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Abstract— This paper discusses the task of learning a classifier
from observed data containing missing values amongst the inputs
which are missing completely at random1. A non-parametric
perspective is adopted by defining a modified risk taking into
account the uncertainty of the predicted outputs when missing
values are involved. It is shown that this approach generalizes
the approach of mean imputation in the linear case and the
resulting kernel machine reduces to the standard Support Vector
Machine (SVM) when no input values are missing. Furthermore,
the method is extended to the multivariate case of fitting additive
models using componentwise kernel machines, and an efficient
implementation is based on the Least Squares Support Vector
Machine (LS-SVM) classifier formulation.

I. I NTRODUCTION

Missing data frequently occur in applied statistical data
analysis. There are several reasons why the data may be
missing (Rubin, 1976, 1987). They may be missing because
equipment malfunctioned, observations become incomplete
due to people becoming ill or observations which are not
entered correctly. Here the data are missing completely at
random (MCAR). The missing data for a random variable
X are ’missing completely at random’ if the probability of
having a missing value forX is unrelated to the values of
X itself or to any other variables in the data set. Often the
data are not missing completely at random, but they may be
classifiable as missing at random (MAR). The missing data for
a random variableX are ’missing at random’ if the probability
of missing data onX is unrelated to the value ofX, after
controlling for other random variables in the analysis. MCAR
is a special type of MAR. If the missing data are MCAR
or MAR, the missingness is ignorable and we don’t have to
model the missingness property. If, on the other hand, data are
not missing at random but are missing as a function of some
other random variable, a complete treatment of missing data
would have to include a model that accounts for missing data.

Three general methods have been mainly used for handling
missing values in statistical analysis (Rubin, 1976, 1987). One
is the so-called ’complete case analysis’, which ignores the
observations with missing values and bases the analysis on
the complete case data. The disadvantages of this approach

1An abbreviated version of some portions of this article appeared in
(Pelckmans et al., 2005a) as part of the IJCNN 2005 proceedings, published
under the IEEE copyright.

are the loss of efficiency due to discarding the incomplete
observations and biases in estimates when data are missing in
a systematic way. The second approach for handling missing
values is the imputation method, which imputes values for
the missing covariates and carries out the analysis as if the
imputed values were observed data. This approach may reduce
the bias of the complete case analysis but lead to additional
bias in multivariate analysis if the imputation fails to control
for all multivariate relationships. The third approach is to as-
sume some models for the covariates with missing values and
then use a maximum likelihood approach to obtain estimates
for the models. Methods to handle missing values in non-
parametric predictive settings do often rely on different multi-
stage procedures or boil down to hard global optimization
problems, see e.g. (Hastie et al., 2001) for references.

This paper proposes an alternative approach where no
attempt is made to reconstruct the values which are missing,
but only the impact of the missingness on the outcome and the
expected risk is modeled explicitly. This strategy is in line with
the previous result (Pelckmans et al., 2005a) where, however,
a worst case approach was taken. The proposed approach is
based on a number of insights into the problem, including (i)
a global approach for handling missing values which can be
reformulated into a one-step optimization problem is preferred;
(ii) there is no need to recover the missing values, only
the expected outcome of the observations containing missing
values is relevant for prediction; (iii) the setting of additive
models (Hastie and Tibshirani, 1990) and componentwise
kernel machines (Pelckmans et al., 2005b) is preferred as it
enables the modeling of the mechanism for handling missing
values per variable; (iv) the methodology of primal-dual kernel
machines (Vapnik, 1998; Suykens et al., 2002) can be em-
ployed to solve the problem efficiently. The cases of standard
SVMs (Vapnik, 1998), componentwise SVMs (Pelckmans et
al., 2005a) which is related to kernel ANOVA decompositions
(Stitson et al., 1999), and componentwise LS-SVMs (Suykens
and Vandewalle, 1999; Suykens et al., 2002; Pelckmans et
al., 2005b) are elaborated. From a practical perspective, the
method can be seen as a weighted version of SVMs and LS-
SVMs (Suykens et al., 2002) based on an extended set of
dummy variables and is strongly related to the method of
sensitivity analysis frequently used for structure detection in



multi-layer perceptrons (see e.g. (Bishop, 1995)).
This paper is organized as follows. The following section

discusses the approach taken towards handling missing values
in risk based learning. Into section III, this approach is
applied in order to build a learning machine for learning a
classification rules from a finite set of observations extending
the result of SVMs and LS-SVM classifiers. Section IV reports
results obtained on a number of artificial as well as benchmark
datasets.

II. M INIMAL RISK MODELING WITH MISSING VALUES

A. Risk with missing values

Let ℓ : R → R denote a loss function (as e.g.ℓ(e) = e2 or
ℓ(e) = |e| for all e ∈ R). Let (X,Y ) denote a random vector,
X ∈ R

D andY ∈ R. Let DN = {(xi, yi)}
N
i=1 denote the set

of training samples with inputsxi ∈ R
D and yi ∈ R. The

global riskR(f) of a functionf : R
D → R with respect to

a fixed (but unknown) distributionPXY is defined as follows
(Vapnik, 1998; Bousquet et al., 2004)

R(f) =

∫

ℓ (y − f(x)) dPXY (x, y). (1)

Let A ⊂ {1, . . . , N} denote the set with indices of the
complete observations andA = {1, . . . , N}\A the indices
with missing values. Let|A| denote the number of observed
values and|A| = N−|A| the number of missing observations.

Assumption 1 [Model for Missing Values] The following
probabilistic model for the missing values is assumed. LetPX

denote the distribution ofX and Then we define

P
(xi)
X ,

{

∆
(xi)
X if i ∈ A

PX if i ∈ A,
(2)

where∆
(xi)
X denotes the pointmass distribution at the pointxi

defined as

∆
(xi)
X (x) , I(x ≥ xi) ∀x ∈ R

D, (3)

whereI(x ≥ xi) equals one ifx ≥ xi and zero elsewhere.

Remark that so far, an input of an observation is either com-
plete or entirely missing. In many practical cases, observations
are only partially missing. Section III will deal with the
latter by adopting additive models and componentwise kernel
machines. The empirical counterpart of the riskR(f) in (1)
then becomes

Remp(f) =

N
∑

i=1

∫

ℓ (yi − f(x)) dP
(xi)
X (x)

=
∑

i∈A

ℓ (yi − f(xi)) +
∑

i∈A

∫

ℓ (yi − f(x)) dPX(x), (4)

after application of the definition in (2) and using the prop-
erty that integrating over a pointmass distribution equalsan
evaluation (Pestman, 1998). An unbiased estimate ofRemp

can be obtained as follows following the theory of U-statistics
(Hoeffding, 1961; Lee, 1990) as follows

R∗
emp(f) =

∑

i∈A

ℓ (yi − f(xi)) +
1

|A|

∑

i∈A

∑

j∈A

ℓ (yi − f(xj)) .

(5)
Note that in case no observations are missing, the riskR∗

emp

reduces to the standard empirical risk

Remp(f) =
N

∑

i=1

ℓ (yi − f(xi)) . (6)

B. Mean imputation and minimal risk

Here we prove that the proposed empirical risk bounds the
classical method of mean imputation in the case of the squared
loss function.

Lemma 1 Consider the squared lossℓ = (·)2. Define the risk
after imputation of the meanf = 1

|A|

∑

i∈A f(xi):

Remp(f) =
∑

i∈A

(f(xi) − yi)
2

+
∑

i∈A

(

f − yi

)2
. (7)

Then the following inequality holds

R∗
emp(f) ≥ Remp(f). (8)

Proof: The first terms of bothRemp(f) andRemp(f)
are equal, the second terms are related as follows
∑

j∈A

(f(xj) − yi)
2

=
∑

j∈A

((

f(xj) − f
)

−
(

f − yi

))2

=
∑

j∈A

(

(

f(xj) − f
)2

+
(

f − yi

)2
)

≥ |A|
(

f − yi

)2
, (9)

from which the inequality follows.

Corollary 1 Consider the model class

F =
{

f : R
D → R

∣

∣ f(x,w) = wT x, w ∈ R
D

}

, (10)

such that the observationsD = {(xi, yi)}
N
i=1 satisfy yi =

wT xi + ei. Then R∗
emp(w) is an upperbound to the stan-

dard risk Remp(w) as in (6) using mean imputationx =
1

|A|

∑

i∈A xi. of the missing values∈ A.

Proof: The proof follows readily from Lemma 1 and the
equality

y =
1

|A|

∑

i∈A

wT xi = wT 1

|A|

∑

i∈A

xi = wT x,

wherex is defined as the empirical mean of the input.
Both results establish a result with the technique of mean
imputation (Rubin, 1987). In the case of nonlinear models,
however, imputation should rather be based on the average
responsef instead of the inputx.



C. Risk for additive models with missing variables

Additive models are defined as follows (Hastie and Tibshi-
rani, 1990):

Definition 1 [Additive Models] Let an input vectorx ∈ R
D

consists ofQ components of dimensionDq for q = 1, . . . , Q,

denoted asxi =
(

x
(1)
i , . . . , x

(Q)
i

)

with x
(q)
i ∈ R

Dq . (in the

simplest casenq = 1, we denotex(q)
i = xq

i ). The class of
additive models using these components is defined as

FQ =

{

f : R
D → R

∣

∣

∣ f(x) =

Q
∑

q=1

fq

(

x(q)
)

+ b,

fq : R
Dq → R, b ∈ R,∀x =

(

x(1), . . . , x(Q)
)

∈ R
D

}

. (11)

Let furthermore Xq denote the random variable (vector)
corresponding to theq-th component for allq = 1, . . . , Q.

Let the setsAq andBi be defined as follows

Aq =
{

i ∈ {1, . . . , N}
∣

∣

∣ x
(q)
i observed

}

, ∀q = 1, .., Q

Bi =
{

q ∈ {1, . . . , Q}
∣

∣

∣ x
(q)
i observed

}

, ∀i = 1, .., N,

(12)

and letAq = {1, . . . , N}\Aq andBi = {1, . . . , Q}\Bi. In the
case of this class of models, one may refine the probabilistic
model for missing values to a mechanism which handles the
missingness per component.

Assumption 2 [Model for Missing Values with Additive Mod-
els] The probabilistic model for the missing values of theq-th
component is given as follows

P
(xi)
Xq ,

{

∆
(xi)
Xq if i ∈ Aq

PXq if i ∈ Aq,
(13)

where ∆
(xi)
Xq denotes the pointmass distribution at the point

x
(q)
i defined as

∆
(xi)
Xq (x) , I

(

x(q) ≥ x
(q)
i

)

∀x(q) ∈ R
Dq , (14)

whereI(z ≥ zi) equals one ifz ≥ zi and zero elsewhere.
Under the assumption the variablesX1, . . . ,XQ are inde-
pendent, the probabilistic model for the complete observation
becomes

P
(xi)
X =

Q
∏

q=1

P
(xi)
Xq ∀xi ∈ D. (15)

Given the empirical risk functionRemp(f) as defined in (4),
the risk or the additive model then becomes

Remp(f) =

N
∑

i=1

∫

ℓ (yi − f(x)) dPX(x) =

N
∑

i=1

∫

ℓ

(

Q
∑

q=1

fq

(

x(q)
)

+ b − yi

)

dPX1(x(1)) . . . dPXQ(x(Q)).
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Fig. 1. Illustration of the mechanism in the case of componentwise SVMs
with empirical risk R∗

emp
as described in Subsection II.C. Consider the

bivariate functiony = f1(x1) + f2(x2) with samples given as the dots at
locations{−1, 1}. The left panels show the contribution associated with the
two variablesX1 and X2 (solid line) and the samples with respect to the
corresponding input variables. By inspection of the range of both functions,
one may conclude that the first component is more relevant to the problem at
hand. The two right panels give the empirical density of the valuesf1(X1) and
f2(X2) respectively. This empirical estimate is then used to marginalize the
influence of the missing variables from the risk.

In order to cope with the notational incovenience due to the
different dependent summands, the following index setsU ⊂
N

Q andV ⊂ N
Q are defined.

Ui =
{

(j1, . . . , jQ)
∣

∣

∣

jq = i if q ∈ Bi or jq = l,∀l ∈ Aq if q ∈ Bi

}

, (16)

which reduces to the singleton{(i, . . . , i)} if the i-th sample is
fully observed. LetnU equals

∑N
i=1 |Ui|. Consider e.g. the fol-

lowing datasetD =
{(

x
(1)
1 , x

(2)
1

)

,
(

x
(1)
2 , x

(2)
2

)

,
(

x
(1)
3 , ?

)}

where the second variable of the third observation is missing.
Then the setsUi becomeU1 = {(1, 1)}, U2 = {(2, 2)},
U1 = {(3, 1), (3, 2)} andnU = 4.

The empirical risk becomes in general

RQ,∗
emp(f) =

N
∑

i=1

1

|Ui|

∑

(j1,...,jQ)∈Ui

ℓ

(

Q
∑

q=1

fq

(

x
(q)
jq

)

+ b − yi

)

, (17)

wherex
(q)
jq

denotes theq-th component of thejq-th observa-
tion. This expression will be employed to build a componen-
twise primal-dual kernel machine handling missing values in
the next section.

D. Worst case approach using maximal variation

For completeness, the derivation of the worst case approach
towards handling missing values is summarized based on
(Pelckmans et al., 2005a). Consider again the additive models
as defined in Definition 1. In (Pelckmans et al., 2005c), the
use of the following criterion was proposed:



Definition 2 [Maximal Variation] The maximal variation of
a functionfq : R

Dq → R is defined as

Mq = sup
x(q)∼PXq

∣

∣

∣
fq

(

x(q)
)∣

∣

∣
(18)

for all x(q) ∈ R
Dq sampled from the distributionPXq

corresponding to theq-th component. The empirical maximal
variation can be defined as

M̂q = max
x(q)∈DN

∣

∣

∣fq

(

x
(q)
i

)∣

∣

∣ , (19)

with x(q) denoting theq-th component of a sample of the
training setD.

A main advantage of this measure over classical schemes
based on the norm of the parameters is that this measure is
not directly expressed in terms of the parameter vector (which
can be infinite dimensional in the case of kernel machines)
and it was employed successfully in (Pelckmans et al., 2005c)
in order to build a non-parametric counterpart to the linear
LASSO estimator (Tibshirani, 1996) for structure detection.
The following counterpart was proposed in the case of missing
values.

Definition 3 [Worst-case Empirical Risk] Let an interval
mf

i ⊂ R be associated to each data-sample defined as follows






























xi → mf
i =

∑Q
q=1 fq

(

x
(q)
i

)

if i ∈ A

xi → mf
i =

[

−
∑Q

q=1 Mq,
∑Q

q=1 Mq

]

if i ∈ A

xi → mf
i =

[

∑

q∈Bi
fq

(

x
(q)
i

)

−
∑

p∈Bi
Mp,

∑

q∈Bi
fq

(

x
(q)
i

)

+
∑

p∈Bi
Mp

]

, otherwise,
(20)

such that complete observations are mapped onto a singleton
f(x) and an interval of possible outcomes is associated when
missing entries are encountered. The worst-case empirical
counterpart to the empirical riskRemp as defined in (4)
becomes

RM̂
emp(f) =

N
∑

i=1

max
z∈m

f
i

ℓ (yi − z) . (21)

A modification to the componentwise SVM based on this
worst case risk is studied in (Pelckmans et al., 2005a) and
will be used in the experiments for comparison.

III. PRIMAL DUAL KERNEL MACHINES

A. SVM classifiers handling missing values

Let us consider the case of general models at first. Consider
the classifiers of the form

fw(x) = sign
[

wT ϕ (x) + b
]

, (22)

wherew ∈ R
Dϕ and Dϕ is the dimension of feature space

which is possibly infinite. Letϕ : R
D → R

Dϕ be a fixed
but unknown mapping of the input data to a feature space.

Consider the maximal margin classifier where the risk to
violating the margin is to be minimized with risk function

R∗
emp(fw)

=
∑

i∈A

[1 − yi(fw(i))]+ +
1

|A|

∑

i∈A

∑

j∈A

[1 − yi (fw(xj))]+ ,

(23)

where the function[·]+ : R → R
+ is defined as[z]+ =

max(z, 0) for all z ∈ R. The maximization of the margin
while minimizing the riskR∗

emp(fw) using elements of the
model class (22) results in the following primal optimization
problem which is to be solved with respect toξ, wp andb:

min
w,b,ξ

JA(w, ξ) =
1

2
wT w + C





∑

i∈A

ξi +
1

|A|

∑

i∈A

∑

j∈A

ξij





s.t.










1 − ξi ≥ yi

(

wT ϕ(xi) + b
)

∀i ∈ A

1 − ξij ≥ yi

(

wT ϕ(xj) + b
)

∀i ∈ A, j ∈ A

ξi, ξij ≥ 0 ∀i = 1, . . . , N, ∀j ∈ A.

(24)

This problem can be rewritten in a substantially lower number
of unknowns when at least one missing value occurs. Note that
many of the individual constraints of (24) are equal whenever
yi andxi are the same inyi

(

wT ϕ(xj) + b
)

.











1 − ξi ≥ yi

(

wT ϕ(xi) + b
)

1 − ξki ≥ yk

(

wT ϕ(xi) + b
)

yi = yk = 1

→ ξ+
i , ξi = ξki, (25)

and similar forξ−i which equalsξi and ξki wheneveryi =
yk = −1 for all i ∈ A. Let A+ denote the indices of the
samples which contain missing variables and have outputs
equal to1 and A− the set with outputsy = −1. Let |A|
denote the cardinality of the setA. One rewrites then

min
w,b,ξ

J ∗
A(w, ξ+, ξ−) =

1

2
wT w + C

∑

i∈A

(

n+
i ξ+

i + n−
i ξ−i

)

s.t.











1 − ξ−i ≥ −
(

wT ϕ(xi) + b
)

∀i ∈ A

1 − ξ+
i ≥

(

wT ϕ(xj) + b
)

∀i ∈ A

ξ−i , ξ+
i ≥ 0 ∀i ∈ A,

(26)

wheren+
i = I(yi > 0) + |A+|

|A| and n−
i = I(yi < 0) + |A−|

|A|
are positive numbers.

Lemma 2 [Primal-Dual Characterization, I] Let π be a
transformation of the indices such thatπ maps the set of
indices{1, . . . , |A|} onto an enumeration of all samples with
completely observed inputs. The dual problem to (26) takes



the following form

max
α

J D
C (α) =

−
1

2

(

α+T
Ωα+ − 2α+T

Ωα− + α−T
Ωα−

)

+1T
|A|α

++1T
|A|α

−

s.t.











1|A|α − 1|A|α
− = 0

0 ≤ α+
i ≤ n+

i C ∀i ∈ A

0 ≤ α−
i ≤ n−

i C ∀i ∈ A,

(27)

whereΩ ∈ R
2|A|×2|A| is defined asΩkl = K(xπ(k), xπ(l)) for

all k, l = 1, . . . , |A|. The estimate can be evaluated in a new
data-pointx∗ ∈ R

D as follows

ŷ∗ = sign





∑

i∈|A|

(α̂+
i − α̂−

i )K(xπ(i), x∗) + b̂



 , (28)

where α̂ is the solution to (27) and̂b follows from the
complementary slackness conditions.

Proof: Let the positive vectorsα+ ∈ R
+,|A|, α− ∈

R
+,|A|, ν+ ∈ R

+,|A| and ν− ∈ R
+,|A| contain the Lagrange

multipliers of the constrained optimization problem (26).The
Lagrangian of the constrained optimization problem becomes

LC(w, b, ξ;α+, α−, ν+, ν−) = J+
C (w, ξ+, ξ−)

−
∑

i∈A

ν+
i (ξ+

i ) −
∑

i∈A

α+
i

((

wT ϕ(xi) + b
)

− 1 + ξ+
i

)

−
∑

i∈A

α−
i

(

−
(

wT ϕ(xi) + b
)

− 1 + ξ−i
)

−
∑

i∈A

ν−
i (ξ−i ),

(29)

such thatα+
i , ν+

i , α−
i , α+

i ≥ 0 for all i = 1, . . . , |A|. Then
from taking the first order conditions for optimality over the
primal variables (saddle point of the Lagrangian), one obtains



















w =
∑

i∈A

(

α+
i − α−

i

)

ϕ(xi) (a)

0 =
∑

i∈A

(

α+
i − α−

i

)

(b)

Cn+
i = α+

i + ν+
i ∀i ∈ A (c)

Cn−
i = α−

i + ν−
i ∀i ∈ A (d).

(30)

The dual problem then follows by maximization overα+, α−,
see e.g. (Boyd and Vandenberghe, 2004; Cristianini and
Shawe-Taylor, 2000; Suykens et al., 2002).

From the expression (27), the following result follows:

Corollary 2 The Support Vector Machine for handling miss-
ing values reduces to the standard support vector machine in
case no values are missing.

Proof: From the definition ofn+
i andn−

i it follows that
only one of them can be equal to one in the case of no missing
values, while the other equals zero. From the conditions
(30.cd), equivalence with the standard SVM follows, see e.g.
(Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Suykens
et al., 2002).

B. Componentwise SVMs handling missing values

The paradigm of additive models is employed to handle
multivariate data where only some of the variables are missing
at a time. Additive classifiers are then defined as follows. Let
x ∈ R

D be a point with componentsx =
(

x(1), . . . , x(Q)
)

.
Consider the classification rule in componentwise form (Hastie
and Tibshirani, 1990)

sign[f(x)] = sign

[

Q
∑

q=1

fq

(

x(q)
)

+ b

]

, (31)

with sufficiently smooth mappingsfq : R
Dq → R such that the

decision boundary is described as in (Vapnik, 1998; Schölkopf
and Smola, 2002)

Hf =

{

x0 ∈ R
D

∣

∣

Q
∑

q=1

fq

(

x
(q)
0

)

+ b = 0

}

. (32)

The primal-dual characterization provides an efficient imple-
mentation of the estimation procedure for fitting such models
to the observations. Consider additive classifiers of the form

sign[fw(x)] = sign

[

Q
∑

q=1

wT
q ϕq

(

x(q)
)

+ b

]

, (33)

with ϕq for all q = 1, . . . , Q fixed but unknown mappings
from theq-th componentx(q) to an element in a corresponding
feature spaceϕq

(

x(q)
)

belonging to a spaceRDϕq which is
possibly infinite. The derivation of the algorithm for additive
models incorporating the missing values goes along the same
lines as in Lemma 2 but involves a heavier notation. Letξi,ui

∈
R

+ denote slack variables for alli = 1, . . . , N and ∀ui ∈
Ui. Then the primal optimization problem can be written as
follows

J Q
A (wq, ξ) =

1

2

Q
∑

q=1

wT
q wq + C

N
∑

i=1

1

|Ui|

∑

ui∈Ui

ξi,ui
s.t.















1 − ξi,ui
≥ yi

(

∑Q
q=1 wT

q ϕq

(

x
(q)
jq

)

+ b
)

∀i = 1, . . . , N, ∀ui = (j1, . . . , jQ) ∈ Ui

ξi,ui
≥ 0 ∀i = 1, . . . , N, ∀ui ∈ Ui

(34)

which ought to be minimized over the primal variableswq, b
and ξi, for all q = 1, . . . , Q, i = 1, . . . , N and ui ∈ Ui

respectively. Letui,q denote theq-th element of the vectorui.

Lemma 3 [Primal-Dual Characterization, II] The dual prob-
lem to (34) becomes

max
α

JQ,D
A (α) = −

1

2
αT ΩQ

U α + 1T
nU

α

s.t.
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(35)



Let the matrixΩQ
U ∈ R

nU×nU be defined such thatΩQ
U,ui,uj

=
∑Q

q=1 yiyjKq

(

x
(q)
ui,q , x

(q)
uj,q

)

for all i, j = 1, . . . , N , ui ∈

Ui. The estimate can be evaluated in a new pointx∗ =
(

x
(1)
∗ , . . . , x

(Q)
∗

)

as follows
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x
(q)
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ui,q

)

+ b̂, (36)

whereα̂ and b̂ are the solution to (35).

Proof: The Lagrangian of the primal problem (34)
becomes

L(wQ, ξ, b;α, ν) = J Q
C (w, ξ) −

N
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− 1 + ξi,ui

)

,

(37)

whereα is a vector containing the positive Lagrange multipli-
ersαi,ui

≥ 0 and whereν is a vector containing the positive
Lagrange multipliersνi,ui

≥ 0. The first order conditions for
minimization with respect to the primal variables become



































wq =
N

∑

i=1

∑

ui∈Ui

αi,ui
yiϕq

(

x(q)
ui,q

)

∀q = 1, . . . , Q

0 ≤ αi,ui
≤ C

|Ui|
∀i = 1, . . . , N,∀ui ∈ Ui

N
∑

i=1

∑

ui∈Ui

αi,ui
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(38)
Substitution of this equalities into the Lagrangian and maxi-
mizing the expression over the dual varables leads to the dual
problem (35).
Again this derivation reduces to a componentwise SVM in the
case no missing values are encountered.

C. Componentwise LS-SVMs for classification

A formulation based on the derivation of LS-SVM clas-
sifiers is considered resulting into a dual problem which
one can solve much more efficiently by adoption of a least
squares criterion and by substitution of the inequalities by
equalities (Saunders et al., 1998; Suykens and Vandewalle,
1999; Suykens et al., 2002; Pelckmans et al., 2005b). The
combinatorial increase in the number of terms can be avoided
using the following formulation. The modified primal cost-
function of the LS-SVM becomes

min
wq,b,zi

J Q
γ (wq, zi) =

1

2

Q
∑

q=1
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γ

2
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s.t. wT
q ϕ
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)

= zq
i ∀q = 1, . . . , Q,∀i ∈ Aq, (39)

wherezq
i = fq

(

x
(q)
i

)

∈ R denotes the contribution of theq-
th component of thei-th data point. This problem has a dual
characterization with complexity independent of the number of
terms in the primal cost-function. For notational convenience,
define the following setsViq ∈ N

Q and Vq ∈ N
Q. Let Viq

denote a set of vectors ofQ indices for allq = 1, . . . , Q as
follows

Viq =
{

vk = (j1, . . . , jQ)
∣

∣

∣ vk ∈ Uk,∀k = 1, .., N s.t. jq = i
}

.

(40)
Let niq ∈ R be defined asniq =

∑

vk∈Viq

1
|Uk|

for all i =

1, . . . , N, q = 1, . . . , Q anddy
iq =

∑

vk∈Viq

1
|Uk|

yk for all i =
1, . . . , N, q = 1, . . . , Q. and letn ∈ R

nU and dy ∈ R
nU be

vectors enumerating the elementsniq anddiq respectively.

Lemma 4 [Primal-Dual Characterization, III] Let nα =
∑Q

q=1 |Aq| denote the number of non-missing values. The dual
solution to (39) is found as the solution to the set of linear
equations

[
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]
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0
dy
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, (41)

where ΩQ
V ∈ R

nα×nα , the vectorα =
(

α1, . . . , αQ
)T

∈
R

nα . The estimate can be evaluated at a new pointx∗ =
(

x
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whereα̂q
i and b̂ are the solution to (41).

Proof: The Lagrangian of the primal problem (39)
becomes

Lγ (wq, z
q
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, (43)

whereα ∈ R
nα is a vector with all Lagrange multipliersαq

i

for all q = 1, . . . , Q and i ∈ Aq. The minimization of the
Lagrangian with respect to the primal variableswq, b and zq

i

is characterized by
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(44)
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Fig. 2. An artificial example (“X” denote positive labels, “¤” are negative
labels) showing the difference between(a) the standard SVM using only the
complete samples, and(b) the modified SVM using the all samples using the
modified riskR∗

emp
as described in Section II.A. While the former results

in an unbalanced solution, the latter approximates better the underlying rule
f(X) = I(X1 > 0) with an improved generalization performance.

One can eliminate the primal variableswq and zq
i from this

set using the first and the last expression, resulting in the set
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Define the matrixΩQ
U ∈ R

nα×nα such that
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where
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sp,πp(i)πq(j) =
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x(q)
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, x
(q)
j
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for all p, q = 1, . . . , Q and for alli, j ∈ Aq whereπq : N → N

enumerates all elements of the setAq. Hence the result (41)
follows.

IV. EXPERIMENTS

A. Artificial dataset

A modified version of the Ripley dataset was analyzed using
the proposed techniques in order to illustrate the differences
between existing methods. While the original dataset consists
of 250 samples to be used for training and model selection and
1000 samples for the purpose of testing, only 50 samples of the
former where taken for the purpose of training in order to keep
the computations tractable. The remaining 200 were used for
the purpose of tuning the regularization constant and the kernel
parameters.15 observations out of the 50 are then considered
as missing. Let the 50 training samples have a balanced
class distribution. Numerical results are reported in Table I
illustrating that the proposed method outperforms common

PCC testset STD

Ripley Dataset (50;200;1000)
Complete obs. 0.8671 0.0212

Median Imputation 0.8670 0.0213
SVM&mv (III.A) 0.8786 0.0207

cSVM&mv (III.B) 0.8939 0.0089
cSVM& M (II.D) 0.6534 0.1533

LS-SVM&mv (III.C) 0.8833 0.0184
cLS-SVM&mv (III.C) 0.8903 0.0208

Hepatitis Dataset (85;20;50)
Complete obs. cSVM 0.5800 0.1100

Median Imputation cSVM 0.7575 0.0880
SVM&mv (III.A) 0.7825 0.0321

cSVM&mv (III.B) 0.8375 0.0095
cSVM& M (II.D) 0.7550 0.0111

LS-SVM&mv (III.C) 0.7700 0.0390
cLS-SVM&mv (III.C) 0.8550 0.0093

TABLE I
Numerical results of the case studies described in Subsection IV.A and IV.B

respectively based on a Monte Carlo simulation. Results are expressed in
Percentage Correctly Classified (PCC) on the test-set. The roman capitals refer
to the Subsection in which the method is described. In the caseof the artificial

dataset based on the Ripley dataset, the advantage of the proposed methods
over median imputation of the inputs or the complete case analysis is

outperformed, even without the use of the componentwise method. In the case
of the Hepatitis dataset, the componentwise LS-SVM taking into account the

missing values outperforms the other methods.

practice of median imputation of the inputs and omitting the
incomplete observations. Note that even without incorporating
the multivariate structure and using the modification to the
standard SVM, an increase in performance can be observed.

This setup was employed in a Monte-Carlo study of 500 ran-
domizations were in each the assignment of data to training-
, validation- and test-set is randomized and values of the
training-set are indicated as missing at random. From the
results, it may be concluded that the proposed approach out-
performs median inputation even when one does not employ
the componentwise strategy to recover the partially observed
values per observation. Figure 2 displays the results of one
single experiment with two components corresponding toX1

andX2 and their corresponding predicted output distributions.

B. Benchmark dataset

A benchmark dataset of the UCI repository was taken to
illustrate the effectiveness of the employed method on a real
dataset. The hepatitis dataset consists of a binary classification
task with 19 attribute values and a total of 155 samples and
containing 167 missing values. A test-set of 50 complete
samples and a validation-set of 20 complete samples were
withdrawn for the purpose of model comparison and tuning
the regularization constants.

These results suggest the appropriateness of the assumption
of additive models in this case study even with regard to gen-
eralization performance. By omitting the components which
have only a minor contribution to the obtained model, one
additionaly gains insight in the model as illustrated in Figure
3.
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Fig. 3. The four most relevant contributions for the additive classifier trained
on the Hepatitis dataset using the componentwise LS-SVM as explained in
Subsection III.C are function of the SEX of the patient, the attributes SPIDERS,
VARICES and the amount of BILIRUBIN respectively.

V. CONCLUSIONS

This paper studied a convex optimization approach towards
the task of learning a classification rule from observational
data when missing values occur amongst the input variables.
The main idea is to incorporate the uncertainty due to the
missingness into an appropriate risk function. An extension
of the method is made towards multivariate input data by
adopting additive models leading to componentwise SVMs and
LS-SVMs respectively.
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