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Abstract

We introduce a concept of a fuzzy multiplexer, discuss its use in the design of logic networks and elaborate on the role of such

networks in fuzzy modeling. In essence, a fuzzy multiplexer, fMUX, acts as a fuzzy switch whose output is determined on a basis of

the logic values of the information inputs being switched (selected) by the select input. Multiplexers are generic building modules in

digital systems. We show that networks of fuzzy multiplexers can play a similar role in fuzzy modeling. The two general design

methodologies are studied and contrasted. The first is based on gradient-based learning and helps carry out parametric optimization.

The second approach exploits a global genetic optimization and supports a structural and parametric development of the network.

This becomes especially attractive in case of multivariable systems where the number of system variables has to be reduced.

Experimental studies are reported for synthetic Boolean data and continuous (multivalued) problems.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction: from digital systems to fuzzy logic in

system design

One can state without any exaggeration that the
fundamentals of fuzzy modeling are inherently rooted in
the world of multivalued or fuzzy logic. The underlying
logic nature of the models makes them transparent and
user-centric. The same transparency contributes to a
highly interpretative insight into experimental data. The
agenda of fuzzy modeling is inherently associated with
the transparency of fuzzy models. While this facet of
modeling has already started to gain visibility and
properly balance the otherwise accuracy-driven fuzzy
models, there are still a number of fundamental issues as
to the definition of interpretability itself, granularity of
models vis-"a-vis the characteristics of experimental data,
and assessment of the readability of the structure of the
model itself (Bargiela and Pedrycz, 2002; Delgado et al.,
1997; Gomez-Skarmeta et al., 1999; Zadeh and Kacpr-
zyk, 1999).
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Two-valued logic forms a well-known boundary case
of the fuzzy logic. The design of digital systems comes
with a diversity of well-established, highly efficient and
scalable architectures and related development algo-
rithms. By acknowledging a point of view that the two-
valued logic is just a special case of fuzzy logic, we are
then tempted to generalize or reformulate the already
existing architectures and design practices of digital
systems and cast them in the framework of fuzzy logic.
This point of view is the crux of this study. We
concentrate on a standard technique of implementation
of combinational systems by means of multiplexers (the
approach which results in an array of multiplexers
implementing any Boolean function) and generalize this
concept to the world of fuzzy logic. In essence, we are
concerned with the three main phases: (a) building a
generic structure of a fuzzy multiplexers, (b) developing
models (networks) exploiting fuzzy multiplexers as their
building components (we will be referring to them as
networks of fuzzy multiplexers), and (c) designing such
networks with the aid of methods of structural and
parametric optimization.

As emphasized, the embedding principle (where fuzzy
logic subsumes two-value logic and inherits from its
fundamental constructs) makes this starting point of
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view especially justifiable and appealing considering that
multiplexers have been commonly used in the design of
digital systems and come with a well-developed design
methodology (Ciletti, 1999; Kohavi, 1970; Mano, 1991;
McCluskey, 1986).

The organization of the material is structured in a way
it reflects the research agenda outlined above. First, we
introduce a basic processing module of a fuzzy multi-
plexer and discuss its characteristics (Section 2). This
naturally leads us to the networks formed by fMUXs;
Section 3 relates their structure to the expansion
theorem by Shannon and emphasizes the nature of
function decomposition completed in this manner.
Section 4 is concerned with the general development of
fMUX networks and serves as a prerequisite to the
comprehensive discussion on the design of the networks.
Section 5 concentrates on the genetic optimization of the
networks that helps address an issue of structural
optimization (concerned with a selection of an optimal
subset of input variables) and their parametric learning.
The discussion covers all architectural considerations of
genetic algorithms (GAs) and presents the underlying
genetic operators pertinent to the optimization realized
here. Experimental results are shown in Section 6.

The terminology used here adheres to the standards
used in two-valued logic, digital systems, and fuzzy
logic. The logic operators are modeled via t- and s-
norms. If not stated otherwise, in this study we use two
standard realizations of t- and s-norms in the form of a
product and probabilistic sum. The motivation behind
their selection is twofold. In contrast to the commonly
used minimum and maximum operators these give rise
to smooth input–output relationships. Secondly, they
relate to some probabilistic constructs in this manner
could link to the operations being used in the
probability calculus (intersection and union of random
events). An overbar symbol denotes a complement
treated in a usual way encountered in logic (that is

%x ¼ 1-x).
Fig. 1. A schematic representation of the fuzzy multiplexer with one

select input (x) and two fixed information inputs (c0 and c1).
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Fig. 2. Input–output characteristics of the fuzzy multiplexer for

selected values of c0 and c1, y=fMUX(x,c1,c0): a - c0=0.9 c1=0.8;

b- c0=0.2, c1=0.8; c–c0=1.0, c1=0.0; d- c0=0.6, c1=0.3. In all cases

t-norm is treated as a product and s-norm is implemented as the

probabilistic sum.
2. Fuzzy multiplexer as a generic processing unit

We are concerned with the development of logic-
based models of data in the unit hypercube. More
precisely, such models realize logic transformations
that map the unit hypercubes (say [0,1]n into [0,1])
and come with some well-defined semantics. We re-
quire that such mapping is made modular, meaning
that it is built on the basis of a collection of simple
processing units (nodes). The basic processing node,
referred to as a fuzzy multiplexer, fMUX, realizes a
mapping from [0,1]2 into [0,1] and is governed by the
expression

y ¼ c0� %x þ c1�x; ð1Þ
where the logic operations (� and +) are implemented
using some t- and s-norms. In other words, (1) is
implemented as

y ¼ ðc0t %xÞsðc1txÞ: ð2Þ

Schematically, the structure of (1) can be illustrated as
shown in Fig. 1. The variable (x) standing in the above
expression plays the role of a switching (selection or
select) variable that allows two fixed information inputs
(c0 or c1) that affect the output. The degree to which the
produced result depends on these fixed information
values is controlled by the select variable. To emphasize
the role played by all these signals, we use a concise
notation y=fMUX(x, c), where c (=[c0 c1]) denotes a
vector of the information inputs. In the two boundary
conditions the select variable may assume, we produce a
binary switch (the same as being used in digital systems).
It means that if x=1, then y=c1. Likewise, the value of
x set to 0 leads to the output being equal to c0 meaning
that the value of c0, is transferred to the output of the
device.

Fig. 2 includes a series of plots of the characteristics of
the fuzzy multiplexer being treated as a function of x;
noticeable is a fact that different configurations of the
values of the information inputs (c0 and c1) give rise to
different nonlinear input–output relationships of the
device. By choosing a certain value of the select input,
we logically ‘‘blend’’ the two constant logic values
present at the information inputs.

Using fuzzy multiplexers, we can easily form cascade
structures (networks) as commonly encountered in the
two-valued logic constructs (digital systems). As an
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Fig. 3. A two-layer network of fuzzy multiplexers.

Fig. 4. 3D plots of the characteristics of the fMUX for selected

combinations of the parameters and t- and s-norms realized as a

product and probabilistic sum: c=[0.7 0.8 0.9 0.5] (a); c=[0.1 0.8 0.9

0.5] (b); c=[0.7 0.8 1 0] (c) and c=[1 1 1 1] (d).

Fig. 5. 3D plots of the characteristics of the fMUX for selected

combinations of the parameters and t- and s-norms realized as a

minimum and maximum: c=[0.7 0.8 0.9 0.5] (a); c=[0.1 0.8 0.9 0.5]

(b); c=[0.7 0.8 1 0] (c) and c=[1 1 1 1] (d).
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Fig. 6. Network architecture built with the use of the basic functional

modules of fuzzy multiplexers; shown are only three layers of the

network for illustrative purposes.
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example of a two-layer structure, a network of fMUXs
is shown in Fig. 3. The characteristics of the network
regarded as a function of the select signals x1 and x2 are
shown in Fig. 4. Depending upon the values of the
vector of the information inputs (c), we encounter
various types of nonlinearities. Fig. 5 includes the
corresponding characteristics for the minimum and
maximum operations; it becomes apparent that the
piecewise character of the relationships becomes pre-
dominant.
3. A realization of the network of fMUXs

The functional module of the fuzzy multiplexer
introduced above is a generic building block that can
be efficiently used to construct larger structures. It
functionality is minimal (in the sense we have here only
a single switching variable, x). If we are dealing with
more variables (x1, x2, y, xn), the resulting structure is
formed as a regular multilevel architecture composed of
the basic fMUXs as visualized in Fig. 6. Noticeably at
each level of the network we assign single selection
variable. Moreover, at each level of the network the
number of multiplexers doubles; the output layer
comprises one multiplexer, the layer next to it two
multiplexers, the next one four units, etc. With the
substantial number of select variables, we can envision
some scalability problems (and these have to be
addressed at the design phase).
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The fMUX network comes with an interesting
motivation and exhibits a clear interpretation. As
functionality is concerned, it is instructive to go back
to the two-valued logic which clearly reveals a rationale
behind the use of such networks of multiplexers
(McCluskey, 1986). Consider a two-variable Boolean
function f (x1, x2). According to the classic Shannon
(expansion) theorem, the function can be written down
as a sum of products, that is

y ¼ f ðx1; x2Þ ¼ %x2f ðx1; 0Þ þ x2f ðx1; 1Þ

¼ %x2½ %x1f ð0; 0Þ þ x1f ð1; 0Þ� þ x2½ %x1f ð0; 1Þ þ x1f ð1; 1Þ�:

ð3Þ

In essence c=[f(0,0) f(1,0) f(0,1) f(1,1)] becomes here a
vector of constant information inputs; these uniquely
define the given Boolean function.

This successive expansion of the Boolean function
maps directly on the two level structure of the multi-
plexers; the information inputs to the multiplexer are the
functions of one variable, namely f(x1,0) and f(x1,1) that
are realized by the two multiplexers in the first layer of
the network. Here f(0,0), f(1,0), etc. are the information
inputs to these multiplexers. The network of the fuzzy
multiplexers is just a generalization of this fundamental
result to fuzzy functions defined in the unit interval.

When it comes to the interpretation, the network
exhibits several interesting properties. We start with the
input layer. The outputs of these fMUXs are just logic
expressions of a single input (select) variable (being
more specific, the variable and its complement). In the
sense of involving only one variable they are general.
There are also a lot of them (especially if we are dealing
with the multiplayer network). In this sense, what
becomes realized at the first layer is just a list of partial
realizations of the function and the outputs there can be
treated as generalized variables. In the subsequent layers
these are specialized (by involving another variable) and
their number becomes reduced.
Network of
fMUXs 

granular  encoder (fuzzifier)

Fig. 7. A general layered structure of fuzzy modeling; the granular

decoder is used in case of several networks of fuzzy multiplexers.
4. The general development environment of the

network—an architectural layout

The fuzzy multiplexer completes a logic-based proces-
sing of input signals and realizes a certain logic-driven
mapping between input and output spaces. As they
interact with a physical world whose manifestation does
not arise at the level of logic (multivalued) signals, it
becomes apparent that there is a need for some interface
of the model. Such interfaces are well known in fuzzy
modeling (Bargiela and Pedrycz, 2002). They commonly
arise under a name of fuzzifiers (granular coders) and
defuzzifiers (granular decoders). The role of the coder is
to convert a numeric input coming from the external
environment into the internal format of membership
grades of the fuzzy sets defined for each input variable.
In a nutshell, this results in a nonlinear normalization of
the input (no matter what original ranges the input
variables assume) and a linear increase of the dimen-
sionality of the new logic space in comparison with the
original one). The decoder takes the results of the logic
processing and transforms them into some numeric
values. The layered architecture of the fuzzy models with
clearly distinguished interfaces and the logic-processing
core is illustrated in Fig 7.

With the design of the interfaces, we encounter several
main approaches

(a) Granulation of individual variables: This mechanism
of granulation is quite common in the realm of fuzzy
modeling. In essence, we define several fuzzy sets in the
universe of discourse of the variable of interest so that
any input is transformed via the membership functions
defined there and the resulting membership grades are
used in further computations by the model. From the
design standpoint, we choose a number of fuzzy sets, type
of membership functions and a level of overlap between
consecutive fuzzy sets. Some general tendencies along this
line are thoroughly reported in the literature. By selecting
the number of fuzzy sets (usually between 3 and 9), we
position modeling activities at some required level of
information granularity (a level of modeling details we
are interested in). The type of membership functions
helps model the semantics of the information granules.
Among many possibilities, we commonly encounter
triangular fuzzy sets and Gaussian membership func-
tions. These two types come with an extensive list of
arguments that help make a suitable selection with
respect to the main objectives of the model (e.g., those
concerning a tradeoff between interpretation and accu-
racy of modeling). The overlap level is essential from
different points of view, namely (a) semantics of the
linguistic terms, (b) nonlinear numeric characteristics of
the fuzzy model, and (c) completeness of the model.

(b) Nonlinear normalization: Here we transform an
original variable defined in some space, say [a,b] (subset
of R) is scaled to the unit interval. This could be done by
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a mapping f: [a,b]-[0,1] that could be either linear or
nonlinear. In any case we consider that f is mono-
tonically increasing with f(a)=0 f(b)=1. This trans-
formation does not affect the dimensionality of the
problem.

(c) Simultaneous granulation of many variables: This
technique helps us reduce the dimensionality of the
input space (which becomes critical in case of a high
number of the variables). The variables are processed at
the same time; usually fuzzy clustering is utilized (and
this leads to a collection of fuzzy relations rather than
fuzzy sets we develop in the first approach). Following
clustering (Bezdek, 1981), we depart from using fuzzy
sets and consider building an interface around fuzzy
relations defined in a Cartesian product of all variables.
The relations are partition matrices formed through
fuzzy clustering (such as FCM). We envision the
following transformation leading to the fuzzy multi-
plexing (we assume that the prototypes of the clusters
are given, say v1, v2, y, vn A Rp):

Given input x ARp; each prototype transforms it into
an element in the n-dimensional unit hypercube u A
[0,1]n with the coordinates being computed in a well-
known manner

ui ¼
1

Pn
j¼1 jjx� vi jj=jjx� vj jj

� �2; ð4Þ

i=1, 2, y, p (note that we have assumed that the
fuzzification factor used in the FCM was set to 2). The
optimization of the fMUX network is then carried out
by choosing the prototypes (that is building a subspace
of the original unit hypercube). As the number of
clusters could be adjusted and in general is lower than
the original dimensionality of the space (p), this helps us
effectively reduce the computational overhead asso-
ciated with the design of the network.

In this study, while paying attention to the construc-
tion of the interfaces, we primarily concentrate on the
logic processing and develop a general class of networks
based on fuzzy multiplexers.
5. The development of the fMUX networks

In this section, we discuss some general design
scenarios and envision their suitability in the develop-
ment of the fMUX networks.

5.1. Selecting among general design scenarios

The development of the fMUX networks entails two
fundamental design scenarios:

(1) If we consider all input variables (x1, x2, y, xn) to
be used in the development of the system, then a vector
of variables c=[c0 c1 c2 cky] has to be estimated.
(2) If the number of the input variables is high (and
this implies a high dimensionality of c along with all
drawbacks of learning we envision under such circum-
stances), the design of the network has to involve a
selection of an optimal subset of the variables and a
simultaneous estimation of the pertinent vector of
constants (c).

In the first scenario, we can use a standard gradient-
based learning. It is straightforward; for a given
structure (that is the variables being specified in advance
along with their arrangement within the network), a
detailed form of a performance index to be minimized
(Q), specific models of t- and s-norms, the gradient of Q
taken with respect to c navigates us through the search
space,

cðiterþ 1Þ ¼ cðiterÞ � brcQ; ð5Þ

where c(iter) denotes the values of the input constants at
a certain iteration step (iter); b > 0 is a learning factor
implying an intensity of adjustments of the values of c.
The gradient of Q can be easily determined. There could
be some potential shortcomings of this learning scheme.
The most profound one comes with a high dimension-
ality of the network. If there are a significant number of
the variables in the problem, the computed gradient
assumes low values. As a result, the learning becomes
very inefficient. Note also that the dimensionality of the
input vector is equal to 2n and this expression gives rise
to a prohibitively high dimensionality quite quick even
for relatively small values of ‘‘n’’. In light of these, it is
very likely that the gradient-based methods will come
with a limited applicability and we have to proceed with
caution when dealing with the increased problem
dimensionality.

The second design scenario involves an optimization
of the structure (selection of variables) that helps handle
the dimensionality problem in an efficient manner. The
parametric optimization concerning the vector of the
coefficients in some reduced format becomes then more
efficient. We may also envision frequent situations in
which not all variables become essential to the design of
the logic mapping (the same holds in pattern recognition
where a stage of feature selection becomes a necessity).
With the structural and parametric optimization at
hand, we have to confine ourselves to some techniques
of global and structrucal optimization. An appealing
way to follow is to consider genetic algorithms.

5.2. Genetic development of the fMUX networks

Having recognized the primary design objectives, we
now concentrate on the details of the underlying genetic
optimization. GAs (Goldberg, 1989, 1991; Michalewicz,
1996) are well documented in the literature along with
their numerous applications to neurofuzzy systems;
bearing this in mind, we elaborate on the fundamental
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architecture of the GA, its parameters and discuss some
implementation details.

Genotype representation: The proposed genotype is a
direct reflection of the structure of the fMUX network.
We consider a floating point coding that results in
compact chromosomes. Let us assume that the number
of input variables to be used in the network is given in
advance and equal to n0 where n0 o n. The chromosome
consists of two substrings of real numbers. The first
block (substring) contains 2n0

values of the information
inputs (vector). The second block (with n inputs), deals
with the subset of the variables to be used in the design.
The details are schematically visualized in Fig. 8.

As far as the structure of network is concerned, it is
instructive to discuss a way in which the select variables
are coded in the second block of the chromosome. The
second portion of the chromosome corresponds to the
subset of the original inputs that are chosen as select
variables and requires some processing before being
used to identify the structure of the network. As the
entries of the chromosome are real-coded, the likelihood
of encountering two identical entries is zero (to be on a
safe side, we can always break a tie randomly). With the
predefined number of the inputs (n0), we then use only
the first n0 entries of the chromosome and this produces
the sequence of the input variables. The entries are
ranked (in the increasing order) and the first n0 entries of
the substring are used to choose among all variables.
This ordering is directly mapped onto the network
where the first variable is the one switching the first layer
of the network.

N.B. One could easily optimize the number of the
subset of the input variables (n0) instead of supplying it
externally; yet this does not to seem to be very attractive.
It is perhaps more justifiable to do a systematic search
Network of
fMUXs 

Representation of 
information inputs (2n’)

Select variables 
(a) 

Representation of 
information inputs (2n’)

n=50.65    0.21    0.98    0.32    0.55   0.76 

3           6    1         5     4        2 Ranking 

n’=3; three  variables 
selected (that is 3, 6, 1) 3    6          1 5          4   2

(b) 

Fig. 8. The structure of the fMUX network and its genetic

representation (a) and details of the coding of the subset of the input

variables (b) through ranking and using the first n0 entries of the

substring.
by sweeping n0 from 1 to n. In essence, this systematic
search helps us assess approximation and generalization
abilities of the networks and get a better sense as to the
plausible subset of the variables.

The basic mechanisms of genetic optimization involve
selection process quite commonly using an elitist
ranking selection (Baker, 1985), mutation, and crossover
(e.g., BLX-0.5, (Eshelman and Schaffer, 1993; Herrera
et al., 1998)). The fitness function quantifies how the
network approximates the data and is taken as 1�
Q=ðQ þ eÞ; with Q being a sum of squared errors
between the target values (experimental output data)
and the corresponding outputs of the network. A small
positive constant e standing in the denominator of the
above expression assures that the fitness function
remains meaningful even for Q=0 (which in practice
never occurs).
6. Numeric illustration

The experiments reported in this section are intended
to illustrate the development, performance, and inter-
pretation issues of the proposed network. Having these
in mind, we discuss three categories of data. The first are
just Boolean (binary) data; in this case we are interested
to learn about the performance of the fMUX so the
results could be easily contrasted with those obtained
using ‘‘standard’’ design techniques encountered in
digital logic. The second one deals with a one-dimen-
sional input–output synthetic data; the low dimension-
ality helps to visualize the details of the network.
Finally, we consider an auto-mpg data set coming from
the Machine Learning repository (Merz and Murphy,
1998). In the series of the experiments, these two
parameters are fixed with 100 or 200 individuals in a
population and between 200 and 500 generations. These
values were experimentally selected; the number of
generations is more than sufficient.

6.1. Realization of boolean functions

In this experiment, we are concerned with Boolean
data; this helps us compare the result produced by the
fuzzy multiplexer with the solutions obtained using
standard techniques used to design digital systems. The
data set comprises of 12 input–output pairs of binary
data with 5 inputs and a single output,

ðxðkÞ-yðkÞÞ : ð½10000�0Þ; ð½10001�1Þ; ð½10010�1Þ;

ð½10011�1Þ; ð½11100�1Þ; ð½11101�0Þ;

ð½11110�1Þ; ð½11111�1Þ; ð½11000�0Þ;

ð½11001�1Þ; ð½11010�0Þ; ð½11011�0Þ:

The development of the network is completed for a
varying number of inputs starting from one variable and



ARTICLE IN PRESS

Table 1

Structure of the multiplexer network and associated errors

Number of variables 1 2 3 4 5

Order of variables x3 x5, x3 x3, x5, x2 x4, x3, x2, x5 x4, x1, x2, x5, x3

MSE 0.478 0.408 0.354 1.29�10�4 2.09�10�5

Classification error 3 2 4 0 0

By the classification error we mean the number of mismatches between the binary (that is thresholded) output of the network and the data.
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Fig. 9. Indexes of the information inputs; observe that their

distribution is highly bimodal with the values of information inputs

being close to 1 or 0 with a few exceptions.
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Fig. 10. Fitness function (average and best individual) in successive
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Fig. 11. Information inputs of the network of fuzzy multiplexers.
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ending up with all variables. The results are summarized
in Table 1.

From this table (based on the values of the classifica-
tion error), it becomes obvious that 4 variables are
optimal for the problem. The resulting inputs are shown
in Fig. 9. With the threshold of 0.5, we are left with eight
significant inputs. Noticeably, all those very close to 1
identify the minterms existing in the data. The one extra
here with the value equal to 0.61 (and still deemed
relevant) corresponds to the combination of the inputs
equal to 0100 (that is %x4x3 %x2 %x5) and it is subsumed by
the remaining sum of the minterms. Alluding to the
problem variables being identified by the genetic
algorithm, it is interesting to note that x1 has been
eliminated. It is not surprising at all noting that it fixed
at 1 and thus becomes redundant in the problem. For
this optimal number of the inputs, Fig. 10 shows how
GA performs in terms of the optimization; evidently
most learning occurs at the beginning of the process and
this becomes evident for the best individual as well as
the average fitness in the population.

The second example is shown here to visualize the
effectiveness of the genetic optimization. The binary
data describe a three dimensional XOR problem. With
the population of 50 chromosomes, 50 generations, the
mutation rate of 0.05, and crossover rate equal to 0.8 the
ideal result is obtained after a few initial generations. As
expected, the information inputs are either close to 1 or
become practically equal to zero, Fig. 11.

6.2. Auto miles per gallon data

This data set comes from the Machine Learning
repository and concerns relationships between the
characteristics of vehicles (weight, displacement, number
of cylinders, etc) and their fuel consumption (expressed
in miles per gallon).

For purposes of this experiment and considering that
we have a number of input variables, we build new
normalized variables; see Section 4. The genetic
optimization was completed for 200 individuals and
run for 600 generations. Table 2 summarizes the
performance of the network for the genetically opti-
mized subsets of input variables. The resulting optimal
information inputs are shown in Fig. 12. Noticeably a
significant number of them are quite low (that is
assuming values below the 0.5 threshold level).
The ‘‘optimal’’ structure includes only a few input
variables. For these we have a number of ‘‘meaningful’’
logic combinations of the select variables. The approx-
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imate logic expression reads as follows:

fuel consumption ¼ð:ðdisplacementÞ and :ðhorsepowerÞ

and :ðweightÞ and year of modelÞ

or ð:ðdisplacementÞ and horsepower

and :ðweightÞ and year of modelÞ

or ðdisplacement and :ðhorsepowerÞ

and weight and year of modelÞ

or ð:ðdisplacementÞ and

:ðhorsepowerÞ and :ðweightÞ

and:ðyear of modelÞ:

Let us recall that considering the nature of the
transformation, the negation symbol (:) showing with
some variables indicates that the decrease in the values
of such variables implies increase in the output variable.
The intuitive meaning of the logic description of the
data is quite straightforward; e.g., the first combination
of the variables indicates that lower displacement and

lower horsepower and lower weight of vehicle and most
recent model imply higher fuel efficiency.
7. Conclusions

We have introduced a logic-driven architecture of
fuzzy models based on the concept of fuzzy multiplexers
(fMUXs). fMUXs are direct generalizations of funda-
mental building blocks encountered in two-valued
(digital) logic and being used in a design process therein.
The design of the fMUX networks has been carried in
the framework of genetic optimization. In this study, the
GA is aimed both at the structural and parametric
optimization. It is worth stressing that the structural
optimization becomes indispensable in case of multi-
variable problems. The selected (optimized) subset of
input variables leads to an efficient dimensionality
reduction and helps concentrate on the most significant
variables. The transparency of the model is also worth
emphasizing; the network is an immediately interpre-
table construct that is translated into a coherent logical
description of data. We have emphasized the role of the
interface layer of a fuzzy model and shown that it is
directly related to the level of detail we would like to
capture when developing the logic description of data
(model). By increasing the number of linguistic land-
marks (fuzzy sets) defined in the input spaces, we end up
with more detailed logic description of data; however,
some of the descriptors (terms) produced by the
individual fMUXs may not be highly relevant (that is
associated with the low entries of (c).

The experimental studies have been conducted for
several categories of data (problems) starting from
Boolean data (that helped us discuss the fMUX
networks vis-"a-vis digital logic design) and ending up
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with one of the Machine Learning datasets. As our
primary intent was to focus on the logic-driven facet of
fuzzy modeling and interpretability aspects of the
network, we have decided not to proceed with a
comprehensive comparative analysis with other fuzzy
models that might not be that easily amenable to the
logic-inclined interpretation.
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