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Abstract

A general nonparametric imputation procedure, based on kernel regression, is proposed to estimate points as well as set- and
function-indexed parameters when the data are missing at random (MAR). The proposed method works by imputing a specific
function of a missing value (and not the missing value itself), where the form of this specific function is dictated by the parameter
of interest. Both single and multiple imputations are considered. The associated empirical processes provide the right tool to study
the uniform convergence properties of the resulting estimators. Our estimators include, as special cases, the imputation estimator of
the mean, the estimator of the distribution function proposed by Cheng and Chu [1996. Kernel estimation of distribution functions
and quantiles with missing data. Statist. Sinica 6, 63–78], imputation estimators of a marginal density, and imputation estimators of
regression functions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In many nonparametric estimation problems, a drawback to the imputation of missing covariates and their substitution
for the actual missing values in the statistic of interest is that the theoretical (asymptotic) properties of such statistics can
become intractable. Examples include the empirical distribution function and nonparametric estimation of a marginal
density function. In the case of the empirical distribution function, the method used by Cheng and Chu (1996) overcomes
such difficulties by imputing the indicator functions directly, and not the missing values themselves.

Our contributions may be summarized as follows. In the first place, we extend the approach adopted by Cheng and
Chu (1996), in a natural way, to the estimation of points as well as set- and function-indexed parameters. The associated
empirical processes provide the right theoretical tools to study asymptotic properties of the proposed estimators. Our
contributions also include the derivation of some new exponential performance bounds on the uniform deviations of
the resulting statistics from their expectations, in the presence of missing covariates. These bounds will be used to
assess the strong uniform consistency properties of a number of important curve estimators. In particular, we apply our
results to nonparametric estimators of regression and density functions, in the presence of missing data. In addition to
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single imputation, we also propose a multiple imputation procedure, that can be applied to many problems in practice.
Both mechanics and the asymptotic validity of these procedures are discussed.

Consider the following setup. Let Z, Z1, . . . , Zn be iid Rd+p-valued random vectors with distribution function F,
where Z=(XT, YT)T. Here it is assumed that X ∈ Rd , d �1, is always observable but Y ∈ Rp, p�1, could be missing.
Also, define �i = 0 if Yi is missing; otherwise �i = 1. Note that the full data may be represented by

Dn = {(Z1, �1), . . . , (Zn, �n)} = {(X1, Y1, �1), . . . , (Xn, Yn, �n)}.
There are many different missing mechanisms in the literature; see the monograph by Little and Rubin (2002). For
example, the missing mechanism is sometimes called MCAR (missing completely at random), when P(�= 1|X, Y)=
P(�=1).A more realistic assumption widely used in the literature is the so-called MAR (missing at random) assumption,
where, P(� = 1|X, Y) = P(� = 1|X), and this will be our assumption in the rest of this article. Let G be a class of
functions g : Rd+p → R and for each g ∈ G define the “mean”

V(g) = E(g(Z)),

and its empirical version, based on the complete cases only, by Vn(g)= (1/r(n))
∑n

i=1 �ig(Zi ), where r(n)=∑n
i=1�i

is the count of the complete cases. Unfortunately, if a large proportion of the observed data (say 70%) have missing
Yi’s then, from a practical point of view, it makes sense to somehow revise Vn(g) to take into account the information
which is available from the Xi’s corresponding to those missing Yi’s. There are also fundamental theoretical reasons for
revising the estimator Vn(g). For example, in general, under the MAR assumption, E(Vn(g)) is different from V(g),
which implies that the resulting empirical process {Vn(g) −V(g) : g ∈ G} is not centered (not even asymptotically).
To motivate our estimation approach, consider the hypothetical situation where the regression function E[g(Z)|X] is
available, and define the revised estimator

Ṽn(g) = 1

n

n∑
i=1

{�ig(Zi ) + (1 − �i )E[g(Zi )|Xi]}. (1)

It is a simple exercise to show that, under the MAR assumption, Ṽn(g) is unbiased for V(g). Of course, in practice,
the regression function E[g(Zi )|Xi], used in (1), is not available and must therefore be estimated. Here we consider a
Nadaraya–Watson-type kernel estimate of V(g):

Vn(g) = 1

n

⎡⎣ n∑
i=1

�ig(Zi ) +
n∑

i=1

(1 − �i )

⎧⎨⎩
n∑

j=1,�=i

�n,j (Xi )g(Zj )

⎫⎬⎭
⎤⎦ , (2)

where

�n,j (Xi ) = �jK((Xj − Xi )/hn)∑n
k=1,�=i�kK((Xk − Xi )/hn)

,

with the convention 0/0 = 0, and K : Rd → R is a kernel with the smoothing parameter hn (→ 0 as n → ∞).
There are a number of important examples of the function g in the literature. The case where Y ∈ R1 and g(Z) =
g(Y, X) ≡ Y has been studied in the literature extensively; see, for example, Cheng (1994). In this case Vn(g) = ÊY

= n−1∑n
i=1[�iYi + (1 − �i )Ŷi], where Ŷi =∑n

j=1,�=i�n,j (Xi )Yj . In fact, one can consider the more general class

of estimators n−1∑n
i=1[�iYi/pn(Xi ) + (1 − �i/pn(Xi ))Ŷi], for some weight functions pn(Xi ), i = 1, . . . , n; see, for

example, Wang et al. (2004). When pn(Xi ) = 1, this reduces to Cheng’s imputation estimator, whereas pn(Xi ) = ∞
gives Cheng’s (1994) other estimator. The case where pn(Xi ) is the Nadaraya–Watson kernel regression estimator of
E(�i |Xi ) corresponds to the so-called propensity score estimator of EY. These three estimators of EY turn out to be
asymptotically equivalent to the estimator of Hirano and Ridder (2003), defined by ÊY = n−1∑n

i=1Yi�i/pn(Xi ). This
last estimator is essentially a corrected version of the naive estimator based on the complete cases, where the correction
is done by weighting the complete cases by the inverse of the estimated missing data probabilities. The case where the
missing data probabilities are known has been studied by Robins et al. (1994). In a more recent article, Wang et al.
(2004) studied the situation where Y follows the semiparametric model, Yi = Xi� + g(Ti ) + εi ; here the covariates
(Xi , Ti ) ∈ Rd × Rd∗ are observable and Yi could be missing at random, (εi are independent with E(εi |Xi , Ti ) = 0).
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These authors show that their estimator is asymptotically more efficient under the semiparametric assumption. Another
important example of the function g is the indicator function g(Z) = gy(Y, X) = I {Y �y}. This corresponds to the
estimation of the marginal cdf of Y and has already been considered by Cheng and Chu (1996). In this case the class G
may be identified by the collection {IC : C ∈ {(−∞, x), x ∈ Rd}}. Unlike the usual approaches to imputation where
one replaces each missing Yi with some data-based version Ŷi , the approach adopted by Cheng and Chu focuses directly
on the imputation of the indicator function itself. In addition to its intuitive appeal, this approach can also be more
tractable from a theoretical standpoint for kernel-based estimators (clearly the indicator function of the event {Ŷi �y},
where Ŷ is the imputed value of Y, is not easy to work with in general).

How good is Ṽn as an estimator of V? Recall that a class of function G is said to be totally bounded w.r.t. the
Lp-norm, 1�p�∞, if for every ε > 0 there is a set Gε ={g1, . . . , gN(ε)} such that for every g ∈ G, there is a g∗ ∈ Gε

satisfying ‖g − g∗‖p < ε. Here Gε is called an ε-cover of G. The following exponential bounds on the uniform (in g)
deviations of Ṽ(g) from V(g) are readily available.

Theorem 1.1. Suppose that ‖g‖∞ < B, for every g ∈ G. If G is totally bounded with respect to the ‖‖∞-norm, then
for all ε > 0 and all n�1,

P

{
sup
g∈G

|Ṽn(g) − V(g)| > ε

}
�2N∞

(ε

3
,G
)

e−2nε2/(9B2),

where N∞(ε,G) is the size of the smallest ε-cover of G.

Bounds such as the one in the above theorem have many applications in probability and statistics. For example, they
can be used to establish strong uniform consistency results in nonparametric curve estimation problems; here a curve
can be a regression function, a density function, a distribution function, etc.

To study the more practical estimator Vn(g) that appear in (2), we first state a number of regularity conditions.
In order to avoid having unstable estimates (in the tails of the pdf f of X), it is often assumed in the literature on
nonparametric regression that f is compactly supported and is bounded away from zero, and so we shall make this
assumption. More specifically, it is assumed that

(F) The pdf f of X satisfies infxf (x) =: fmin > 0. Also, both f and its first-order partial derivatives are uniformly
bounded on the compact support of f.

We shall further assume that the conditional probability of � = 1 is nonzero:
(p) infxP {� = 1|X = x} =: pmin > 0.
As for the choice of the kernel, we shall require
(K) The kernel K is a pdf and satisfies

∫ |ui |K(u) du < ∞, i = 1, . . . , d and ‖K‖∞ < ∞.
We assume in addition
(V) The first-order partial derivatives of the function (of x) E(�g(Z)|X = x) exist and are bounded on the compact

support of f, uniformly in x and g.
Conditions (F), (p), and (K) are standard in the literature. Condition (V), which has also been imposed by Cheng

and Chu (1996), is technical. The following result gives exponential performance bounds on the uniform closeness of
Vn(g) to V(g) (cf. Remark 1.1 for measurability conditions):

Theorem 1.2. Let G be a totally bounded class of functions g : Rd+p → R, with ‖g‖∞ < B for every g in G. Also, let
Vn(g) be as in (2). If, hn → 0 as n → ∞, then, under the stated conditions, for every ε > 0, ∃n0 such that ∀n > n0

P

{
sup
g∈G

|Vn(g) − V(g)| > ε

}
�10nN∞

(ε

3
,G
)

e−Cnhd
nε2

,

where C = (f 2
minp

2
min)/[2(54B)‖K‖∞(‖f ‖∞ + 2pminfmin/3)] does not depend on n.

Quite often, with more efforts one can study the uniform almost sure properties of various curve estimates. The
following theorem, which is not a corollary of Theorem 1.2, is one such result. Suppose that there are constants ��0,
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s > 0, and M > 0 such that for every x > 0,

logN∞(x,G)�H�(x) :=
{

Mx−� if � > 0,

log(Mx−s) if � = 0.
(3)

Such conditions on the rates of growth of the entropy are common in the literature; see, for example, Polonik and Yao
(2002). Since the case of �= 0 is trivial (and not interesting in practice), the following result focuses on the case where
� > 0.

Theorem 1.3 (Not a consequence of Theorem 1.2). Suppose that the bound (3) holds for some � > 0, and that as
n → ∞,

log n

nhd
n

−→ 0 and

(
nhd

n

log n

)1/(2+�)

hn −→ 0. (4)

Then, under the conditions of Theorem 1.2,

lim
n→∞

(
nhd

n

log n

)1/(2+�)

sup
g∈G

|Vn(g) − V(g)| a.s.= 0.

Remark 1.1. When the class G is uncountable, the measurability of the supremum in the above theorems can become
an important issue. One way to handle the measurability problem is to work with the outer probability (see the book
by van der Vaart and Wellner (1996)). Alternatively, one may be able to avoid measurability difficulties by imposing
the so-called universal separability assumption on the class G, (cf. Pollard, 1984, p. 38). That is, there is a countable
subclass G0 ⊂ G such that each g ∈ G can be written as a pointwise limit of a sequence in G0. In the sequel, we shall
assume that the supremum functionals do satisfy measurability conditions.

2. More flexible estimators and multiple imputation

Recall the estimator Vn(g) in (2):

Vn(g) = 1

n

⎡⎣ n∑
i=1

�ig(Zi ) +
n∑

i=1

(1 − �i )

⎧⎨⎩
n∑

j=1,�=i

�n,j (Xi )g(Zj )

⎫⎬⎭
⎤⎦ ,

where �n,j (Xi )=�jK((Xj −Xi )/hn)÷∑n
k=1,�=i�kK((Xk −Xi )/hn). Observe that the term

∑n
j=1,�=i�n,j (Xi )g(Zj )

in the above expression, which is the kernel regression estimate of E[g(Zi )|Xi] based on the complete cases, is our
imputed “value” of g(Zi ), for the case where �i = 0. Since each missing g(Zi ) is imputed once only, the estimator Vn

above is a single imputation estimator. Another popular estimator in the literature is based on multiple imputation; see
Kolmogorov and Tikhomirov (1959). This works by constructing many, say N �2, different imputed values of g(Zi ),
which would then result in N estimates of V(g): V̂n,1(g), . . . , V̂n,N (g). The multiple imputation (MI) estimator
corresponding to these N single estimators is simply the average

V̂MI(g) = 1

N

N∑
k=1

V̂n,k(g).

To construct our proposed multiple imputation estimator ofV start by randomly splitting the sampleDn into a subsample
of size �, say D�, and the remaining part Dm = Dn − D�, of size m = n − �. Also, let

V̂n(g) = 1

n

⎧⎨⎩
n∑

i=1

�ig(Zi ) + n

m

∑
i:(Zi ,�i )∈Dm

(1 − �i )

⎡⎣ ∑
j :(Zj ,�j )∈D�

��,j (Xi )g(Zj )

⎤⎦⎫⎬⎭ , (5)
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where

��,j (x) = �jK

(
Xj − x

h�

)/ ∑
k:(Xk,�k)∈D�

�kK

(
Xk − x

h�

)
. (6)

Repeating this process a total of N times results in the sample splits (D
(1)
� ,D

(1)
m ), . . ., (D(N)

� ,D
(N)
m ) and the corresponding

estimators V̂n,1(g), . . . , V̂n,N(g) of V(g). Finally, define the imputation estimator V̂MI(g) = N−1∑N
r=1V̂n,r (g).

How good is V̂MI(g)? The following performance bounds show that V̂MI(g) is uniformly (in g) close to V, for
large n. First we need the following condition:

(ML) hn → 0, nhd
n → ∞, � → ∞, and �/m → 0 as n → ∞.

Theorem 2.1. Let G be as in Theorem 1.2 and suppose that conditions (F), (p), (K), (V), and (ML) hold. Then,
for every ε > 0 there is a n0 such that for all n > n0,

P

{
sup
g∈G

|V̂MI(g) − V(g)| > ε

}
�C1NnN∞

(ε

3
,G
)

e−C2�h
d
� ε2

,

where C1 and C2 are positive constants not depending on n.

Note that strong convergence results for V̂MI(g), (uniformly in g), follows from the Borel–Cantelli lamma, under
the minimal condition that log(N ∨ n)/(�hd

� ) → 0, as n → ∞.
Supnorm covers, or equivalentlyN∞(ε,G), can be very large. Of course, for 1�p < ∞, Lp-norm covers are weaker;

unfortunately, they depend on the underlying distribution which is unknown. In what follows we consider data-based
covers of G based on weighted empirical norms. More specifically, fixed (z1, �1), . . . , (zn, �n), x, and consider the
weighted seminorm

‖g‖Wn(x) =
n∑

j=1

Wn,j (x)�j |g(zj )|,

where Wn,j (x) = Wn,j (x, x1, . . . , xn) ∈ R, j = 1, . . . , n are weight functions depending on x, x1, . . . , xn, but not
y1, . . . , yn, (recall that z = (xT, yT)T), and satisfying

∑n
j=1Wn,j (x) = 1. Note that if Wn,j (x) = 1/n for all j’s then

‖g‖Wn(x) = ‖g‖1,n := (1/n)
∑n

j=1�j |g(zj )|. For any ε > 0 define N(ε,G, ‖‖Wn(x)) to be the cardinality of the
smallest collection of functions Gn,ε = {g1, . . . , gnε,x} with the property that for every g ∈ G, ∃g∗ ∈ Gn,ε such that
‖g − g∗‖Wn(x) < ε. Clearly, N(ε,G, ‖‖Wn(x))�N∞(ε,G). There are many choices for the weight function Wn.
Here we have in mind the kernel-type weight

Wn,j (x) = K((Xj − x)/hn)∑n
k=1K((Xk − x)/hn)

,

for the kernel K : Rd → R. The following theorem provides exponential performance bounds for the uniform
deviations of V̂MI(g) from V(g).

Theorem 2.2. Let G be a class of functions g : Rd+p → R, with ‖g‖∞ < B for every g in G, and put m = n − �.
Suppose that conditions (F), (p), (K), (V), and (ML) hold. Then, for every ε > 0 there is a n0 such that for all
n > n0,

P

{
sup
g∈G

|V̂MI(g) − V(g)| > ε

}
�8NE

[
N
( ε

16
,G, ‖‖1,n

)]
e−nε2/(512B2)

+ 8NmE
[
N
(pminε

32
,G, ‖‖W�(X)

)]
e−mε2/(512B2)

+ 8Nm��(G, ε)[5e−�hd
� c1 + 3e−�hd

� c2ε
2 ],
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where c1 and c2 are constants not depending on n and

��(G, ε) =
√

E

[
N

(
pminfminε

864‖f ‖∞
,G, ‖‖W�(X)

)]2

. (7)

Remark 2.1. The constants c1 and c2 that appear in the bound of Theorem 2.2 depend on many unknown parameters,
and no attempts have been made to obtain their optimal values. However, for later sections, they may be taken to be
c1 = b1 ∧ b2 ∧ b3 ∧ b4 and c2 = b5 ∧ b6 ∧ b7, where

b1 = 1/(4‖K‖∞(‖f ‖∞ + 1)), (8)

b2 = ‖f ‖∞/(12‖K‖∞), (9)

b3 = f 2
min

32‖K‖∞(‖f ‖∞ + fmin/4)
, (10)

b4 = p2
minf

2
min

128‖K‖∞(‖f ‖∞ + pminfmin/8)
, (11)

b5 = p2
minf

2
min

8(54)2B2‖K‖∞(‖f ‖∞ + pminfmin/3)
, (12)

b6 = p2
minf

2
min

8(108)2B2‖K‖∞(‖f ‖∞ + pminfmin/36)
, (13)

b7 = p2
minf

2
min

512(54)2B2‖K‖∞(‖f ‖∞ + 1)
. (14)

In practice, when the members of the class G have certain desirable functional properties, one may then revise the
estimator in (5) accordingly. Consider the following setup. Let

X =
(

X(1)

X(2)

)
, U =

(
X(2)

Y

)
where X(1) ∈ Rd1 , X(2) ∈ Rd2 , and d1 + d2 = d.

Also, suppose that g = g1 ∗ g2 for every g ∈ G, where g1 : Rd1 → R1 and g2 : Rd2 → R1. When the operation ‘∗’ is
either ‘×’ or ‘+’, or ‘−’, one obtains E[g(Z)|X = x] = g1(x(1))∗E[g2(U)|X = x], and thus the estimator in (5) may
be changed to

V̂n(g) = 1

n

⎧⎨⎩
n∑

i=1

�ig(Zi ) + n

m

∑
i:(Zi ,�i )∈Dm

(1 − �i )

⎡⎣g1(X
(1)
i ) ∗

∑
j :(Zj ,�j )∈D�

��,j (Xi )g2(Uj )

⎤⎦⎫⎬⎭ .

In this case, one may revise Theorem 2.2 as well. In fact, the following result is the counterpart of Theorem 2.2 for
the case where g is multiplicative: g(z) = g((xT, yT)T) = g1(x(1)) × g2(u), ∃g1 ∈ G1, g2 ∈ G2, for some classes of
functions G1 and G2. Of course, the choice of the classes G1 and G2 are determined by the statement of the problem
of interest. (An example along these lines is the problem of nonparametric least-squares estimation in the presence of
missing covariates; see Section 3.)

Theorem 2.3. Let G ≡ G1 × G2 be a multiplicative class of functions, as stated above, with the property that
‖g1‖∞ �B1 < ∞ and ‖g2‖∞ �B2 < ∞, for every g1 ∈ G1 and every g2 ∈ G2. Then, under the conditions of
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Theorem 2.2, for every ε > 0 there is a n0 such that, for all n > n0,

P

{
sup
g∈G

|V̂MI(g) − V(g)| > ε

}

�c3NE
[
N
( ε

16
,G, ‖‖1,n

)]
e−nε2/(512B2) + c4NmE[N(c5ε,G2, ‖‖W�(X))]e−c6mε2

+ c7Nm

√
E[N(c8ε,G2, ‖‖W�(X))]2 × [c9e−c10�h

d
� + c11e−c12�h

d
� ε2 ],

where c3, . . . , c12 are positive constants not depending on n.

The following result, which is the counterpart of Theorem 1.3 for the multiple imputation estimator V̂MI(g), is
useful when studying the uniform asymptotic properties of the least-squares regression (as well as density) estimators,
with missing data.

Theorem 2.4. Let V̂MI(g) be as before and suppose that the bound (3) holds for some ��0. Also, suppose that
conditions (F), (p), (K), (V), and (ML) hold. If, as n → ∞, N ≡ N(n) → ∞ and

log(m ∨ N)

�hd
�

−→ 0,

(
�hd

�

log(m ∨ N)

)1/(2+�)

h� −→ 0, and
�

nh�

−→ 0,

then

lim
n→∞

(
�hd

�

log(m ∨ N)

)1/(2+�)

sup
g∈G

|V̂MI(g) − V(g)| a.s.= 0.

Proof of Theorem 2.2. Start with the simple bound

P

{
sup
g∈G

|V̂MI(g) − V(g)| > ε

}
�

N∑
r=1

P

{
sup
g∈G

|V̂n,r (g) − V(g)| > ε

}
. (15)

Let V̂n(g) be as in (5) and observe that V̂n,r (g)
d= V̂n(g), r = 1, . . . , N . Furthermore, since the data are iid, we may

assume w.o.l.g that D� = {(Z1, �1), . . . , (Z�, ��)}, which can always be achieved by a re-indexing of the observations
in D�. Thus, one may take

V̂n(g) = 1

n

⎧⎨⎩
n∑

i=1

�ig(Zi ) + n

m

n∑
i=�+1

(1 − �i )

⎡⎣ �∑
j=1

��,j (Xi )g(Zj )

⎤⎦⎫⎬⎭ . (16)

We will use a nonstandard symmetrization argument in the rest of the proof.
1. A nonstandard first symmetrization (w.r.t. a hypothetical sample): Let D′

n = {(Z′
1, �

′
1), . . . , (Z

′
n, �

′
n)} be a ghost

sample, i.e., (Z′
i , �

′
i )

iid=(Z1, �1). Also define

V̂
′
n(g) = 1

n

⎡⎣ n∑
i=1

�′
ig(Z′

i ) + n

m

n∑
i=�+1

(1 − �′
i )

⎧⎨⎩
�∑

j=1

��,j (X
′
i )g(Zj )

⎫⎬⎭
⎤⎦ , (17)

where ��,j (·) is as in (6). Note that (17) is not exactly the counterpart of (16); this is because unlike (16), the expression∑�
j=1��,j (X

′
i )g(Zj ) in (17) is a function of both the true and the hypothetical samples. (In fact, the term ��,j (X

′
i )

in (17) is a function of both X′
i and (�1, X1), . . . , (��, X�).) Here, V̂

′
n(g) does not have any direct applications as an

estimator of V(g); it is only a symmetrization device to deal with the empirical process corresponding to V̂n(g). To
this end, fix the data Dn and observe that if supg∈G|V̂n(g) −V(g)| > ε, then there is at least some gε ∈ G, which will
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depend on Dn (but not the ghost sample D′
n), such that |V̂n(gε) −V(gε|Dn)| > ε, where V(gε|Dn) = E[gε(Z)|Dn].

Now, put

�n(Dn) := P
{
|V̂′

n(gε) − V(gε|Dn)| < ε

2

∣∣∣Dn

}
and note that

�n(Dn)�P
{
−|V̂′

n(gε) − V̂n(gε)| + |V̂n(gε) − V(gε|Dn)| < ε

2

∣∣∣Dn

}
�P

{
|V̂′

n(gε) − V̂n(gε)| > ε

2

∣∣∣Dn

}
�P

{
sup
g∈G

|V̂′
n(g) − V̂n(g)| > ε

2

∣∣∣Dn

}
. (18)

Next, let

In,i(g) =
∑�

j=1�j g(Zj )K((Xj − X′
i )/h�)∑�

j=1�jK((Xj − X′
i )/h�)

− E[�′
ig(Z′

i )|X′
i]

p(X′
i )

, (19)

and define

�n(Dn) := P

{
n∑

i=�+1

sup
g∈G

|In,i(g)|� nε

18

∣∣∣Dn

}
, (20)

and

�n = E[�n(Dn)] = P

{
n∑

i=�+1

sup
g∈G

|In,i(g)|� nε

18

}
. (21)

It will be shown in Section 4 that

�n �12m��(G, ε)[e−�hd
� b8ε

2 + e−�hd
� b9 ], (22)

and

�n(Dn)�1 − 4e−nε2/(288B2) − �n(Dn), (23)

where ��(G, ε) is as in Theorem 2.2, b8 = b6 ∧ b6 ∧ b7, and b9 = b1 ∧ b2, and the constants b1, . . . , b7 are as in
(8)–(14). Now, observe that the above lower bound on �n(Dn) and the upper bound on the far right side of (18) do
not depend on any specific gε, and that the chain of inequalities between them (in (18)) remains valid on the set
{supg∈G|V̂n(g) − V(g)| > ε}. Therefore, integrating the two sides with respect to Dn, over this set, one finds

E

[
(1 − 4e−nε2/288B2 − �n(Dn))I

{
sup
g∈G

|V̂n(g) − V(g)| > ε

}]
�P

{
sup
g∈G

|V̂′
n(g) − V̂n(g)| > ε

2

}
. (24)

On the other hand, since

E

[
�n(Dn)I

{
sup
g∈G

|V̂n(g) − V(g)| > ε

}]
�E[�n(Dn)] (2.21):= �n,

one concludes that, for large n,

P

{
sup
g∈G

|V̂n(g) − V(g)| > ε

}
� 1

1 − 4e−nε2/(288B2)

[
P

{
sup
g∈G

|V̂′
n(g) − V̂n(g)| > ε

2

}
+ �n

]
. (25)
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To complete the proof of the theorem, it remains to bound the probability statement that appears on the r.h.s. of (25).
First note that, with V̂n and V̂

′
n given by (5) and (17), respectively, one may write

P

{
sup
g∈G

|V̂′
n(g) − V̂n(g)| > ε

2

}
�P

{
sup
g∈G

1

n

∣∣∣∣∣
n∑

i=1

[�ig(Zi ) − �′
ig(Z′

i )]
∣∣∣∣∣> ε

4

}

+ P

⎧⎨⎩sup
g∈G

1

m

∣∣∣∣∣∣
n∑

i=�+1

⎡⎣(1 − �i )

⎛⎝ �∑
j=1

��,j (Xi )g(Zj )

⎞⎠
−(1 − �′

i )

⎛⎝ �∑
j=1

��,j (X
′
i )g(Zj )

⎞⎠⎤⎦∣∣∣∣∣∣> ε

4

⎫⎬⎭
:= �1(n) + �2(n) (say). (26)

2. Second symmetrization (w.r.t. an independent Rademacher sequence): Let R1, . . . , Rn be an iid Rademacher
sequence (i.e., P(Ri = +1) = 1/2 = P(Ri = −1)), independent of Dn and D′

n. Since the joint distribution of
(�1g(Z1), . . . , �ng(Zn)) and that of (�′

1g(Z′
1), . . . , �

′
ng(Z′

n)) are not affected by randomly interchanging their cor-
responding components, one can write

�1(n) = P

{
sup
g∈G

1

n

∣∣∣∣∣
n∑

i=1

Ri[�ig(Zi ) − �′
ig(Z′

i )]
∣∣∣∣∣> ε

4

}
�2P

{
sup
g∈G

1

n

∣∣∣∣∣
n∑

i=1

Ri�ig(Zi )

∣∣∣∣∣> ε

8

}

�4E
[
N
( ε

16
,G, ‖‖1,n

)]
e−nε2/(512B2). (27)

As for the term �2(n) in (26), first observe that

(1 − �i )

�∑
j=1

��,j (Xi )g(Zj ) = (1 − �i )

∑�
j=1�j g(Zj )K((Xj − Xi )/h�)∑�

k=1�kK((Xk − Xi )/h�)

:= Hg(D�, (Xi , �i )) (say) i = � + 1, . . . , n.

Similarly,

(1 − �′
i )

�∑
j=1

��,j (X
′
i )g(Zj ) = (1 − �′

i )

∑�
j=1�j g(Zj )K((Xj − X′

i )/h�)∑�
k=1�kK((Xk − X′

i )/h�)

:= Hg(D�, (X′
i , �

′
i )), i = � + 1, . . . , n.

Therefore

�2(n) = P

{
sup
g∈G

m−1

∣∣∣∣∣
n∑

i=�+1

[Hg(D�, (Xi , �i )) − Hg(D�, (X′
i , �

′
i ))]
∣∣∣∣∣> ε

4

}
.

Furthermore, (Xi , �i )
iid=(X′

i , �
′
i ), i = � + 1, . . . , n and D� is independent of both (Xi , �i )

n
i=�+1 and (X′

i , �
′
i )

n
i=�+1.

Consequently, the joint distribution of the vector

(Hg(D�, (X�+1, ��+1)), . . . , Hg(D�, (Xn, �n)))

is the same as that of the vector

(Hg(D�, (X′
�+1, �

′
�+1)), . . . , Hg(D�, (X′

n, �
′
n))),
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and, more importantly, this joint distribution is not affected if one randomly interchanges the corresponding components
of these two vectors. Therefore, for an iid Rademacher sequence R1, . . . , Rn, (which is taken independent of D�,
(Xi , �i ), and (X′

i , �
′
i ), i = � + 1, . . . , n), one deduces

�2(n) = P

{
sup
g∈G

m−1

∣∣∣∣∣
n∑

i=�+1

Ri[Hg(D�, (Xi , �i )) − Hg(D�, (X′
i , �

′
i ))]
∣∣∣∣∣> ε

4

}

�P

⎧⎨⎩sup
g∈G

m−1

∣∣∣∣∣∣
n∑

i=�+1

Ri(1 − �i )

�∑
j=1

��,j (Xi )g(Zj )

∣∣∣∣∣∣> ε

8

⎫⎬⎭
+ P

⎧⎨⎩sup
g∈G

m−1

∣∣∣∣∣∣
n∑

i=�+1

Ri(1 − �′
i )

�∑
j=1

��,j (X
′
i )g(Zj )

∣∣∣∣∣∣> ε

8

⎫⎬⎭ .

:= In + IIn = 2In (28)

(since In and IIn are precisely the same). To bound the term In, fix Dn and for any ε > 0 put

ε′ = εpmin/32. (29)

Let G(i)

�,ε′ be an ε′-cover of G, w.r.t. ‖‖W�(Xi ), i.e., for every g ∈ G, there is a g
(i)∗ ∈ G

(i)

�,ε′ such that,

‖g − g(i)∗ ‖W�(Xi ) < ε′. (30)

Also, let N(ε′,G, ‖‖W�(Xi )) be the ε′-covering number of G, with respect to ‖‖W�(Xi ). For each i = � + 1, . . . , n,

choose g
(i)∗ ∈ G

(i)

�,ε′ such that ‖g − g
(i)∗ ‖W�(Xi ) < ε′, and write∣∣∣∣∣∣

n∑
i=�+1

⎡⎣Ri(1 − �i )

�∑
j=1

��,j (Xi )g(Zj )

⎤⎦∣∣∣∣∣∣
�

∣∣∣∣∣∣
n∑

i=�+1

⎡⎣Ri(1 − �i )

�∑
j=1

��,j (Xi )g
(i)∗ (Zj )

⎤⎦∣∣∣∣∣∣
+
∣∣∣∣∣∣

n∑
i=�+1

⎡⎣Ri(1 − �i )

�∑
j=1

��,j (Xi )(g(Zj ) − g(i)∗ (Zj ))

⎤⎦∣∣∣∣∣∣ . (31)

For i = � + 1, . . . , n, let p̂(Xi ) = ∑�
j=1�jK((Xj − Xi )/h�)/

∑�
j=1K((Xj − Xi )/h�) be the kernel estimate of

E(�i |Xi ). Then the 2nd term on the right hand side of (31) is bounded by

n∑
i=�+1

[
|Ri(1 − �i )| 1

p̂(Xi )
‖g − g(i)∗ ‖W�(Xi )

]
�

n∑
i=�+1

ε′

p̂(Xi )
(by (30))

= pminε

32

n∑
i=�+1

1

p̂(Xi )
. (32)

Define the events �n and IEn,ε according to:

�n =
n⋂

i=�+1

{
p̂(Xi )�

1

2
pmin

}
,
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and

IEn,ε =
⎧⎨⎩ sup

g∈⋃n
i=�+1G

(i)

�,ε′
m−1

∣∣∣∣∣∣
n∑

i=�+1

⎡⎣Ri(1 − �i )

�∑
j=1

��,j (Xi )g(Zj )

⎤⎦∣∣∣∣∣∣+ m−1
(pminε

32

) n∑
i=�+1

1

p̂(Xi )
>

ε

8

⎫⎬⎭ ,

and observe that (32) in conjunction with (31) and (28) imply that

In �E[I{�n}P {IEn,ε|Dn}] + P {�n}

�E

⎡⎣P

⎧⎨⎩ sup
g∈⋃n

i=�+1G
(i)

�,ε′
m−1

∣∣∣∣∣∣
n∑

i=�+1

⎡⎣Ri(1 − �i )

�∑
j=1

��,j (Xi )g(Zi )

⎤⎦ ∣∣∣∣∣∣+ ε

16
>

ε

8

∣∣∣Dn

⎫⎬⎭
⎤⎦

+
n∑

i=�+1

P

{
p̂(Xi ) <

1

2
pmin

}
:= I (1)

n + I (2)
n , (33)

where A denotes the complement of an event A. Using standard arguments, one can show that

I (1)
n �2

n∑
i=�+1

E[N(ε′,G, ‖‖W�(Xi ))]e−mε2/(512B2)

= 2mE[N(ε′,G, ‖‖W�(X))]e−mε2/(512B2). (34)

To deal with the term I
(2)
n , first let f̂�(Xi ) = (�hd

� )−1∑�
j=1K((Xj − Xi )/h�) be the usual kernel density estimator of

f, based on X1, . . . , X�, at the point Xi , i = � + 1, . . . , n. It is a simple exercise to show that P {f̂�(Xi ) < 1/2fmin} =
P {f (Xi ) − f̂�(Xi ) > f (Xi ) − 1/2fmin}�P {|f̂�(Xi ) − f (Xi )| > 1/2fmin}�2 exp{−�hd

�f 2
min/[32‖K‖∞(‖f ‖∞ +

fmin/4)]}. Consequently, the fact that P {p̂(Xi ) < 1/2pmin}�P {|p̂(Xi )−p(Xi )| > 1/2pmin}, together with (43)–(45),
and (52) imply thatP {p̂(Xi ) < 1/2pmin}�4 exp{−�hd

�f 2
minp

2
min/[128‖K‖∞(‖f ‖∞+pminfmin/8)]}. This latter bound

in conjunction with (33) and (34) lead to

In �2mE[N(ε′,G, ‖‖W�(X))]e−mε2/512B2 + 4me−�hd
� (b3∧b4), (35)

where b3 and b4 are given by (10) and (11). Now Theorem 2.2 follows from (15), (25), (22), (26), (28), and (35). �

3. Applications to nonparametric least-squares regression and density estimation

3.1. Least-squares regression in the presence of missing covariates

In this section we consider the problem of nonparametric estimation of a regression function when some of the
covariates may be missing at random. More specifically, consider the random pair (Z, Y ), where Z = (VT, WT)T ∈
Rd+p, V ∈ Rd , and Y ∈ R. Let 	∗(z) = E(Y |Z = z) be the least-squares solution of the regression of Y on Z in the
sense that E|	∗(Z) − Y |2 = inf	:Rd+p→RE|	(Z) − Y |2. Let Dn = {(Z1, Y1, �1), . . . , (Zn, Yn, �n)} be an iid sample,
where �i = 0 or 1, according to whether Wi is missing or not. Let 
 be any class of candidate regression functions,
(this could be, for example, a particular nonlinear class, a linear class, or a partially linear class). For any 	 ∈ 
, put
L(	) = E|	(Z) − Y |2 and define its kernel-based estimator by

L̂n(	) = 1

n

⎡⎣ n∑
i=1

�i |	(Zi ) − Yi |2 + n

m

∑
i:(Zi ,�i )∈Dm

(1 − �i )L̃�,i(	)

⎤⎦ , (36)
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where Dm is any random subset of Dn, of size m, and

L̃�,i(	) = Ê[	2(Zi )|Xi] − 2YiÊ[	(Zi )|Xi] + Y 2
i , Xi =

(
Yi

Vi

)
∈ R1+d , and

Ê[	k(Zi )|Xi] =
∑

j :(Zj ,�j )∈D�

�j	
k(Zj )K((Xj − Xi )/h�) ÷

∑
j :(Zj ,�j )∈D�

�jK((Xj − Xi )/h�),

where D� = Dn − D�. Here L̃�,i(	) may be viewed as the imputed value of Li(	) := E(|	(Zi ) − Yi |2|Xi ) =
E[	2(Zi )|Xi] − 2YiE[	(Zi )|Xi] + Y 2

i . Repeating the entire procedure N (> 1) times yields N copies of L̂n(	):

L̂
(1)
n (	), . . . , L̂

(N)
n (	), where L̂

(r)
n (	) is computed based on the rth sample split (D

(r)
� ,D

(r)
m ), r = 1, . . . , N . Also, let

L̂MI(	) = N−1∑N
r=1L̂

(r)
n (	). The proposed multiple imputation least-squares estimator of the regression function is

given by

	n = argmin
	∈


L̂MI(	).

Note that in the hypothetical situation where Li(	) is available for all i’s for which Wi is missing, one would choose
	n as the minimizer of the empirical error function n−1[∑n

i=1�i |	(Zi ) − Yi |2 +∑n
i=1(1 − �i )Li(	)]; cf. (1) and

Theorem 1.1. To study the properties of the L2-error of 	n, we first state the following fundamental lemma.

Lemma 3.1. Let 	∗ and 	n be as before. Then

E[|	n(Z) − 	∗(Z)|2|Dn]�2 sup
	∈


|L̂MI(	) − E|	(Z) − Y |2| + inf
	∈


E|	(Z) − 	∗(Z)|2. (37)

The following result gives exponential performance bounds on the difference between the L2-error of 	n (as an
estimator of 	∗) and that of the best member of 
, i.e., the difference

E[|	n(Z) − 	∗(Z)|2|Dn] − inf
	∈


E|	(Z) − 	∗(Z)|2.

Note that if 
 is large enough so that 	∗ ∈ 
, then the above infimum is zero.

Theorem 3.1. Suppose that |Y |�B < ∞. Let 
 be a class of functions 	 : Rd+p → [−C, C], C�B > 0. Suppose
that conditions (F), (p), (K), (V), and (ML) are satisfied. Then for every ε > 0, there is a n0 such that, for all
n > n0,

P

{∣∣∣∣E[|	n(Z) − 	∗(Z)|2|Dn] − inf
	∈


E|	(Z) − 	∗(Z)|2
∣∣∣∣> ε

}
�c14NE[N(c15ε, 
, ‖‖1,n)]e−c16nε2 + NmE1/2[N(c21ε, 
, ‖‖W�(X))]2[c17e−c18�h

d
� ε2 + c19e−c20�h

d
� ],

where c14, . . . , c21 are positive constants not depending on n.

An immediate consequence of the above theorem is the strong consistency of the L2 error of 	n. More specifically,
if, as n (and thus � and m) → ∞,

log(m ∨ N)

�hd
�

→ 0 and
log ��(
, ε)

�hd
�

→ 0,

then an application of the Borel–Cantelli lemma yields E[|	n(Z) − 	∗(Z)|2|Dn] a.s.→ inf	∈
 E|	(Z) − 	∗(Z)|2. In
fact, in many cases, more is true: suppose that the �-entropy, logN∞(�, 
), of the class 
 satisfies condition (3) for
some ��0. If, as n → ∞, (N ≡ N(n) → ∞),

log(m ∨ N)

�hd
�

−→ 0,

(
�hd

�

log(m ∨ N)

)1/(2+�)

h� −→ 0, and
�

nh�

−→ 0,
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then, under the conditions of Theorem 3.1, one can show that

lim
n→∞

(
�hd

�

log(m ∨ N)

)1/(2+�) ∣∣∣∣E[|	n(Z) − 	∗(Z)|2|Dn] − inf
	∈


E|	(Z) − 	∗(Z)|2
∣∣∣∣ a.s.= 0.

Example 1 (Differentiable functions). For i = 1, . . . , s, let �i �0 be nonnegative integers and put � = �1 + · · · + �s .
Also, for any g : Rs → R, define

D(�)g(u) = ��

�u
�1
1 , . . . , �u

�s
s

g(u).

Consider the class of functions with bounded partial derivatives of order r:


 =
⎧⎨⎩	 : [0, 1]d+p → R1

∣∣∣∣∣∣
∑
�� r

sup
u

|D(�)g(u)|�A < ∞
⎫⎬⎭ .

Then, for every ε > 0, logN∞(ε, 
)�Mε−�, where �= (d +p)/r and M ≡ M(p, d, r); this is due to Rubin (1987).

Example 2. Consider the class 
 of all convex functions 	 : C → [0, 1], where C ⊂ Rd+p is compact and convex. If
	 satisfies |	(z1) − 	(z2)|�L|z1 − z2|, for all z1, z2 ∈ C, then logN∞(ε, 
)�Mε−(d+p)/2, for every ε > 0, where
M ≡ M(p, d, L); see van der Vaart and Wellner (1996).

3.2. Maximum likelihood density estimation

Let Z = (XT, YT)T ∈ Rd+p, where X ∈ Rd . Here Y could be missing (MAR) but X is always observable.
We consider the problem of estimating the marginal probability density of Y, in the presence of missing data:
(X1, Y1, �1), . . . , (Xn, Yn, �n), where as usual �i = 0 if Yi is missing, (otherwise, �i = 1). In what follows, it is
assumed that the true density p0 belongs to a class of densities, say P. Note that when there are no missing data, the
usual maximum likelihood estimator of p0 is simply p̂n =argmaxp∈P

∑n
i=1 log p(Yi ). Next, let D� be a random subset

of Dn, of size �, and put Dm = Dn − D�. For any function p : Rp → (0, ∞) define

L̂n(p) = 1

n

⎡⎣ n∑
i=1

�i log p(Yi ) + n

m

∑
i:(Zi ,�i )∈Dm

(1 − �i )L̃�,i(p)

⎤⎦ , (38)

where

L̃�,i(p) =
∑

j :(Zj ,�j )∈D�

�j log p(Yj )K((Xj − Xi )/h�) ÷
∑

j :(Zj ,�j )∈D�

�jK((Xj − Xi )/h�).

Also, let L̂
(1)
n (p), . . . , L̂

(N)
n (p) be copies of (38), based on N independent sample splits (D

(r)
� ,D

(r)
m ), r = 1, . . . , N . Put

L̂MI(p) = N−1∑N
r=1L̂

(r)
n (p), and consider the MLE-type density estimator

p̂n = argmax
p∈P

L̂MI(p).

To study p̂n, let dH be the Hellinger distance between two densities, i.e., for p1, p2 ∈ P,

dH(p1, p2) =
√

1

2

∫
|p1/2

1 (y) − p
1/2
2 (y)|2 dy.



2746 M. Mojirsheibani / Journal of Statistical Planning and Inference 137 (2007) 2733–2758

Also, put p̄n = (p̂n + p0)/2. Then by Lemma 4.2 of van de Geer (2000),

d2
H(p̂n, p0)�16d2

H(p̄n, p0). (39)

The following lemma may be viewed as a counterpart of Lemma 4.1 of van de Geer (2000), tailored to fit our missing
data setup. Let L̂MI be as before and define

Ln

(
p̂n + p0

2p0
I {p0 > 0}

)
= E

[
log

p̂n(Y) + p0(Y)

2p0(Y)
I {p0(Y) > 0}

∣∣∣∣Dn

]
. (40)

L

(
p + p0

2p0
I {p0 > 0}

)
= E

[
log

p(Y) + p0(Y)

2p0(Y)
I {p0(Y) > 0}

]
. (41)

Lemma 3.2. Let p̄n = (p̂n + p0)/2. Then

d2
H(p̄n, p0)�

1

2

[
L̂MI

(
p̄n

p0
I {p0 > 0}

)
− Ln

(
p̄n

p0
I {p0 > 0}

)]
.

Putting together (39) and Lemma 3.2, one obtains

d2
H(p̂n, p0)�8 sup

p∈P

∣∣∣∣L̂MI

(
p + p0

2p0
I {p0 > 0}

)
− L

(
p + p0

2p0
I {p0 > 0}

)∣∣∣∣ ,
where L is given by (41). Now let G be the class

G =
{

1

2
log

p + p0

2p0
I {p0 > 0}

∣∣∣∣p ∈ P

}
.

The above results (in conjunction with Theorem 2.2) can be summarized in the following theorem.

Theorem 3.2. Define the class G as above. Then, under conditions (F), (p), (K), (V), and (ML), for every ε > 0
there is a n0 such that for all n > n0,

P {dH(p̂n, p0) > ε}�c22NE[N(c23ε
2,G, ‖‖1,n)]e−c24nε4

+ NmE1/2[N(c25ε
2,G, ‖‖W�(X))]2[c26e−c27�h

d
� ε4 + c28e−c29�h

d
� ],

where c22, . . . , c29 are positive constants not depending on n.

The above theorem can be used to study strong convergence results for the density estimate p̂n. Suppose that the
�-entropy, logN∞(�,G), of the class G satisfies condition (3) for some ��0. If, as n → ∞,

log(m ∨ N)

�hd
�

−→ 0,

(
�hd

�

log(m ∨ N)

)1/(4+2�)

h� −→ 0, and
�

nh�

−→ 0,

then, under the conditions of Theorem 3.2, one has

lim
n→∞

(
�hd

�

log(m ∨ N)

)1/(4+2�)

dH(p̂n, p0)
a.s.= 0.
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3.3. Kernel density estimation

As an alternative to maximum likelihood estimation, which assumes the knowledge of the underlying class of densities
P, one can also consider the popular kernel density estimate p̂0 of p0 defined by (in the presence of missing data)

p̂0(y) = 1

n

⎧⎨⎩
n∑

i=1

�i

1

a
p
n

H

(
Yi − y

an

)
+

n∑
i=1

(1 − �i )

⎡⎣ n∑
j=1

�n,j (Xi )
1

a
p
n

H

(
Yj − y

an

)⎤⎦⎫⎬⎭
= 1

na
p
n

n∑
i=1

[
�iH

(
Yi − y

an

)
+ (1 − �i )

∑n
j=1�jK((Xj − Xi )/hn)H((Yj − y)/an)∑n

j=1�jK((Xj − Xi )/hn)

]
, (42)

where H : Rp → R is the kernel with smoothing parameter an. When p = d = 1, (i.e., when (X, Y ) is bivariate),
and upon taking K = H with possibly different smoothing parameters hn and an, the estimator in (42) coincides
with Hazelton’s (2000) estimator. For this special case, it is shown in the cited paper that if nhnan/ log n → ∞
then supy∈R|p̂0(y) − p0(y)| a.s.→ 0 holds under classical assumptions (i.e., Lipschitz continuity and symmetricity of
the common kernel, with a compact support, and the uniform continuity of the density p0(y)). In fact, it is rather
straightforward to show that if nhd

na
p
n / log n → ∞ then supy∈Rp |p̂0(y)−p0(y)| a.s.→ 0 for the estimator defined in (42),

under similar assumptions on the analytic properties of H and p0. The estimator (42) is essentially a single imputation
estimator. One can, alternatively, consider a multiple imputation estimator.

4. Proofs of auxiliary results

Before proving various auxiliary results of this paper we state a number of technical lemmas:

Lemma 4.1. Let G be a totally bounded class of functions g : Rd+p → R, with ‖g‖∞ < B for every g in G. Also, let
Vn(g) be as in (2). Then, under conditions (F), (p), (K), and (V), for every ε > 0 and n�2

P

{
sup
g∈G

|Vn(g) − V(g)| > ε

}
�2nN∞

(ε

3
,G
)

[2e−nε2/288B2 + e−d1(ε−d2hn)2(n−1)hd
n

+ e−d3(ε−d4hn)2(n−1)hd
n + e−d5(ε−d6hn)2(n−1)hd

n ],
where the positive constants d1, . . . , d6 do not depend on n or ε and are given by

d1 = d3 =
(

pminfmin

27B

)2
/

(2‖K‖∞(‖f ‖∞ + 2pminfmin/3)),

d5 =
(

pminfmin

54B

)2
/

(2‖K‖∞(‖f ‖∞ + pminfmin/3)),

d2 = 27

pminfmin

(∨d

i=1
sup
g∈G

sup
x

∣∣∣∣�V(g|x)

�xi

∣∣∣∣ ‖f ‖∞ + Bd‖f ′‖∞

)
d∑

j=1

∫
|yj |K(y) dy,

d4 = Bd2,

d6 = 54B

pminfmin

⎛⎝d‖f ′‖∞
d∑

j=1

∫
|yj |K(y) dy

⎞⎠ .

Here, V(g|x) = E[�g(Z)|X = x].
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In order to state the next two lemmas, define

�(g|X) = f (X)E[�g(Z)|X], (43)

�̂(g|X) = 1

�hd
�

�∑
j=1

�j g(Zj )K

(
Xj − X

h�

)
. (44)

Lemma 4.2. Suppose that conditions (F), (K), and (V) hold. Then

sup
g∈G

|E[�̂(g|X)|X] − �(g|X)|� |cons.|h�.

Lemma 4.3. Suppose that ‖f ‖∞ < ∞ and ‖K‖∞ < ∞. If h� → 0 and �hd
� → ∞, as � → ∞, then for every  > 0

there is a n0 such that for all n > n0

P

{
sup
g∈G

|�̂(g|X) − E[�̂(g|X)|X]| � 

2

∣∣∣X}

�4
√

E[N(/(32‖f ‖∞),G, ‖‖W�(X))]2[e−2�hd
� /512B2b10 + 2e−�hd

� /4b10 ] + 4e−�hd
� b11 , (45)

where b10 = ‖K‖∞(‖f ‖∞ + 1) and b11 = ‖f ‖∞/(12‖K‖∞).

Proof of Theorem 1.2. This is an immediate consequence of Lemma 4.1. �

Proof of Theorem 1.3. Put �n = (n−1h−d
n log n)1/(2+�). Then, for any ε > 0, Lemma 4.1 in conjunction with the

entropy bound (3) lead to

P

{
sup
g∈G

�−1
n |Vn(g) − V(g)| > ε

}

�2elog n+(ε�n/3)−�
M

[
2e−nε2�2

n/288B2 +
3∑

i=1

e−d2i−1(ε�n−d2ihn)2(n−1)hd
n

]

= 4 exp

{
−n�2

n

[
ε2

288B2 − (ε/3)−�M

n�2+�
n

− log n

n�2
n

]}

+ 2
3∑

i=1

exp{−d2i−1(ε�n − d2ihn)
2(n − 1)hd

n + (ε/3)−�M�−�
n + log n}

:= 4In,0(ε) + 2
3∑

i=1

In,i(ε) (say).

Given conditions (4), it is straightforward to show that
∑∞

n=1In,0(ε) < ∞. Furthermore, for i = 1, 2, 3,

In,i(ε)� exp

{
−�2

nnhd
n

[
d2i−1

2

(
ε − d2ihn

�n

)2

− (ε/3)−�M

�2+n
n nhd

n

− log n

�2
nnhd

n

]}
.

Therefore,
∑∞

n=1In,i(ε) < ∞, (since hn/�n → 0), which completes the proof of Theorem 1.3, via the Borel–Cantelli
lemma. �
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Proof of (22). Put

�n,i = P

{
sup
g∈G

|In,i(g)|� nε

18m

}
, and note that �n �

n∑
i=�+1

�n,i , (46)

where In,i(g) is as in (19). Next, define

V(g|x) = E(�′g(Z′)|X′ = x), V̂(g|x) =
∑�

j=1�j g(Zj )K((Xj − x)/h�)∑�
j=1K((Xj − x)/h�)

, and

p̂(x) =
∑�

j=1�jK((Xj − x)/h�)∑�
j=1K((Xj − x)/h�)

,

and note that for i = � + 1, . . . , n,

�n,i �P

{
sup
g∈G

∣∣∣∣∣V̂(g|X′
i )

p̂(X′
i )

− V(g|X′
i )

p(X′
i )

∣∣∣∣∣ � ε

18

}
. (47)

At the same time, since |V̂(g|X)/p̂(X)|�‖g‖∞ �B, elementary algebra yields∣∣∣∣∣V̂(g|X)

p̂(X)
− V(g|X)

p(X)

∣∣∣∣∣=
∣∣∣∣∣−V̂(g|X)/p̂(X)

p(X)
(p̂(X) − p(X)) + V̂(g|X) − V(g|X)

p(X)

∣∣∣∣∣
� |p̂(X) − p(X)|

pmin/B
+ |V̂(g|X) − V(g|X)|

pmin
. (48)

Also, let f̂� be the usual kernel density estimator (of the distribution of X), based on X1, . . . , X�, i.e., f̂�(x) =
(�hd

� )−1∑�
i=1K((Xi − x)/h�). Then, it is straightforward to see that the second term on the r.h.s. of (48) can be

bounded by∣∣∣∣∣V̂(g|X) − V(g|X)

pmin

∣∣∣∣∣= 1

pmin

∣∣∣∣∣ �̂(g|X)

f̂�(X)
− �(g|X)

f (X)

∣∣∣∣∣
� 1

pminfmin
[B|f̂�(X) − f (X)| + |�̂(g|X) − �(g|X)|], (49)

where �̂(g|X) and �(g|X) are given by (44) and (43). Furthermore, for every  > 0,

P

{
sup
g∈G

|�̂(g|X) − �(g|X)|�

}

�E

[
P

{
sup
g∈G

|�̂(g|X) − E[�̂(g|X)|X]| + sup
g∈G

|E[�̂(g|X)|X] − �(g|X)|�|X
}]

�EP

{
sup
g∈G

|�̂(g|X) − E[�̂(g|X)|X]|� 

2

∣∣∣∣∣X
}

for large n (by Lemma 4.2)

�4
√

E[N(/(32‖f ‖∞),G, ‖‖W�(X))]2[e−2�hd
� /512B2b10 + 2e−�hd

� /4b10 ] + 4e−�hd
� b11

(by Lemma 4.3). (50)
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Next, the term p−1
minB|p̂(X) − p(X)| that appears on the right-hand side of (48) can be handled as follows. Let �(1|X)

and �̂(1|X) be as in (43) and (44) with g ≡ 1, and note that

|p̂(X) − p(X)| =
∣∣∣∣∣ �̂(1|X)

f̂ (X)
− �(1|X)

f (X)

∣∣∣∣∣ �
∣∣∣∣∣ f̂ (X) − f (X)

f (X)

∣∣∣∣∣+
∣∣∣∣∣ �̂(1|X) − �(1|X)

f (X)

∣∣∣∣∣ . (51)

By straightforward arguments, (and in fact much simpler than those leading to (50)), one also finds ∀ > 0, (and for n
large),

P {|�̂(1|X) − �(1|X)|�}�2e−�hd
� 2/8‖K‖∞(‖f ‖∞+/2). (52)

It is also trivial to show that ∀ > 0, (and for n large) P {|f̂�(X) − f (X)|�|X} is also bounded by the r.h.s. of (52).
Putting together (47)–(52), and the fact that X′

i is independent of (Zj , �j )’s, one finds for n large enough,

�n,i �P

{
sup
g∈G

|�̂(g|X′
i ) − �(g|X′

i )|�
εpminfmin

54

}
+ P

{
|�̂(1|X′

i ) − �(1|X′
i )|�

εpminfmin

54B

}

+ P

{
|f̂�(X′

i ) − f (X′
i )|�

εpminfmin

108B

}
�2[2{e−�hd

� b7ε
2 + 2e−�hd

� b1}��(G, ε) + 2e−�hd
� b2 + e−�hd

� q1(ε)ε
2 + e−�hd

� q2(ε)ε
2 ],

where b1, b2„ b7, and ��(G, ε) are as in (8), (9), (14), and (7), respectively, and

q1(ε) = p2
minf

2
min

8(54)2B‖K‖∞(B‖f ‖∞ + (εpminfmin)/108)
, (53)

q2(ε) = p2
minf

2
min

8(108)2B2‖K‖∞(‖f ‖∞ + (εpminfmin)/216B)
. (54)

Referring back to the definition of �ni in (46), it is clear that one only needs to consider ε�36B, (because �ni = 0, for
ε > 36B). In other words, one only needs to consider q1(ε)�b5 and q2(ε)�b6, where b5 and b6 are given by (12) and
(13). Thus one finds the loose upper bound

�n,i �4[3e−�hd
� (b5∧b6∧b7)ε

2 + 3e−�hd
� (b1∧b2)]��(G, ε).

Now, (22) follows from the above bound on �n,i in conjunction with (46). �

Proof of (23).

�n(Dn)�1 − P

{∣∣∣∣∣
n∑

i=1

gε(Z′
i ) − nV(gε|Dn)

∣∣∣∣∣ � nε

6

∣∣∣∣∣Dn

}

− P

{∣∣∣∣∣
n∑

i=1

(1 − �′
i )(gε(Z′

i ) − E[gε(Z′
i )|X′

i ,Dn])
∣∣∣∣∣ � nε

6

∣∣∣Dn

}

− P

{∣∣∣∣∣
n∑

i=1

(1 − �′
i )E[gε(Z′

i )|X′
i ,Dn] −

(
1 + �

m

)

×
n∑

i=�+1

(1 − �′
i )

⎡⎣ �∑
j=1

��,j (X
′
i )gε(Zj )

⎤⎦∣∣∣∣∣∣ � nε

6

∣∣∣Dn

⎫⎬⎭
:= 1 − �n,1 − �n,2 − �n,3. (55)
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The term �n,1 can be bounded using Hoeffding’s inequality (recall: ‖g‖∞ < B, ∀g ∈ G):

�n,1 �2e−nε2/(72B2). (56)

The term �n,2. First observe that, conditional on Dn, (X′
1, �

′
1), . . . , (X

′
n, �

′
n), and under the MAR assumption, the

terms

Wi = (1 − �′
i )(gε(Z′

i ) − E[gε(Z′
i )|X′

i ,Dn]), i = 1, . . . , n

are independent, zero-mean random variables (due to MAR assumption), which are bounded by −2B and +2B.
Invoking Hoeffding’s inequality once again,

�n,2 = E

[
P

{∣∣∣∣∣
n∑

i=1

Wi

∣∣∣∣∣ � nε

6

∣∣∣Dn, (X′
1, �

′
1), . . . , (X

′
n, �

′
n)

}∣∣∣∣∣Dn

]
�2e−nε2/(288B2). (57)

The term �n,3. Start with the bound

�n,3 �P

⎧⎨⎩1

n

∣∣∣∣∣∣
n∑

i=�+1

(1 − �′
i )

⎡⎣ �∑
j=1

��,j (X
′
i )gε(Zj )

⎤⎦−
n∑

i=�+1

(1 − �′
i )E[gε(Z′

i )|X′
i ,Dn]

∣∣∣∣∣∣
+
∣∣∣∣∣∣ �

mn

n∑
i=�+1

(1 − �′
i )

⎡⎣ �∑
j=1

��,j (X
′
i )gε(Zj )

⎤⎦∣∣∣∣∣∣
+
∣∣∣∣∣1n

�∑
i=1

(1 − �′
i )E[gε(Z′

i )|X′
i ,Dn]

∣∣∣∣∣ � ε

6

∣∣∣Dn

}

�P

⎧⎨⎩1

n

∣∣∣∣∣∣
n∑

i=�+1

(1 − �′
i )

⎡⎣ �∑
j=1

��,j (X
′
i )gε(Zj )

⎤⎦−
n∑

i=�+1

(1 − �′
i )E[gε(Z′

i )|X′
i ,Dn]

∣∣∣∣∣∣
+ ε

18
+ ε

18
� ε

6

∣∣∣Dn

}
(for large n), (58)

�P

⎧⎨⎩
n∑

i=�+1

sup
g∈G

∣∣∣∣∣∣
�∑

j=1

��,j (X
′
i )g(Zj ) − E[g(Z′

i )|X′
i]
∣∣∣∣∣∣ � nε

18

∣∣∣Dn

⎫⎬⎭ , (59)

where (58) follows from the two trivial bounds |∑�
j=1��,j (X

′
i )gε(Zj )|�‖g‖∞<B and |E[gε(Z′

i )|X′
i ,Dn]|�‖g‖∞<B,

and the fact that �/n → 0. Furthermore, we may replace E[g(Z′
i )|X′

i] in (59) by (1/p(X′
i ))E[�′

ig(Z′
i )|X′

i], where

p(x) = P(�′ = 1|X′ = x). This is because E[�′
ig(Z′

i )|X′
i] = E[E(�′

ig(Z′
i )|X′

i , Y′
i )|X′

i]
by MAR= E[g(Z′

i )p(X′
i )|X′

i].
Thus one obtains

�n,3 �P

{
n∑

i=�+1

sup
g∈G

|In,i(g)|� nε

18

∣∣∣Dn

}
:= �n(Dn),

where (as before)

In,i(g) :=
∑�

j=1�j g(Zj )K((Xj − X′
i )/h�)∑�

j=1�jK((Xj − X′
i )/h�)

− E[�′
ig(Z′

i )|X′
i]

p(X′
i )

.

This last bound on �n,3 together (55)–(57) gives

�n(Dn)�1 − 4e−nε2/(288B2) − �n(Dn),

which completes the proof of (23). �
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Proof of Theorem 3.1. First note that in view of Lemma 3.1

P

{∣∣∣∣E[|	n(Z) − 	∗(Z)|2|Dn] − inf
	∈


E|	(Z) − 	∗(Z)|2
∣∣∣∣> ε

}

�P

{
sup
	∈


|L̂MI(	) − E|	(Z) − Y |2| > ε

2

}

�NP

{
sup
	∈


|L̂n(	) − E|	(Z) − Y |2| > ε

2

}
where L̂n is as in (36).

But

P

{
sup
	∈


|L̂n(	) − E|	(Z) − Y |2| > ε

2

}

�P

{
sup
	∈


∣∣∣∣∣1n
[

n∑
i=1

�i	
2(Zi ) + n

m

n∑
i=�+1

(1 − �i )Ê(	2(Zi )|Xi )

]
− E(	2(Z))

∣∣∣∣∣> ε

6

}

+ P

{∣∣∣∣∣1n
[

n∑
i=1

�iY
2
i + n

m

n∑
i=�+1

(1 − �i )Y
2
i

]
− E(Y 2)

∣∣∣∣∣> ε

6

}

+ P

{
2 sup

	∈


∣∣∣∣∣1n
[

n∑
i=1

�iYi	(Zi ) + n

m

n∑
i=�+1

(1 − �i )YiÊ(	(Zi )|Xi )

]
− E(Y	(Z))

∣∣∣∣∣> ε

6

}
:= In + IIn + IIIn (say), (60)

where Ê(	k(Zi )|Xi )=∑�
j=1�j	

k(Zi )K((Xj −Xi )/h�)÷∑�
j=1�jK((Xj −Xi )/h�), for k=1, 2, and Xi=(Yi, VT

i )T.

We may bound In as follows. Let G = {	2|	 ∈ 
} and observe that ∀g′, g′′ ∈ G

‖g′ − g′′‖W�(X) =
�∑

j=1

�jW�,j (x)|g′(Zj ) − g′′(Zj )|

�
�∑

j=1

�jW�,j (x)[|	′(Zj ) − 	′′(Zj )| × |	′(Zj ) + 	′′(Zj )|]

�2C‖	′ − 	′′‖W�(X) where C = ‖	′‖∞ = ‖	′′‖∞.

In other words, if {	1, . . . ,	N } is a minimal �/2C-cover for 
, w.r.t. ‖‖W�(X) then the class of functions {g	1
, . . . , g	N

},
where g	i

(Z) = 	2
i (Z), is an ε-cover of G. Therefore, N(ε,G, ‖‖W�(X))�N(ε/(2C), 
, ‖‖W�(X)). Now this fact

together with Theorem 2.2 give the bound

In �c30E[N(c31ε, 	, ‖‖1,n)]e−c32nε2 + c33mE[N(c34ε, 	, ‖‖W�(X))]e−c35mε2

+ m

√
E[N(c36ε, 	, ‖‖W�(X))]2 × [c37e−c38�h

d
� + c39e−c40�h

d
� ε2 ],

where c30, . . . , c40 are positive constants not depending on n. The term IIn is rather trivial to deal with:

IIn �P

{∣∣∣∣∣1n
n∑

i=1

�iY
2
i − E(�Y 2)

∣∣∣∣∣> ε

12

}
+ P

{∣∣∣∣∣ 1

m

n∑
i=�+1

(1 − �i )Y
2
i − E((1 − �)Y 2)

∣∣∣∣∣> ε

12

}

�2e−c41nε2 + 2e−c42mε2
(via two applications of Hoeffding’s inequality).
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As for the last term, IIIn, Theorem 2.3 implies that for large n,

IIIn �c43E[N(c44ε, 	, ‖‖1,n)]e−c39nε2 + c45mE[N(c46ε, 	, ‖‖W�(X))]e−c47mε2

+ m

√
E[N(c48ε, 	, ‖‖W�(X))]2 × [c49e−c46�h

d
� + c50e−c51�h

d
� ε2 ],

for positive constants, c43, . . . , c51, that do not depend on n. This completes the proof of Theorem 3.1. �

Proof of Lemma 3.1. Using the decomposition E(|	n(Z) − Y |2|Dn) = E(|	n(Z) − 	∗(Z)|2|Dn) + E|	∗(Z) − Y |2,
one may write

E(|	n(Z) − 	∗(Z)|2|Dn) =
[
E(|	n(Z) − Y |2|Dn) − inf

	∈

E|	(Z) − Y |2

]

+
[

inf
	∈


E|	(Z) − Y |2 − E|	∗(Z) − Y |2
]

.

However, the second square-bracketed term above is equal to inf	∈
E|	(Z) − 	∗(Z)|2, and

the first square-bracketed term = sup
	∈


{E(|	n(Z) − Y |2|Dn) − L̂MI(	n)

+ L̂MI(	n) − L̂MI(	) + L̂MI(	) − E|	(Z) − Y |2}
�2 sup

	∈

|L̂MI(	) − E|	(Z) − Y |2| since (61) �0. � (61)

Proof of Lemma 3.2. By the definition of p̂n, for every 0 < p ∈ P, one has L̂MI(p̂n/p) = L̂MI(p̂n) − L̂MI(p)�0.
Furthermore, by the concavity of the logarithmic function

1

2
log

p̂n

p0
I {p0 > 0}� log

p̂n + p0

2p0
I {p0 > 0}.

Therefore,

0�L̂MI

(
p̂n

p0
I {p0 > 0}

)
�2L̂MI

(
p̂n + p0

2p0
I {p0 > 0}

)
= 2

[
L̂MI

(
p̂n + p0

2p0
I {p0 > 0}

)
− Ln

(
p̂n + p0

2p0
I {p0 > 0}

)]
+ 2Ln

(
p̂n + p0

2p0
I {p0 > 0}

)
,

where Ln is given by (40). But (p̂n + p0)/2 is also a density and hence, by Lemma 1.3 of van de Geer (2000),

Ln

(
p̂n + p0

2p0
I {p0 > 0}

)
� − 2d2

H

(
p̂n + p0

2
, p0

)
,

which completes the proof of the lemma (since p̄n := (p̂n + p0)/2). �

Proof of Lemma 4.1. Fix ε > 0 and let Gε/3 be an ε/3-cover of G, w.r.t. the ‖‖∞-norm, (recall that G is totally
bounded). Also, let N∞(ε/3,G) be the cardinality of the smallest such covers. Then for every g ∈ G and every
ε > 0, there is g∗ ∈ Gε/3 such that |Vn(g) − V(g)|�2ε/3 + |Vn(g

∗) − V(g∗)|, where we have used the fact that∑n
j=1,�=i�n,j (X)�1. Hence

P

{
sup
g∈G

|Vn(g) − V(g)| > ε

}
�N∞

(ε

3
,G
)

max
g∈Gε/3

P {|Vn(g) − V(g)| > ε/3}. (62)
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However, P {|Vn(g) − V(g)| > ε/3}�Dn,1 + Dn,2 + Dn,3, where

Dn,1 = P

{
n−1

∣∣∣∣∣
n∑

i=1

g(Zi ) − nV(g)

∣∣∣∣∣> ε

9

}

Dn,2 = P

{
n−1

∣∣∣∣∣
n∑

i=1

(1 − �i )[g(Zi ) − E(g(Zi )|Xi )]
∣∣∣∣∣> ε

9

}

Dn,3 = P

⎧⎨⎩n−1

∣∣∣∣∣∣
n∑

i=1

(1 − �i )

⎡⎣ n∑
j=1,�=i

�n,j (Xi )g(Zj ) − E(g(Zi )|Xi )

⎤⎦∣∣∣∣∣∣> ε

9

⎫⎬⎭ .

Using Hoeffding’s inequality, (also, cf. (56) and (57)) one immediately finds Dn,1 �2 exp{−nε2/(72B2)} and
Dn,2 �2 exp{−nε2/(288B2)}. Furthermore, arguments similar to (and in fact simpler than) those used in the proof
of (22) lead to the bound: Dn,3 �

∑n
i=1qn,i , with

0�qn,i �P

{
2g|f̂n−1(Xi ) − f (Xi )| + B−1|�̂n−1(g|Xi ) − �(g|Xi )|

+|�̂n−1(1|Xi ) − �(1|Xi )| > pminfminε

9B

}
.

Here, f̂n−1(Xi ) = (n − 1)−1h−d
n

∑n
j=1,�=iK((Xj − Xi )/hn) and �(g|Xi ) = f (Xi )E[�ig(Zi )|Xi] and �̂n−1(g|Xi ) =

(n − 1)−1h−d
n

∑n
j=1,�=i�j g(Zj )K((Xj − Xi )/hn). On the other hand, under the assumptions of Lemma 4.1,

|E[�̂n−1(g|Xi )|Xi] − �(g|Xi )|�hnd2pminfmin/27, where d2 is defined in Lemma 4.1, (the proof is similar to, and in
fact simpler than, the proof of Lemma 4.2). Using this fact, it is straightforward to show (via Bennett’s inequality) that
for every  > 0,

P
{
|�̂n−1(g|Xi ) − �(g|Xi )| > g|Xi

}
�2 exp

{
− ( − c0hn)

2(n − 1)hd
n

2B‖K‖∞[B‖f ‖∞ + ( − c0hn)]

}
∧ 1,

where c0 = d2pminfmin/27. Similarly, one can also show that |E[f̂n−1(Xi )|Xi] − f (Xi )|�c00hn, where c00 =
d6pminfmin/(54B). Consequently, for every  > 0,

P {|f̂n−1(Xi ) − f (Xi )| > |Xi}�2 exp

{
− ( − c00hn)

2(n − 1)hd
n

2‖K‖∞[‖f ‖∞ + ( − c00hn)]

}
∧ 1.

The rest of the proof is trivial. �

Proof of Lemma 4.2. Since X is independent of (Z1, �1), . . . , (Z�, ��),

E[�̂(g|X)|X] − �(g|X)

= h−d
� E[�1g(Z1)K((X1 − X)/h�)|X] − f (X)E[�g(Z)|X]

= h−d
� E[K((X1 − X)/h�)E(�1g(Z1)|X, X1)|X] + f (X)V(g|X),

where V(g|X)=E(�g(Z)|X). Once again, from the independence of (Z1, �1) and X, one obtains E(�1g(Z1)|X, X1)=
E(�1g(Z1)|X1) =: V(g|X1). Consequently, one finds
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E[�̂(g|X)|X] − �(g|X)

= h−d
� E[(V(g|X1) − V(g|X))K((X1 − X)/h�)|X]

+ E[V(g|X)(h−d
� K((X1 − X)/h�) − f (X))|X]

= T1(X) + T2(X) (say). (63)

A one-term Taylor expansion gives

T1(X) = h−d
� E

[(
d∑

i=1

�V(g|X∗)
�xi

(X1,i − Xi)

)
K

(
X1 − X

h�

)∣∣∣∣∣X
]

,

where X1,i and Xi are the ith components of X1 and X, respectively, and X∗ is on the interior of the line segment
joining X and X1. Thus

|T1(X)|�Cg

d∑
i=1

E

[
|X1,i − Xi | · h−d

� K

(
X1 − X

h�

)∣∣∣∣X] where Cg =
d∨

i=1

sup
g

sup
x

∣∣∣∣�V(g|x)

�xi

∣∣∣∣
= Cg

d∑
i=1

∫
Rd

|xi − Xi |h−d
� K

(
x − X

h�

)
f (x) dx

�Cg‖f ‖∞
d∑

i=1

∫
Rd

h�|yi |K(y) dy. (64)

As for T2(X) that appears in (63), note that

T2(X) = V(g|X)

∫
Rd

h−d
� K

(
u − X

h�

)
[f (u) − f (X)] du

=V(g|X)

∫
Rd

[f (X + h�y) − f (X)]K(y) dy.

Since |V(g|X)|�B, a one-term Taylor expansion results in

|T2(X)|�
(

Bd‖f ′‖∞
d∑

i=1

∫
|yi |K(y) dy

)
h�. (65)

This last bound together with (64) and (63) complete the proof of Lemma 4.2. �

Proof of Lemma 4.3. We will use standard symmetrization arguments as follows. Let

�̂(g|X) = �−1
�∑

j=1

�j g(Zj )K

(
Xj − X

h�

)
and �(g|X) = E

(
�0g(Z0)K

(
X0 − X

h�

)∣∣∣∣X) , (66)

where (Z0, �0) = (X0, Y0, �0)
iid=(X1, Y1, �1). Now, clearly

P

{
sup
g∈G

|�̂(g|X) − E[�̂(g|X)|X]|� 

2

∣∣∣∣∣X
}

= P

{
sup
g∈G

h−d
� g|�̂(g|X) − �(g|X)g|� 

2

∣∣∣∣∣X
}

. (67)

Fix D� and X, and note that if supg∈Gh−d
� |�̂(g|X) − �(g|X)|�/2 then there is at least some g∗ ∈ G (which will

depend on D� and X), such that h−d
� |�̂(g∗|X) − �(g∗|X,D�)|�/2, where

�(g∗|X,D�) = E

(
�0g

∗(Z0)K

(
X0 − X

h�

)∣∣∣∣X,D�

)
.
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Let D′
� = {(X′

i , Y′
i , �

′
i ), i = 1, . . . , �} be a hypothetical sample independent of D� and X. Define the counterpart of

�̂(g|X) by

�̂′
(g|X) = �−1

�∑
j=1

�′
j g(Z′

j )K

(
X′

j − X

h�

)

and observe that

P
{

h−d
� |�̂′

(g∗|X) − �(g∗|X,D�)| < 

4

∣∣∣X,D�

}
�1 − sup

g∈G
P

⎧⎨⎩�−1

∣∣∣∣∣∣
�∑

j=1

Wj

∣∣∣∣∣∣ � 

4

∣∣∣∣∣∣X
⎫⎬⎭ , (68)

where, for j = 1, . . . , �,

Wj = h−d
�

[
�j g(Zj )K

(
Xj − X

h�

)
− E

(
�0g(Z0)K

(
X0 − X

h�

)∣∣∣∣X)] .

However, conditional on X, the terms Wj are independent, zero-mean random variables, bounded by −h−d
� B‖K‖∞ and

+h−d
� B‖K‖∞. Furthermore, Var(Wj |X)=E(W 2

j |X)�h−2d
� B2E[K2((Xj −X)/h�)|X]�h−d

� B2‖K‖∞
∫
Rd K(u)f

(X + uh�) du�h−d
� B2‖K‖∞‖f ‖∞. Therefore, by Bennett’s inequality, and the fact that �hd

� → ∞, as n → ∞, one
finds

P

⎧⎨⎩�−1

∣∣∣∣∣∣
�∑

j=1

Wj

∣∣∣∣∣∣ � 

4

∣∣∣∣∣∣X
⎫⎬⎭ �2 exp

{
−�hd

�2

32B‖K‖∞(B‖f ‖∞ + /4)

}
for large n

� 1

2
. (69)

Combining the above results, one finds for large n (and thus �),

1

2
�P

{
h−d

� g|�̂′
(g∗|X) − �(g∗|X,D�)g| < 

4

∣∣∣X,D�

}

�P

⎧⎪⎨⎪⎩−h−d
� g|�̂′

(g∗|X) − �̂(g∗|X)| + h−d
� g|�̂(g∗|X) − �(g∗|X,D�)|︸ ︷︷ ︸

�/2

<


4

∣∣∣∣∣∣∣X,D�

⎫⎪⎬⎪⎭
�P

{
sup
g∈G

|�̂′
(g|X) − �̂(g|X)| > hd

�

4

∣∣∣∣∣X,D�

}
. (70)

Note that the far left and far right sides of (70) do not depend on any particular g∗ ∈ G. Multiplying both sides by
I {supg∈G|�̂(g|X) − �(g|X)| > hd

�/2} and taking expectation w.r.t. the distribution of D�, one finds (for large n),

P

{
sup
g∈G

|�̂(g|X) − �(g|X)| > hd
�

2

∣∣∣∣∣X
}

�2P

{
sup
g∈G

|�̂′
(g|X) − �̂(g|X)| > hd

�

4

∣∣∣∣∣X
}

. (71)

Now, observe that the joint distribution of the vector(
�1g(Z1)K

(
X1 − X

h�

)
, . . . , ��g(Z�)K

(
X� − X

h�

))
is the same as that of the vector(

�′
1g(Z′

1)K

(
X′

1 − X
h�

)
, . . . , �′

�g(Z′
�)K

(
X′

� − X

h�

))
,
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and this joint distribution is not affected if the corresponding components of these two vectors are randomly
interchanged. Thus, for an independent Rademacher sequence, �1, · · · , ��, independent of X, (Xi , Yi , �i ),
and (X′

i , Y′
i , �

′
i ), i = 1, . . . , �, one has

sup
g∈G

1

�

∣∣∣∣∣
�∑

i=1

[
�ig(Zi )K

(
Xi − X

h�

)
− �′

ig(Z′
i )K

(
X′

i − X

h�

)]∣∣∣∣∣
d= sup

g∈G
1

�

∣∣∣∣∣
�∑

i=1

�i

[
�ig(Zi )K

(
Xi − X

h�

)
− �′

ig(Z′
i )K

(
X′

i − X

h�

)]∣∣∣∣∣ ,
which leads to

R.H.S. of (71)�2P

{
sup
g∈G

∣∣∣∣∣
�∑

i=1

�i

[
�ig(Zi )K

(
Xi − X

h�

)]∣∣∣∣∣> �hd
�

8

∣∣∣∣∣X
}

. (72)

Next, fixD�, put ε′′=/(32‖f ‖∞), and letG�,ε′′ be an ε′′-cover ofGwith respect to‖‖W�(x).Also, letN(ε′′,G, ‖‖W�(x))

be the ε′′ covering number of G w.r.t ‖‖W�(x). Then, for some g∗ ∈ G�,ε′′ ,

∣∣∣∣∣
�∑

i=1

�i

[
�ig(Zi )K

(
Xi − X

h�

)]∣∣∣∣∣ �
∣∣∣∣∣

�∑
i=1

�i�ig
∗(Zi )K

(
Xi − X

h�

)∣∣∣∣∣+ �hd
� f̂�(X)‖g − g∗‖W�(X)

� |the first term above| + �hd
� f̂�(X)ε′′.

Therefore, one finds

(R.H.S. of (72))

�2E

[
I {f̂�(X) < 2‖f ‖∞}

×P

{
sup

g∈G�,ε′′

1

�

∣∣∣∣∣
�∑

i=1

�i�ig(Zi )K

(
Xi − X

h�

)∣∣∣∣∣> hd
�

8
− hd

� f̂�(X)ε′′
∣∣∣∣∣X,D�

}∣∣∣∣∣X
]

+ 2P {f̂�(X)�2‖f ‖∞}

�2E

[
N(ε′′,G, ‖‖W�(X)) max

g∈G�,ε′′
P

{
1

�

∣∣∣∣∣
�∑

i=1

�i�ig(Zi )K

(
Xi − X

h�

)∣∣∣∣∣> hd
�

16

∣∣∣∣∣X,D�

}∣∣∣∣∣X
]

+ 2P {f̂�(X)�2‖f ‖∞}
:= In,1 + In,2 (say). (73)

On the other hand, conditional on D� and X, the terms �i�ig(Zi )K((Xi − X)/h�), i = 1, . . . , � are independent,
zero-mean random variables bounded by −BK((Xi − X)/h�) and +BK((Xi − X)/h�). Therefore, bounding the
above inner conditional probability (in the definition of In,1) via Hoeffding’s inequality, one obtains

In,1 �4E

[
N

(


32‖f ‖∞
,G, ‖‖W�(x)

)
exp

{
− 2�2h2d

�

512B2
∑�

i=1K
2((Xi − X)/h�)

}∣∣∣∣∣X
]

. (74)
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Put Vi =K((Xi − X)/h�) − E[K((Xi − X)/h�)|X] and observe that since E[K((Xi − X)/h�)|X]�‖f ‖∞hd
� , one

may write

E

[
exp

{
− 2�2h2d

�

256B2
∑�

i=1K
2((Xi − X)/h�)

}∣∣∣∣∣X
]

�E

[
exp

{
− 2�2h2d

�

256B2‖K‖∞(|∑�
i=1Vi | + ‖f ‖∞�hd

� )

}

×
(

I

{∣∣∣∣∣
�∑

i=1

Vi

∣∣∣∣∣< �hd
�

}
+ I

{∣∣∣∣∣
�∑

i=1

Vi

∣∣∣∣∣ ��hd
�

})∣∣∣∣∣X
]

� exp

{
− 2�hd

�

256B2‖K‖∞(1 + ‖f ‖∞)

}
+ P

{∣∣∣∣∣
�∑

i=1

Vi

∣∣∣∣∣ ��hd
�

∣∣∣∣∣X
}

.

At the same time, since E(Vi |X)=0 and Var(Vi |X)�hd
�‖K‖∞‖f ‖∞, one may once again invoke Bennett’s inequality

to conclude that P {|∑�
i=1Vi |��hd

� |X}� 2 exp{−�hd
� /[2‖K‖∞(1 + ‖f ‖∞)]}. Now the first term on the r.h.s. of (45)

follows from (71)–(74) in conjunction with Cauchy–Schwarz inequality and the elementary fact that |x+y|r � |x|r+|y|r ,
which holds for all 0 < r �1. As for the term In,2 in (73), it is straightforward to show that In,2 �2P {|f̂�(X) −
f (X)| > ‖f ‖∞}�4 exp{−�hd

�‖f ‖∞/(12‖K‖∞)}. This completes the proof of (45). �
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