RESULTS FOR THE NON-RECURSIVE VERSION ARE WRITTEN IN THE FIRST ROW, AND HIGHLIGHTED IN BOLD FONTS. ALSO, THE

EXPERIMENTS WITH INDEX “2” REFER TO THE CASES WHEN THE TRAINING AND TESTING SETS ARE THE INTERCHANGED VERSIONS OF

THE CORRESPONDING SETS USED IN THE EXPERIMENTS WITH INDEX “1”

VI. CONCLUSION

Conventional PRSs can require excessive computation be-
cause they usually process all the data, even though data in the
interior of the Voronoi spaces is not useful for classifier de-
sign. In this paper we have proposed a mechanism whereby the
data are recursively subdivided into smaller subsets, and the data
points which are ineffective in the classification are eliminated
for subsequent calls of the PRS. Our recursive PRS processes
the smaller subsets of data that effectively sample the entire
space to yield subsets of prototypes. These prototypes are, in
turn, gathered and processed by the PRS to yield more refined
prototypes.

The proposed method was tested on both artificial and
real-life benchmark data sets, and compared with a few repre-
sentative conventional methods. The experimental results for
small, medium-sized and “large” data sets demonstrate that
the proposed algorithm can improve the speed of the CNN,
PNN, VQ, and SVM methods by an order of magnitude,
while yielding almost the same classification accuracy and
reduction rate, especially if recursion is resorted to many times.
Apparently, the advantage of the recursive processes increases
with the size of the data.
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