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Learning prototypes and distances:A prototype reduction technique
based on nearest neighbor error minimization�

Roberto Paredes∗, Enrique Vidal
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Abstract

A prototype reduction algorithm is proposed, which simultaneously trains both a reduced set of prototypes and a suitable local metric
for these prototypes. Starting with an initial selection of a small number of prototypes, it iteratively adjusts both the position (features) of
these prototypes and the corresponding local-metric weights. The resulting prototypes/metric combination minimizes a suitable estimation
of the classification error probability. Good performance of this algorithm is assessed through experiments with a number of benchmark
data sets and with a real task consisting in the verification of images of human faces.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The nearest neighbor (NN) classification rule has success-
fully been used in many pattern recognition applications.
The good behavior of the NN rule with unbounded number
of prototypes is well known [1]. However, in many practical
pattern recognition applications only a small number of pro-
totypes is usually available. Also, in order to reduce compu-
tational requirements of the classifier, it is often necessary
to reduce the number of prototypes even further. Typically,
under such a scarce-prototype framework, the ideal asymp-
totical behavior of NN classifiers degrades dramatically.

NN performance can be improved by using appropriately
trained distance measures or metrics. Improvements can be
particularly significant for small prototype sets. Trained met-
rics can be global (the same for all the prototypes) [2–4],
class-dependent, (shared by all the prototypes of the same
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class) [5–7], and/or locally dependent (the distance measure
depends on the particular position of the prototypes) in the
feature space [8–11,15].

In Refs. [6,7,12–15], we explored most of these frame-
works. In all the cases, the metric weight learning was based
on minimizing a suitable criterion index, closely related
with the (leaving-one-out) estimated probability of miss-
classification. While good results were achieved using these
techniques for many classification tasks, it was observed
that additional improvements were possible by further re-
ducing the number of parameters to be learnt. In particu-
lar, adequately reducing the number of prototypes for which
distance weights have to be learnt was considered as a
promising source of improvements.

In Refs. [12–14], we developed a prototype editing tech-
nique based on trained local weights that only depends on
the prototypes, but not on the features. This proved very ef-
fective to reduce the number of prototypes, while retaining
or improving the original NN classification accuracy. Here
we consider again prototype reduction, but following a dif-
ferent direction; that is, we aim at simultaneously training
both a reduced (or “condensed”) set of prototypes and a
suitable local metric for these prototypes.

http://www.elsevier.com/locate/patcog
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The proposed approach is called learning prototypes and
distances (LPD). It starts with an initial selection of a small
number of randomly selected prototypes from the training
set. Then it iteratively adjusts both the position (features)
of the prototypes themselves and the corresponding local-
metric weights, so that the resulting combination of pro-
totypes and metric minimizes a suitable estimation of the
probability of classification error. The adjustment rules are
derived by solving the minimization problem through gra-
dient descent.

It is interesting to note that the prototype position update
rules formally derived in this way are similar (though more
general and accurate) to the so-called “reward–punishment”
rules heuristically introduced in a number of popular tech-
niques such as learning vector quantization (LVQ) and de-
cision surface mapping (DSM) [16–18]. On the other hand,
the results provided by LPD are reminiscent of those of
support vectors machine (SVM) classifiers [19] in that both
are obtained by optimizing a well-founded criterion func-
tion and in that the learned prototypes are “discriminative”
as they generally lay close to the class-decision boundaries.
Finally, another interesting relation comes from the fact that
LPD not only learns prototype positions but also optimizes
feature-dependent distance weights associated to each pro-
totype. This reminds us of the well-known EM estimation of
Gaussian mixtures [20]: LPD prototype positions and fea-
ture weights would be equivalent to the mixture component
mean vectors and (diagonal) covariance matrices, respec-
tively. The difference here is that, while EM Gaussian mix-
ture learning is a parametric technique seeking to maximize
training sample likelihood, LPD is non-parametric and ex-
plicitly aims at minimizing an empirical training sample er-
ror estimation.

The LPD technique proposed here has been tested on
a number of benchmark data sets from the UCI/Statlog
repositories, as well as on a real task of human face verifi-
cation. The results are comparable to or better than those
recently reported for other techniques in the same tasks.
They also confirm that with a substantial reduction in
the prototype-set size, significant accuracy improvements
over conventional, all-prototype NN approaches can be
obtained.

In Section 2 the proposed approach is presented and the
LPD algorithm is formally derived. Section 3 describes dif-
ferent types of experiments and reports on the correspond-
ing results. In Section 4, finally, we present our conclusions
and discuss future work.

2. Approach

Let T ={x1, . . . , xN } be a training set; i.e., a collection of
training vectors or class-labeled points xi ∈ E, 1� i�N in
a suitable representation space E = Rm. A generic training
vector in T will be denoted either “x ∈ T ” or “xi , 1� i�N”.
The index of a training vector x in T is denoted as index(x),

defined as index(x) = i iff x = xi . Let C be the number of
classes.

We seek to use T to obtain a reduced set of prototypes, P =
{y1, . . . , yn} ⊂ E, n>N , and a suitable weighted distance
d : E × P → R associated to P, which optimize the NN
classification performance.

The weighted distance from an arbitrary vector x ∈ E to
a prototype yi ∈ P is defined as

dW (x, yi ) =
√√√√ m∑

j=1

w2
ij (xj − yij )

2, (1)

where wij is a weight associated with the feature j of the
prototype yi . These weights can be represented as an n × m

weight matrix W = {wij , 1� i�n, 1�j �m}. In what fol-
lows, whenever the weight matrix W can be understood from
the context, dW (x, yi ) will be simply denoted as d(x, yi ).

Note that this definition assigns separate weights to the
different dimensions or features of the representation space.
Note also that it is asymmetric and local in that it depends
on the particular position of each yi .

2.1. Learning the prototypes and their weights

In order to find both a matrix W and a suitable reduced
set of prototypes P that results in a low error rate of the NN
classifier, we propose to minimize a criterion index which is
an approximation to the NN classification error of T using
P and d(·, ·).

This NN error estimate can be written as

J (P, W) = 1

n

∑
x∈T

step

(
d(x, y=

x )

d(x, y �=
x )

)
, (2)

where the step function is defined as

step(z) =
{

0 if z�1,

1 if z > 1

and y=
x , y �=

x ∈ P are, respectively, the same-class and
different-class NNs of x. Note that each term of the above
sum (2) involves two different prototypes y=

x , y �=
x , and their

associated weights.
As in previous work [7,12–14], a gradient descent pro-

cedure is proposed to minimize this index. This requires J
to be differentiable with respect to all the parameters to be
optimized; i.e., yij and wij , 1� i�k, 1�j �m. Therefore,
some approximations are needed. First, the step function will
be approximated by using a sigmoid function, defined as

S�(z) = 1

1 + e�(1−z)
. (3)
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With this approximation, the proposed index becomes

J (P, W) ≈ 1

n

∑
x∈T

S�(r(x)), (4)

where

r(x) = d(x, y=
x )

d(x, y �=
x )

. (5)

Clearly, if � is large S�(z) ≈ step(z), ∀z ∈ R, and this
approximation is very accurate. On the other hand, if � is
not so large, the contribution of each NN classification error
(or success) to the index J depends upon the correspond-
ing quotient of the distances responsible for the error (or
the success). As will be discussed later, in some cases this
can be a desirable property which may make the sigmoid
approximation preferable to the exact step function.

The derivative of S�(·) will be needed throughout the
paper:

S′
�(z) = dS�(z)

d z
= �e�(1−z)

(1 + e�(1−z))2 , (6)

where S′
�(z) is a “windowing” function which has its max-

imum for z=1 and vanishes for |z−1|?0. Note that if � is
large S′

�(z) approaches the Dirac delta function, while if it

is small S′
�(z) is approximately constant for a wide range

of values of z.
To obtain the partial derivatives from Eqs. (4) to (5), re-

quired for gradient descent, it should be noted that J depends
on P and W through the distances d(·, ·) in two different
ways. First, it depends directly through the prototypes and
weights involved in the definition of d(·, ·) (1). The second,
more subtle dependence is due to the fact that, for some
x ∈ T , y=

x and y �=
x may be different as prototype positions

and their associated weights are varied.
While the derivatives due to the first, direct dependence

can be developed from Eqs. (4) and (5), the secondary depen-
dence is non-linear and is thus more problematic. Therefore,
a simple approximation will be followed here by assuming
that the secondary dependence is not significant compared to
the direct one. In other words, we will assume that, for suffi-
ciently small variations of the positions and weights, the pro-
totype neighborhoods remain unchanged. Correspondingly,
we can derive from Eqs. (1), (4) and (5):

�J

�yij

≈ (7)

1

n

∑
∀x∈T :

index(y=
x )=i

S′
�(r(x))r(x)

(y=
xj − xj )

d2(x, y=
x )

w2
ij

− 1

n

∑
∀x∈T :

index(y �=
x )=i

S′
�(r(x))r(x)

(y
�=
xj − xj )

d2(x, y �=
x )

w2
ij ,

Fig. 1. Learning prototypes and distances algorithm.

�J

�wij

≈ (8)

1

n

∑
∀x∈T :

index(y=
x )=i

S′
�(r(x))r(x)

(y=
xj − xj )

2

d2(x, y=
x )

wij

− 1

n

∑
∀x∈T :

index(y �=
x )=i

S′
�(r(x))r(x)

(y
�=
xj − xj )

2

d2(x, y �=
x )

wij ,

where r(x) and S′
�(·) are as in Eqs. (5) and (6), respectively.

Using these derivatives leads to the corresponding gradient
descent update equations. A simple manner to implement
these equations is by visiting each prototype x in T and
updating the positions and the weights associated with the
same-class and different-class NNs of x. This is shown in
the procedure presented in Fig. 1.

Two sets of learning step factors, �ij , �ij , are needed by
this algorithm. They can take just a fixed value for all i, j or
may depend on i, j following simple rules; for instance, �ij

may be inversely proportional to the variance of each fea-
ture j. In addition, for smoother (but slower) convergence,
these values may be decreased along the successive itera-
tions of the LPD while loop. Large values of �ij give more
importance to the learning of the prototypes themselves
while large values of �ij emphasize the learning of the dis-
tance associated to these prototypes. In general, the values
of these factors may have a significant impact on the learn-
ing speed but, as long as they are not too large, they should
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not have an important influence on the learning results. Suit-
able values of the step factors depend on the characteris-
tics of the training data and, typically, it is advisable that
�ij < �ij .

The effects of the update equations in the LPD algorithm
are intuitively clear. For each training vector x, its same-class
NN, yi = y=

x , is moved towards x, while its different
-class NN, yk = y �=

x , is moved away from x. Similarly, the
feature-dependent weights associated with y=

x are modified
so as to make it appear closer to x in a feature-dependent
manner, while those of y �=

x are modified so that it will
similarly appear farther from x. Since these update steps
are weighted by the distance ratio, r(x), their importance
depends upon the relative proximity of x to y=

x or y �=
x . This

is further divided by the corresponding squared distance,
thereby reducing the update importance for large distances.
Finally, the resulting steps are windowed by the derivative
of the sigmoid function applied to the distance ratio, r(x).
This way, only those prototypes (and their weights) which
are sufficiently close to the decision boundaries are actually
updated.

The attentive reader will find the above prototype up-
date rules closely related to the so-called reward–punishment
rules heuristically introduced in such popular procedures as
LVQ1, LVQ2 and DSM [16–18]. For each x ∈ T , LVQ1
updates only its unique NN prototype if it is misclassified.
LVQ2 further requires that its two-NNs belong to different
classes and their distance ratio (r(x) in our formulation) falls
within a specified range—a very crude approximation to the
r(x) ·S′

�(r(x)) smooth windowing term of LPD. DSM, on
the other hand, also requires misclassification for updating
but, as with LPD, it does update both the same-class and the
different class NNs. However, it does not apply any smooth-
ing or windowing to the updates, thereby failing to work
properly for those (most, in practice) tasks with overlapping
classes.

It is remarkable that an intuitive interpretation of the for-
mally derived LPD prototype update rules is so closely re-
lated with popular heuristics which, without formal proof of
their potential usefulness, have proved quite helpful to im-
prove accuracy in many practical situations. Nevertheless,
the advantages of LPD are clear: not only the update policy
for prototype positions, but also for the associated metric
weights, along with the corresponding smoothing and win-
dowing terms, come from a mathematical derivation which
guarantees convergence towards an (approximate) local min-
imum of the empirical NN error estimation.

While LPD as such only guarantees convergence to local
minima of an approximation to the NN error estimation,
slightly better behavior is possible in some cases. As a
by-product of computing the update equations, a direct
empirical estimation of the NN classification error can
straightforwardly be obtained at each step of the descent
procedure. Therefore, following the idea already used in
[7,12–14], rather than selecting the prototypes and weights
obtained at the convergence point, those prototypes and

weights which achieved a minimum error estimation along
the descent process are selected instead.

3. Experiments

Three different sets of experiments were carried out. In
the first set, the LPD algorithm was applied to well con-
trolled, artificial data in order to show the impact of dif-
ferent parameter settings. In the second, a number of tasks
from the UCI/Statlog repositories were considered. The aim
of these experiments was to show that the proposed tech-
nique is uniformly adequate for a variety of tasks involving
different data conditions: large/small training sets, continu-
ous/discrete features, large/small dimensionalities, etc. The
last set corresponds to a real application of human face ver-
ification.

3.1. Artificial data

These experiments were intended to illustrate the behavior
of the proposed technique and to show the effects of different
parameter settings. The main parameters to adjust are the
number of prototypes of the reduced set, n, and the slope of
the sigmoid function, �. For these experiments the learning
factors were set to � = 0.001 and � = 0.1.

An artificial task, similar to the well-known Hart’s con-
densing task [21], and previously considered in Refs.
[22,23], was used. It involves two classes in two dimen-
sions, as shown in Fig. 2.

The error estimate obtained using the reduced set of pro-
totypes, P, and the local-metric weights, W, yielded by the
LPD algorithm, was computed for different values of the
parameters mentioned above. The number of prototypes per
class of the reduced set P was varied from 1 to 4, which
corresponds to values of n from 2 to 8. The � parameter
was exponentially varied from 0.1 to 200. For each of these
pairs of parameters, the algorithm was run 100 times with a
different random initialization of P. The average NN error
rates obtained with the initial sets of prototypes and weights
were 26.6%, 21.5%, 17.6%, and 15.1%, for n = 2, 4, 6, 8,
respectively. The average NN error obtained with the proto-
types and weights learned by LPD for the different param-
eter settings is shown in Fig. 3.

Two interesting conclusions can be drawn from these re-
sults. First, the estimated error decreases as the number of
prototypes in the reduced set P increases. The reason is
clear; if the number of prototypes in P increases, then P ap-
proaches T and, since T is the set used for error estimation,
the estimated error tends to 0%. It should be pointed out,
however, that the goal of LPD is not to produce this kind
of overfitting. In order to avoid it, the aim is to achieve an
improvement of the results with a significantly smaller pro-
totype set.

The second conclusion is that LPD performance sig-
nificantly depends on the values of �, in particular, for
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Fig. 2. A two-class artificial classification problem with N = 476 training
points: 223 of class A (left) and 253 of class B (right).
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Fig. 3. Estimated error for different LPD parameter settings. For the largest
values of n the LPD algorithm reaches a 0% estimated error. The average
NN error rates obtained with the initial sets of prototypes and weights
were 26.6%, 21.5%, 17.6%, and 15.1%, for n = 2, 4, 6, 8, respectively.

“intermediate” values of n. As shown in Fig. 3, good be-
havior is most generally achieved around � = 10. All the
update equations used in the LPD algorithm are affected
by the windowing factor S′

�(r(x)) (the derivative of the

sigmoid function). The argument of S′
� is the distance ratio

(5) between the y=
x and y �=

x for each training vector x ∈ T .
For small values of �, the sigmoid derivative is almost con-
stant and the algorithm learns almost the same regardless of
the different values of r(x). That is, the same importance is
given to those training vectors x that are confidently classi-
fied (with r(x)>1.0) as to other vectors x′ that lay close to
the class-decision boundaries (r(x′) ≈ 1.0), or to vectors x′
which are plainly misclassified (r(x′) > 1.0). Usually, as the
number of correctly classified vectors becomes much larger
than the errors, after some iterations the algorithm becomes
reluctant to learn more. On the other hand, for large values
of �, learning only happens when the distance ratio is (very)
close to 1, may be never, if � is very large. A suitable �

value should allow LPD to learn from the prototypes that
lay near the class-decision boundaries or are misclassified,
but moreover, the windowing effect of the sigmoid deriva-
tive should prevent learning from outliers whose r(x) value
is too large.

The proposed algorithm often reaches an error estimation
of 0% using only three prototypes per class and �=10. Fig.
4(left) shows one of these random initializations of P (and
homogeneous W; i.e., Euclidean distance (ED)). It consti-
tutes a bad initialization for this task. The prototypes and
corresponding local weighted distances learnt by the LPD
algorithm are shown in Fig. 4(right). All the prototypes have
migrated towards the class-decision boundaries, with local
weights adequately adapted to their particular positions. The
metric weights of each prototype are represented as the size
of the horizontal and vertical bars associated with it. Particu-
larly interesting is the leftmost prototype of class A. Because
of the position learnt for this prototype, it only contributes
to correct classification of points depending on the horizon-
tal coordinate, which is clearly reflected by the small value
of the vertical weight learnt for this prototype.

The results of these first experiments show that, for a
reasonably wide range of values of �, the LPD algorithm
can accurately approach the class-decision boundaries with
the combination of a small number of prototypes and local
weighted metric.

3.2. Benchmark data sets

Several standard benchmark corpora from the UCI reposi-
tory of machine learning databases and domain theories [24]
and the Statlog project [25] have been used. Most of these
data sets involve both numeric and categorical features. In
our experiments, each categorical feature has been replaced
by b binary features, where b is the number of different val-
ues allowed for the categorical feature. Since many UCI and
Statlog data sets are (very) small, K-fold cross-validation
(K-CV) [26] has been applied to obtain the classification
results. Each corpus is divided into K blocks using K − 1
blocks as a training set, T, and the remaining block as a test
set. Here, the number of blocks is set to K=5 and the size of
each T is N = 4

5N ′, where N ′ is the total number of vectors
in the corresponding whole data set.

Baseline results were obtained using a plain NN classifier,
with each original training set, T, the Euclidean (L2) metric
and the class-dependent variance-weighted (CDVW) (diag-
onal Mahalanobis) distance. CDVW consists in weighting
each feature by the inverse of the variance of this feature in
each class. Both techniques were compared with the results
obtained with the reduced set P and the weighted distance
W obtained by the LPD algorithm.

In the LPD algorithm the sigmoid slope was set to �=10
and the initial prototypes in P where obtained by randomly
sampling each training set, T, approximately following the
corresponding class-priors. In future work other initializa-
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Fig. 4. (Left) Initial random selection of n= 6 prototypes with Euclidean distance. (Right) Prototypes and distances learnt for �= 10. The bars associated
with each prototype show the distance weights of this prototype along each axis.

tion methods will be explored. The size of each P, n, was
fixed to approximately1 5% of N, the number of vectors in
the corresponding training set.

The distance weights of W were initialized following a
simple heuristic, based on leaving-one-out NN performance
of conventional methods on the training data: if raw L2 out-
performs CDVW, then set all initial �ij = 1; otherwise, set
them to the inverse of the corresponding class-dependent
training data standard deviations. Similarly, the step factors
�ij and �ij were set to small constants, 0.001 and 0.01, re-
spectively, in the former case and to these constants multi-
plying the inverse of the standard deviation in the latter.

Table 1 summarizes the results. Using only 5% randomly
selected initial prototypes, the proposed algorithm improves
the (plain L2 or CDVW) NN accuracy for all the tasks con-
sidered except cancer and wine. The results are significantly
better for most of the tasks: Australian, balance, diabetes,
DNA, heart, and vote. Experiments with other values of n
and � were also conducted. Using � ∈ {5, 10} and n ∈
{2%, 5%, 10%} of N, yielded similar results for all the tasks
except wine, for which significantly lower error rates were
obtained (as low as 0.5% for n = 2% of N and � = 10).
Overall, the LPD results are comparable to or better than
those recently reported by other authors on the same data
sets (see, e.g., [15,23,27]).

These results are generally better than those reported in
Ref. [12] using other metric learning techniques and weights
configurations.

The LPD technique was also explicitly compared with
LVQ [17,18] and SVM [19]. DSM was not considered be-
cause it is only useful when classes do not overlapped, which
very seldom happens with the UCI and Statlog data sets.
LVQ1, LVQ2, and LVQ3 were tested with all the datasets
presented before, while, for the sake of clarity, SVM was

1 This is only approximate because of the further need to approximate
class-priors by appropriately dividing n among classes.

only tested for those tasks involving a two-class problem.
The “lvq-pak” toolkit was used for the LVQ experiments.
The number of prototypes for the LVQ technique was set
following the same criteria as for LPD; i.e., 5% of the train-
ing vectors available, distributed among classes according
to the class-priors. The experiments with SVM were per-
formed with the “svm-light” toolkit using three different ker-
nels: first-order polynomial (SVM1), second-order polyno-
mial (SVM2), and radial basis functions (SVM3). Table 2
shows the comparative results.

From these comparisons and the previously discussed re-
sults (Table 1) it can be seen that LPD exhibits a uniformly
good behavior for all the tasks.

3.3. Face verification

In this section, LPD is used to train a face verification sys-
tem. These experiments were carried out with the BANCA
dataset [28].

This database was designed in order to test multimodal
identity verification systems using different sensors under
several scenarios. Different cameras and microphones where
used within three different scenarios: controlled, degraded,
and adverse. Each recording session involved 52 subjects,
26 male and 26 female. Each subject participated in 12
recording sessions in different conditions and with different
cameras as mentioned above. Each session contains two
recordings per subject, aimed at being considered a true
client access and an impostor attack. Each recording is com-
posed of five images, with a total of 120 images per subject.
Each group of 26 gender-specific subjects was itself subdi-
vided into two groups of 13 subjects, denoted by G1 and G2.

In the BANCA protocol, seven different experimental
configurations were specified. In the present work, the ex-
periments were carried using the Pooled (P) configuration.
In this configuration, the training process is performed us-
ing only five true client images of each subject of the first
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Table 1
Five-fold cross-validation error rate (in %) for different NN classifiers and several data sets

Task N ′ C m L2 CDVW LPD n

Australian 690 2 42 30.5 18.4 13.9 27
Balance 625 3 4 41.2 32.1 16.3 26
Cancer 685 2 9 3.1 9.8 3.4 28
Diabetes 768 2 8 40.8 32.6 26.0 31
DNA 3186 3 180 29.0 12.8 4.9 128
German 1000 2 24 27.1 32.1 26.0 40
Glass 214 6 9 28.6 34.1 28.0 10
Heart 270 2 13 45.5 24.1 18.6 11
Letter 20000 26 16 4.2 7.0 3.5 799
Liver 347 2 6 35.6 38.0 33.3 14
Satimage 6435 6 36 11.2 15.5 10.6 256
Vehicle 846 4 18 29.1 31.6 27.4 35
Vote 435 2 16 9.9 7.1 3.7 18
Wine 180 3 13 17.5 1.2 5.0 7

N ′, C and m are, respectively, the total number of training vectors, the number of classes and the dimension of each data set. The overall number of
prototypes used in the LPD method is shown under column n (this number is always ≈ 5% of the number of vectors used by L2 and CDVW). Results
in boldface correspond to the best accuracy.

Table 2
Comparative results using the proposed LPD algorithm and the well-known LVQ and SVM algorithms

Task LPD LVQ1 LVQ2 LVQ3 SVM1 SVM2 SVM3

Australian 13.9 33.3 34.0 31.1 35.0 36.1 44.5
Balance 16.3 16.3 14.7 16.3 — — —
Cancer 3.4 4.4 4.5 4.2 3.1 4.4 17.4
Diabetes 26.0 26.4 25.8 26.0 24.3 24.1 34.9
DNA 4.9 9.8 12.1 21.6 — — —
German 26.0 30.1 28.5 28.7 30.0 29.2 30.0
Glass 28.0 39.6 42.4 41.5 — — —
Heart 18.6 36.0 34.0 34.0 39.2 34.5 44.4
Letter 3.5 12.0 10.3 10.5 — — —
Liver 33.3 32.5 32.7 33.6 31.9 42.0 40.8
Satimage 10.6 11.7 11.1 11.1 — — —
Vehicle 27.4 38.2 32.0 34.4 — — —
Vote 3.7 7.6 6.2 5.7 5.0 5.3 16.1
Wine 5.0 29.7 25.8 29.2 — — —

session in the controlled scenario while images from the
controlled, degraded, and adverse scenarios are used for the
client and impostor tests. The P configuration is known to
be a difficult test.

The experiments were performed with a relatively low
resolution, 55 × 51 gray-level face images, obtained from
the original 720 × 576 images. To train the system the mir-
ror versions of the original training images were also used,
thereby increasing each subject’s training set to 10 images.
The test set has 2990 images, 115 (mixed client and impos-
tor) images per subject. Given the relatively small amount of
training data per subject available, LPD was initialized us-
ing only one prototype per class, with the ED. The sigmoid
slope was set to � = 10.

Following the standard BANCA protocol for the P con-
figuration, to evaluate the face verification system the false
acceptance (FA) and the false rejection (FR) need to be com-
puted. The system is evaluated by means of the minimum

of the so-called half-total error rate (HTER) which is the
average of FR and FA.

In order to compute FA and FR an estimation of the pos-
terior probability that a test image belongs to each class
(subject) is needed. Using the prototypes and associated dis-
tances learnt by LPD, this is estimated as an adequately nor-
malized inverse of the local distance to the nearest prototype
of each class:

P̂ (c|x) = 1

Q(x)

1

d(x, yc
x)

� , Q(x) =
C∑

c′=1

1

d(x, yc′
x )�

, (9)

where x is a test image, yc
x is the NN of x in class c (the

only prototype in c, in our case), C is the number of classes
and � is a parameter to control the smoothing degree.

We compare the results obtained with the LPD algorithm
with the results obtained in Ref. [29] and other results from
research reports of the IDIAP [30,31]. These results were
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Table 3
Results of face verification using the (hard) protocol P

Method FA FR min HTER

ORG/ED 27.2 26.4 26.8
ORG/NC 26.6 26.6 26.6
ORG/SVM 4.9 27.7 16.3
PCA/SVM 4.4 35.3 19.8

LDA/SVM 1.7 46.6 24.2

LDA/MLP 18.9 10.5 14.7
ORG/LPD 10.3 16.5 13.4

The values FA, FR and min HTER are averaged for the two configurations,
G1 and G2.

obtained with a similar (a bit higher) resolution images. The
preprocessing used in these experiments was also similar to
the preprocessing steps described above. In these works dif-
ferent results are reported using ED, normalized correlation
(NC) distance, SVM and multi layer perceptron (MLP) using
the original image (ORG), principant component analysis
(PCA), and linear discriminant analysis (LDA) as features.

Table 3 shows the results averaged for the two different
configurations of the P protocol, configurations G1 and G2.
LPD performs better than the other methods. Among the
approaches that directly use the gray-level images as features
(those marked as ORG in the table), LPD performs much
better in all the cases. It also outperforms other classifiers
based on more elaborate feature spaces. In particular, LPD
is better than SVM even when SVM is assisted by PCA
or LDA. Only the result obtained using a MLP assisted by
LDA is comparable to that of LPD.

4. Conclusions

A new gradient descent technique has been proposed to
simultaneously train both a reduced set of prototypes and
a corresponding local metric in order to optimize NN clas-
sification accuracy. The effectiveness of this technique has
been assessed through a number of experiments involving
standard benchmark data sets.

LPD exhibits a uniformly good behavior in a wide range
of applications. The impact of the two only important pa-
rameters, the slope of the sigmoid function, �, and the num-
ber of prototypes n, has been studied both conceptually and
empirically. The slope of the sigmoid function plays an im-
portant role to control the learning process. Adequate values
(typically around 10) help reducing the impact of outliers
and/or prototypes which are far away from the class-decision
boundaries. The number of prototypes, on the other hand,
has to be sufficiently small so as to avoid possible overfit-
ting caused by a too optimistically biased error estimation
if n is large. Overall, the tuning of these two parameters has
proved not to be critical in any of the tasks we have consid-
ered so far.

Future work will aim at exploring better techniques to
initialize the reduced prototype set, P. The currently used
random selection entails using large prototype learning step
factors, �, (relative to those of the weights, �) in order to al-
low the prototypes to “migrate” to adequate positions near
the class-decision boundaries. Therefore, LPD might achieve
faster and smoother convergence (and perhaps improved re-
sults) by selecting initial prototypes which are closer to the
decision boundaries.
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