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Abstract— This paper discusses the task of learning a classifier are the loss of efficiency due to discarding the incomplete
from observed data containing missing values amongst the inputs pbservations and biases in estimates when data are missing i
which are missing completely at random. A non-parametric 5 systematic way. The second approach for handling missing
perspective is adopt_ed by defining a modified risk taklng into | is the i tati thod. which i ¢ | f
account the uncertainty of the predicted outputs when missing va ues_ 'S. e 'mp!J ation me 0.' which imputes Ya ues_ or
values are involved. It is shown that this approach generalizes the missing covariates and carries out the analysis as if the
the approach of mean imputation in the linear case and the imputed values were observed data. This approach may reduce
resulting kernel machine reduces to the standard Support Vecto  the bias of the complete case analysis but lead to additional
Machine (SVM) when no input values are missing. Furthermore, - yiaq in myltivariate analysis if the imputation fails to ¢
the method is extended to the multivariate case of fitting additive for all multivariate relationships. The third approach asats-
models using componentwise kernel machines, and an efficient " . Lt
implementation is based on the Least Squares Support Vector SUMe some models for the covariates with missing values and
Machine (LS-SVM) classifier formulation. then use a maximum likelihood approach to obtain estimates
for the models. Methods to handle missing values in non-
parametric predictive settings do often rely on differentitin

Missing data frequently occur in applied statistical datgtage procedures or boil down to hard global optimization
analysis. There are several reasons why the data may gpgblems, see e.g. (Hastie et al., 2001) for references.
missing (Rubin, 1976, 1987). They may be missing becauseThis paper proposes an alternative approach where no
equipment malfunctioned, observations become incomple{empt is made to reconstruct the values which are missing,
due to people becoming ill or observations which are nejt only the impact of the missingness on the outcome and the
entered correctly. Here the data are missing completely édfpected risk is modeled explicitly. This strategy is irelimith
random (MCAR). The missing data for a random variablge previous result (Pelckmans et al., 2005a) where, haweve
X are 'missing completely at random’ if the probability ofa worst case approach was taken. The proposed approach is
having a missing value foX is unrelated to the values ofpased on a number of insights into the problem, including (i)
X itself or to any other variables in the data set. Often thf g|oba| approach for hand"ng missing values which can be
data are not missing completely at random, but they may h&ormulated into a one-step optimization problem is prefd:
classifiable as missing at random (MAR). The missing data ff) there is no need to recover the missing values, only
a random variabléX are 'missing at random’ if the probability the expected outcome of the observations containing ngjssin
of missing data onX is unrelated to the value ok, after values is relevant for prediction; (iii) the setting of atilch
controlling for other random variables in the analysis. MCA models (Hastie and Tibshirani, 1990) and componentwise
is a special type of MAR. If the missing data are MCARcernel machines (Pelckmans et al., 2005b) is preferred as it
or MAR, the missingness is ignorable and we don’t have #hables the modeling of the mechanism for handling missing
model the missingness property. If, on the other hand, data galues per variable; (iv) the methodology of primal-duairie
not missing at random but are missing as a function of somgachines (Vapnik, 1998; Suykens et al., 2002) can be em-
other random variable, a complete treatment of missing dgfRyed to solve the problem efficiently. The cases of stathdar
would have to include a model that accounts for missing dagvMs (Vapnik, 1998), componentwise SVMs (Pelckmans et

Three general methods have been mainly used for handlifig 2005a) which is related to kernel ANOVA decompositions
missing values in statistical analysis (Rubin, 1976, 198 (Stitson et al., 1999), and componentwise LS-SVMs (Suykens
is the so-called 'complete case analysis’, which ignores tAnd Vandewalle, 1999; Suykens et al., 2002; Pelckmans et
observations with missing values and bases the analysis £n 2005b) are elaborated. From a practical perspecthe, t
the complete case data. The disadvantages of this approgfdihod can be seen as a weighted version of SVMs and LS-

1 i ) ) ) i . SVMs (Suykens et al., 2002) based on an extended set of

An abbreviated version of some portions of this article appetan . .

(Pelckmans et al., 2005a) as part of the IJCNN 2005 procesdmglished dummy variables and is Strongly related to the method of
under the IEEE copyright. sensitivity analysis frequently used for structure détecin
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multi-layer perceptrons (see e.g. (Bishop, 1995)). can be obtained as follows following the theory of U-statst
This paper is organized as follows. The following sectiofHoeffding, 1961; Lee, 1990) as follows
discusses the approach taken towards handling missingsvalu

in risk based learing. Into section IlI, this approach i®;,.,(f) :Zé(yl-—f( Zzg
applied in order to build a learning machine for learning a i€A zeAJEA
classification rules from a finite set of observations exitemnd (5)

the result of SVMs and LS-SVM classifiers. Section IV reportyote that in case no observations are missing, the gk,
results obtained on a number of artificial as well as benckmdgduces to the standard empirical risk
datasets.

Ly 6
[I. MINIMAL RISK MODELING WITH MISSING VALUES Rem( Z (©)

A. Risk with missing values B. Mean imputation and minimal risk

. H _ 2
Let£: R — R denote a loss function (as effe) = e” or  pare e prove that the proposed empirical risk bounds the

Ue) = |De| for all e € R). Let (X, Y') denote a random Vector, ¢|,ssjcal method of mean imputation in the case of the square
X e RP andY € R. Let Dy = {(z;,v:)}Y, denote the set loss function.

of training samples with inputs; € R?” andy; € R. The
global risk R(f) of a function f : R” — R with respect to
a fixed (but unknown) distributioxy is defined as follows
(Vapnik, 1998; Bousquet et al., 2004)

— [t~ 1) dPy (o). &) Rempl(£) =3 (Fla) =9* + 32 (F =) (D)

i€ A i€A

Lemma 1 Consider the squared logs= (-)?. Define the risk
after imputation of the meayi = I_i\\ Yoiea S (@)

Let A C {1,...,N} denote the set with indices of theThen the following inequality holds
complete observations and = {1,...,N}\A the indices . _
with missing values. LetA| denote the number of observed Rémp(f) = Remp(f)- (8)

values and.A| = N —|.A| the number of missing observations. i _
Proof: The first terms of bottR.,,,,(f) and Remp(f)

Assumption 1 [Model for Missing Values] The following are equal, the second terms are related as follows

probabilistic model for the missing values is assumed.Rset ) —y)? = ) =) = (F—w))”
denote the distribution ok and Then we define Z () =) Z ((Flap) = 1) = (F =)

JEA JEA
T; . . —\ 2 — 2
@) o [AR) i icA = Y ((a)-0"+T-w))
Px if ieA, j€ )

" > AT —u) ©
WhereA denotes the pointmass distribution at the paipt
defined as from which the inequality follows. [ ]

(x4) A
AXV(z) £ Z(x > 2;) VYo eR”, @) Corollary 1 Consider the model class

whereZ(z > x;) equals one ift > x; and zero elsewhere. F={f: R LR | fla,w) = w'z, weRPY (10)

Remark that so far, an input of an observation is either Co@uch that the observatior® = {(x;,:)}Y, satisfyy; =
) 1=
plete or entirely missing. In many practical cases, obsems ,7,.. + .. Then RZmp(w) is an upperbound to the stan-

are only partially missing. Section Il will deal with thedard fisk Remp(w) as in (6) using mean imputatiom =
latter by adopting additive models and componentwise kerne > ic4 @i Of the missing values A.

machines. The empirical counterpart of the riRKf) in (1) A

then becomes Proof: The proof follows readily from Lemma 1 and the
equality
()
)= 3 00— st 04 : ]
Y= w T =w — T, = T,
LME: LMZ;
- ;46 Flxi) + Z/ z)) dPx(z), (4) wherez is defined as the empirical mean of the input. B
2 €A

Both results establish a result with the technique of mean
after application of the definition in (2) and using the propimputation (Rubin, 1987). In the case of nonlinear models,

erty that integrating over a pointmass distribution equals however, imputation should rather be based on the average
evaluation (Pestman, 1998). An unbiased estimat®Rgf,, responsef instead of the input.



C. Risk for additive models with missing variables
Additive models are defined as follows (Hastie and Tibs

rani, 1990): =0 =
20
-1
Definition 1 [Additive Models] Let an input vectar € RP . .
consists of) components of dimensial, for ¢ =1,...,Q, -2 2 2 -1 f?x) 1 2
denoted asr; = (mgl),... x(-Q)) with 29 € RP4. (in the '
simplest caser, = 1, we denoter!” = 27). The class of ' 190
additive models using these components is defined as 100
fQ:{f:RD—MR‘f qu((q)) * o0
-1 0
fo:RP" S RbER, Ve = (x(l),...,x( >> c RD}. (11) B A 1 T

Let furthermore X? denote the random variable (vector) o ,
. 1. lllustration of the mechanism in the case of componentwise SVM

corresponding to the-th component for aly = 1,..., Q. Wlth empirical risk RZ,,,, as described in Subsection II.C. Consider the
. bivariate functiony = f1(z') + f2(x?) with samples given as the dots at
Let the sets4, and B; be defined as follows locations{—1,1}. The left panels show the contribution associated with the
two variablesX' and X? (solid line) and the samples with respect to the
_Aq = {Z c {1, N } ‘ Eq observed } , Vg =1,..,Q corresponding input variables. By inspection of the ranfjbath functions,
one may conclude that the first component is more relevant tortitdgm at
. (q) } s hand. The two right panels give the empirical density of thaeaf, (X ') and
Bi = {q € {1’ T ’Q} ‘ i observed , vi=1 ’ f2(X?) respectively. This empirical estimate is then used to mangieahe

(12) influence of the missing variables from the risk.

and letA, = {1,...,N}\A, andB; = {1,...,Q}\B;. In the

case of this class of models, one may refine the probabilistic order to cope with the notational incovenience due to the
model for missing values to a mechanism which handles tH#ferent dependent summands, the following index &éts
missingness per component. N@ andV c N¥ are defined.

Assumption 2 [Model for Missing Values with Additive Mod- Ui = {(jh s JQ) ‘
els] The propab_ilistic model for the missing values of thih jo=iif qeBi or jy=1LYlc A, if qe Ei}, (16)
component is given as follows

@) e which reduces to the singletdii, . .. ,7)} if the i-th sample is
P)(f;) I {AXQ !f S fq (13) fuIIy observed. Lety, equaIsZN \u| Consider e.g. the fol-
P, g dazse — (7). (1), (o112}

n\/tyhere the second variable of the third observatlon is mssin
Then the setd/; becomel; = {(1,1)}, Us = {(2,2)},
U =1{(3,1),(3,2)} andny = 4.

AG) ()2 T (x(q) > x(q)) va@ ¢ RPs,  (14)  The empirical risk becomes in general

%

where Agfj) denotes the pointmass distribution at the poi
2 defined as

whereZ(z > z;) equals one ifz > z; and zero elsewhere. R, (f) =

Under the assumption the variables®, ..., X? are inde- N 1
pendent, the probabilistic model for the complete obsémmat Z ] Z (Z folz ( ) +b- yl> , (A7)
becomes =1 Gy Go)eus \g=1
I" H Py @) g, € D. (15) wherex((” denotes the-th component of the,-th observa-
q=1 tion. Th|s expression will be employed to build a componen-

as defined in (4), twise primal-dual kernel machine handling missing values i

Given the empirical risk functiomR e, (f) the mext section.

the risk or the additive model then becomes
D. Worst case approach using maximal variation

Remp( Z / Ly )) dPx (x) = For completeness, the derivation of the worst case approach
towards handling missing values is summarized based on
(Pelckmans et al., 2005a). Consider again the additive lmode
Z/f (Z fa (ﬂf(q)) +b— yi) dPx: (zM). .. dPya('?9). as defined in Definition 1. In (Pelckmans et al., 2005c), the
i=1 a=1 use of the following criterion was proposed:



Definition 2 [Maximal Variation] The maximal variation of Consider the maximal margin classifier where the risk to

a function f, : RP+ — R is defined as violating the margin is to be minimized with risk function
My= s |f, (20)] (18)
1‘<‘1)~qu Pmp(fw)

. 1
for all 20 ¢ RP: sampled from the distributionPy. = 2 [1—v:(fu(®))], + A SO = wi (fula))],

corresponding to the-th component. The empirical maximal €4 i€ AJEA

variation can be defined as (23)
fq< (q)> ) (19) where the function]+ : R — RT is defined as[z]; =
max(z,0) for all z € R. The maximization of the margin
with 2(9) denoting theg-th component of a sample of thewhile minimizing the riskR¢,,,(f.,) using elements of the
training setD. model class (22) results in the following primal optimipati
problem which is to be solved with respectgow, andb:
A main advantage of this measure over classical schemes
based on the norm of the parameters is that this measure is

not directly expressed in terms of the parameter vectorawhi ;) 7 L 7 _
a(w, & —w'w+C &+ &
can be infinite dimensional in the case of kernel machines) w.b.¢ (w,8) = 2 Z ! Z Z i

M, = max

(D eDy

icA icATEA
and it was employed successfully in (Pelckmans et al., 2005c st AT

in order to build a non-parametric counterpart to the linear "

LASSO estimator (Tibshirani, 1996) for structure detattio 1-& >y (whe(z) +b) VieA

The following counterpart was proposed in the case of missin 1—&j >y (wT@(xj) + b) VieAdjeA (24)
values. €,6;>0 Vi=1,...,N,VjeA

Def|n|t|on 3 [Worst-case Empirical Risk] Let an interval This problem can be rewritten in a substantially lower numbe
m{ C R be associated to each data-sample defined as followsunknowns when at least one missing value occurs. Note that
many of the individual constraints of (24) are equal wheneve

z; —ml = Z 1 fq | ( ) if ieA y; andz; are the same iny; (w” ¢(xz;) +b).
i —mf = —ququ, S0 M| if icA R )
—& 2> Y i) +
v = mi = |Zqen, f‘l( ) 2peB, My, Gzwl f(x) tAg g
(@) . 1= & > ye (who(z;) +b)  — & 26 =6, (25)
> gen, fa (@ ( ) + 2 8 M } otherwise, vi =y = 1

(20)
such that complete observations are mapped onto a singleton
f(z) and an interval of possible outcomes is associated whgﬂd similar for¢;” which equalss; and &,; whenevery; =

missing entries are encountered. The worst-case empiri¢4l — | —1 fohr "’;:I : etA Let A, denotgl the m((jju;]es of tkle ¢
counterpart to the empirical riskR.,,, as defined in (4) samples which_contain missing variables and have outputs
equal tol and A_ the set with outputyy = —1. Let |A4]

becomes N denote the cardinality of the sgt. One rewrites then
Rl ) = 3 max € (gs = 2). (21)
= min T4(w,€7,67) = swTw+ O (nFer +nr€)
A modification to the componentwise SVM based on this ¢ ieA
worst case risk is studied in (Pelckmans et al., 2005a) and 1—¢& > (wTSD(l.Z_) +b) Vie A

will be used in the experiments for comparison. St |t > (wT(p(xj) n b) vic A (26)

I1l. PRIMAL DUAL KERNEL MACHINES & .5 >0 Vi e A,

A. SVM classifiers handling missing values e |

— A+l — . ~—1

Let us consider the case of general models at first. Considé erent = Z(yi b> 0) + [A] andn; = I(y: <0)+ [A
the classifiers of the form areé positive numbers.

ful@) = sign [w el )+b] (22) Lemma 2 [Primal-Dual Characterization, I] Letw be a
wherew € RP¢ and D,, is the dimension of feature spaceransformation of the indices such that maps the set of
which is possibly infinite. Letp : RP? — RP+ be a fixed indices{1,...,|.A|} onto an enumeration of all samples with
but unknown mapping of the input data to a feature spaammpletely observed inputs. The dual problem to (26) takes



the following form B. Componentwise SVMs handling missing values
The paradigm of additive models is employed to handle

D) —
max J¢ () = multivariate data where only some of the variables are missi
1 T T T at a time. Additive classifiers are then defined as follows. Le
+ + + - - N 4T AT -
D) (O‘ @™ 20" Qa” ta” Qo )+1|A\O‘ tLa%" 4 ¢ RP be a point with components = (2™, ... 2@).
L@ —1ga™ =0 Consielerht.he classification rule in componentwise form (lgas
st 0< a:r gnjC VieA (27) and Tibshirani, 1990)
<ol <n; '
Osaisn € vieA, sign[f(z)] = sign [Z folz ( ) (31)
whereQ) € R2AI>24l is defined a$2; = K (2 (x), 2-()) for
all k,0=1,...,|A|. The estimate can be evaluated in a newith sufficiently smooth mapping#, : RP« — R such that the
data- pomta:* € RP as follows decision boundary is described as in (Vapnik, 1998;08aipf
and Smola, 2002)
Je =sign | > (67 — &) K (wriy, ) +b[,  (28) 9
5 Hy=qaeR? | S f (o) +b=0. (32
q=1
where & is the solution to (27) and follows from the The primal-dual characterization provides an efficientlgnp
complementary slackness conditions. mentation of the estimation procedure for fitting such medel

» to the observations. Consider additive classifiers of thfo
Proof: Let the positive vectorsyt € RHMI o~ e

R+l p+ € RTM andv— € R Il contain the Lagrange
multipliers of the constrained optimization problem (26he sign[fu(w)] = sign [Zw Ya ( ) +b (33)
Lagrangian of the constrained optimization problem becme .
with ¢, for all ¢ = 1,...,Q fixed but unknown mappings
Lo(w,b,&at, a,vT, 7) _ jar(w et ) from theg-th componenlr(‘ﬂ tolan elementin a corresponding
() N feature spacep, (z(?)) belonging to a spac®&”+« which is
o Z v; (&) Z & )+ b) -1+ ) possibly infinite. The derivation of the algorithm for adwetit
ieA ieA models incorporating the missing values goes along the same
- Z oy (= (whe(z;) +b) —1+&) Z v (&), lines as in Lemma 2 but involves a heavier notation.4;gt <
icA icA R* denote slack variables for all= 1,..., N and Vu; €
(29) ;. Then the primal optimization problem can be written as
such thata;,v;",a; ,af > 0 forall i = 1,...,|A|. Then follows

Z’L7

from taking the f|rst order conditions for opt|mal|ty overeth
primal variables (saddle point of the Lagrangian), one iokta jA (wg, &) = Zw Wy + CZ 4| Z Siju; St

u; EU;
W= e (a?—a;) o(x;) (a) 1= & >y (ZQ ,w? <pq( (q)) +b>
O:Z‘GA (of."—a.‘) (b) e = =
1 1 1 30 . _ . .
C’nj':ozj'—&—yj' Vie A (C) ( ) VZ—17...,N, Yul—(]l,...,]Q)GZ/{z
Cn; =a; +v; vie A (d). Siue 20 Vi=1...,N, Vu; els

(34)

The dual problem then follows by maximization ovet,a™, \hich ought to be m|n|m|zed over the primal variabkeg, b
see e.g. (Boyd and Vandenberghe, 2004, Crlstlamnl aﬁﬂdf foralg=1,...,Q,i = 1,...,N andu; € U,

Shawe-Taylor, 2000; Suykens et al., 2002). respect|vely Lets, , denote the;-th element of the vectot; .
From the expression (27), the following result follows:

Lemma 3 [Primal-Dual Characterization, Il] The dual prob-
Corollary 2 The Support Vector Machine for handling misstem to (34) becomes
ing values reduces to the standard support vector machine in

case no values are missing. max JP () = —%aTQQa +17
Proof: From the definition of.; andn; it follows that 0< g < Z Vi=1,...,N,Yu; €U;
only one of them can be equal to one in the case of no missing o ws €U W |
values, while the other equals zero. From the conditions S-t- N
(30.cd), equivalence with the standard SVM follows, see e.g Z Z Oy =
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Suyken i=1 u; €U

et al., 2002). n (35)



Let the matrix2e € R"«*"v be defined such thmg,wj = wherez] = f4 xg‘” € R denotes the contribution of the
Zqul Yy x&'ﬁ?q,fo‘ﬂ?q for all i,5 = 1,...,N, u; ¢ thcomponent of the-th data point. This problem has a dual

U,. The estimate can be evaluated in a new paint — characterization with complexity independent of the nundie

(l‘(l) x(Q)) as follows terms in the primal cost-function. For notational conveci
oo define the following setd;, € N? andV, € N@. Let V),
N Q denote a set of vectors @ indices for all¢g = 1,...,Q as
S Y i YK, (#9.40 ) 5, (36) follows
i=1 u; EU; q=1 . . . .
R . Viq:{vk:(jl,...,jQ) v €U, Vk=1,..,N s.t jq:Z}.
where& and b are the solution to (35). (40)
) B 1 o
Proof: The Lagrangian of the primal problem (34)-€t s € R be defined asiq = >, cy, gy for all t=
becomes 1,...,N,qg=1,...,Q andd?q = Evkeviq W—kyk forall i =
N 1,...,N,g=1,...,Q. and letn € R™ andd¥ € R" be
vectors enumerating the eleme andd;, respectively.
‘C(vafa ba a, V) = jé?(w,f) - Z Z Vi,ulfi,ui 9 ml% q p Y
1=1 u; EU;
N Q Lemma 4 [Primal-Dual Characterization, Ill] Letn, =
>SN i (yl (Z wl'p, (xg?q) + b) —1+ gui) ., 29 | |A,| denote the number of non-missing values. The dual
i=1 u; €U; q=1 ’ solution to (39) is found as the solution to the set of linear
(37)equations
whereq is a vector containing the positive Lagrange multipli- T
; - " 0 | d b 0
ersa; ,, > 0 and wherey is a vector containing the positive ] | 0T ] < =7 (42)
Lagrange multipliers; ,,, > 0. The first order conditions for v T ine/
minimization with respect to the primal variables become where Q%’ € R"*7e the vectora — (al’“.’aQ)T c
N . .
R™=. The estimate can be evaluated at a new paint=
- . . (q) _
Wq = Zl Zu Qi u; YiPq (xui,q) Vg=1,...,Q (l’il), o ’xiQ)> as follows
1=1 u; €U;
ogai,uig‘g‘ Vi=1,...,N,Vu, €U; Q
N ; _ ~q (@) ,.(a) 7
S5 an =0 fe) =3 3 &k (o.al?) +b @2)
Ui q=1icA,
i=1 u; €U;

(38) ~q 7 .
Substitution of this equalities into the Lagrangian and maxWhereai andb are the solution to (41).

mizing the expression over the dual varables leads to the dua Proof: The Lagrangian of the primal problem (39)
problem (35). '
Again this derivation reduces to a componentwise SVM in thbeecomes

case no missing values are encountered.
Ly (wg, 2, bsa) = Ty (wy, 2, b)

C. Componentwise LS-SVMs for classification Q
A formulation based on the derivation of LS-SVM clas- -y > of (wg@q ($EQ)> - Zf) , (43)
sifiers is considered resulting into a dual problem which a=licA,

one can solve much more efficiently by adoption of a Ieasth I ith all ttipliers?
squares criterion and by substitution of the inequalitigs q\/ erﬁa €R™ Isa vecc';qr wit aTrl;agran_ge_ mu up |efr&F.]
equalities (Saunders et al., 1998; Suykens and Vandewal, @l ¢ = 1,...,Q andi € A,. The minimization o tqe
1999: Suykens et al., 2002; Pelckmans et al., 2005b). Thadrangian with respect to the primal variables, b and 2

combinatorial increase in the number of terms can be avoid'éaCharaCter'zed by

using the following formulation. The modified primal cost- B (@) v
function of the LS-SVM becomes Wq = _ZA @i%q (‘%2 ) q
1€EAg
o 1 & 1 (&, 1, ,
i ) = 5 vt B (e TP = el Weie
q=1 v €Vig p=1
N 0 2 N ( Q
Y 1 q zd + b— =
—= i b —1 ) Wi, Yi
2 ; i| Zu (y (; e ) > ; =) ; '
- st B q T () :
T @Y _ ,a _ . Z; =Wy Pq (% ), Vg, Vi € A,.
st wy (371 ) 2l Yg=1,...,Q,Vie A,;, (39) (44)



[[ PCC testsef| STD |

Standard SVM SVM for Missing Values

Ripley Dataset (50;200;1000)
Complete obs. 0.8671 0.0212
Median Imputation 0.8670 0.0213
SVM&mv (IIl.A) 0.8786 0.0207
. cSVM&mv (111.B) 0.8939 0.0089
cSVM& M (11.D) 0.6534 0.1533
LS-SVM&mv (l11.C) 0.8833 0.0184
cLS-SVM&mv (lII.C) 0.8903 0.0208
Hepatitis Dataset (85;20;50)
Complete obs. cSVM 0.5800 0.1100
Median Imputation cSVM 0.7575 0.0880
@ (b) SVM&mv (ITA) 0.7825 0.0321
cSVM&mv (111.B) 0.8375 0.0095
Fig. 2. An artificial example (X" denote positive labels, ™" are negative cSVM& M (I1.D) 0.7550 0.0111
labels) showing the difference betwega) the standard SVM using only the LS-SVM&mv (Ill.C) 0.7700 0.0390
complete samples, artd) the modified SVM using the all samples using the CLS-SVM&mv (I1I.C) 0.8550 0.0093
modified riskR,,, as described in Section Il.A. While the former results TABLE |

in an unbalanced solution, the latter approximates bettewutiderlying rule . ! ) . )
f(X) = Z(X1 > 0) with an improved generalization performance. Numerical results of the case studies described in Subsdtfia and IV.B

respectively based on a Monte Carlo simulation. Results)aneesed in
Percentage Correctly Classified (PCC) on the test-set.drham capitals refer
o . . ) to the Subsection in which the method is described. In the a&ibe artificial
One can eliminate the primal variables, and z; from this  gataset based on the Ripley dataset, the advantage of theseamethods
set using the first and the last expression, resulting in ¢he s  over median imputation of the inputs or the complete case dsasys
outperformed, even without the use of the componentwise methahe case

Q 1 of the Hepatitis dataset, the componentwise LS-SVM takitgaecount the
Z Z Z K, (:175,”) I(P)) of missing values outperforms the other methods.
k,p? ] J
p=1jeA, |vk€Viq |Z/{k|
Fnigh + 2o = dY, Vg, Vi€ A, (45)
Q
Z Z ad =0. practice of median imputation of the inputs and omitting the
3 . . . . .
a=1jeA, mcomplgte (_)bservanons. Note tha_t even W|th01_Jt_ mc_ormmnga
_ 0 the multivariate structure and using the modification to the
Define the matrix2;; € R"~*"> such that standard SVM, an increase in performance can be observed.
o ©) This setup was employed in a Monte-Carlo study of 500 ran-
Qsi 0, domizations were in each the assignment of data to training-
0 o) .. Qf) " , validation- and test-set is randomized and values of the
= ; ; where training-set are indicated as missing at random. From the
1) @) results, it may be concluded that the proposed approach out-
Qe Q0 performs median inputation even when one does not employ

1 (@) th twise strategy t th tiall
mep(i)ﬂq(j) _ Z K, (Iq(i),q’qu ) . (46) the componentwise strategy to recover the partially oleskry

ol U values per observation. Figure 2 displays the results of one
! . single experiment with two components corresponding’to
forallp,g=1,...,Q andforalli,j € A, wherer, : N =N anqx2 and their corresponding predicted output distributions.
enumerates all elements of the s&f. Hence the result (41)

follows.
B. Benchmark dataset

IV. EXPERIMENTS .
A benchmark dataset of the UCI repository was taken to

A. Artificial dataset illustrate the effectiveness of the employed method on & rea
A modified version of the Ripley dataset was analyzed usiigitaset. The hepatitis dataset consists of a binary clzetssin
the proposed techniques in order to illustrate the diffeesn task with 19 attribute values and a total of 155 samples and
between existing methods. While the original dataset ctsisisontaining 167 missing values. A test-set of 50 complete
of 250 samples to be used for training and model selection asgmples and a validation-set of 20 complete samples were
1000 samples for the purpose of testing, only 50 sampleseof thithdrawn for the purpose of model comparison and tuning
former where taken for the purpose of training in order topkedhe regularization constants.
the computations tractable. The remaining 200 were used fofThese results suggest the appropriateness of the assamptio
the purpose of tuning the regularization constant and thagke of additive models in this case study even with regard to gen-
parametersl5 observations out of the 50 are then considerestalization performance. By omitting the components which
as missing. Let the 50 training samples have a balanceave only a minor contribution to the obtained model, one
class distribution. Numerical results are reported in &abl additionaly gains insight in the model as illustrated in Uiy
illustrating that the proposed method outperforms commd@h
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