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Abstract

In this paper we introduce a new embedding technique to find the linear projection that best projects labeled data samples into a new
space where the performance of a Nearest Neighbor classifier is maximized. We consider a large set of one-dimensional projections and
combine them into a projection matrix, which is not restricted to be orthogonal. The embedding is defined as a classifier selection task that
makes use of the AdaBoost algorithm to find an optimal set of discriminant projections. The main advantage of the algorithm is that the
final projection matrix does not make any global assumption on the data distribution, and the projection matrix is created by minimizing
the classification error in the training data set. Also the resulting features can be ranked according to a set of coefficients computed during
the algorithm. The performance of our embedding is tested in two different pattern recognition tasks, a gender recognition problem and

the classification of manuscript digits.
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1. Introduction

This paper deals with feature extraction applied to near-
est neighbor classification. Feature extraction allows a
compact representation of the input data, due to the di-
mensionality reduction achieved during the process, what
increases the performance of the global scheme reducing
the storage needs and the computational costs. In our case
we have focused on discriminant analysis techniques, which
take into account class membership of the input data, learn-
ing invariant characteristics that increase the classification
ratios.

Maybe one of the first attempt to dimensionality reduc-
tion applied to classification is principal component analysis
[1,2] where the goal is to find the linear projection matrix
that preserves the maximum amount of input data variance.
In discriminant analysis the labels are also considered in

* Corresponding author. Tel.: +3493 581 1828.
E-mail addresses: davidm@cvc.uab.es (D. Masip),
jordi@cvc.uab.es (J. Vitria).

the linear feature extraction process, and the goal is to find
the orthogonal set of basis that maximizes some separability
criteria. The main problem of linear discriminant algorithms
is their dependency on a set of assumptions that sometimes
are not met in the data distribution [3].

Last years some nonlinear algorithms applied to feature
extraction have appeared. Tenenbaum et al. [4] introduced
the isomap algorithm, which tries to preserve the geodesic
distances between points in the low-dimensional embedding.
Roweis et al. [5] introduced a new nonlinear technique that
preserves the local neighborhood of each point in the em-
bedding process. The nonlinear nature of both techniques
allows to represent the manifold that underlay the training
samples, but there are some difficulties using both algorithms
with new unseen input vectors. Also the features extracted
using this nonlinear techniques cannot be ranked in order of
importance for classification purposes.

What we purpose here is an embedding from high-
dimensional space to a low-dimensional one, where the
features are ranked according to coefficients computed
within the algorithm. Also we have not made assumptions
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on the data distributions, and we do not force our projec-
tion to be orthogonal [6]. Our embedding combines a set of
simple 1D projections, which can complement each other
to achieve better classification results. We have made use of
AdaBoost algorithm as a natural way to select the feature
extractors, and the coefficients that can rank the importance
of each projection.

2. Feature extraction for classification

The main goal of this work is to find a mapping
from a high-dimensional space to new one that opti-
mizes a discriminability criteria on the input data that
is suited for nearest neighbor classification. Discrimi-
nant analysis can be very useful for this task. In this
section we will review the classic Fisher discriminant
analysis (FLD), and an evolution of the algorithm in-
troduced by Fukunaga and Mantock [7], the non para-
metric discriminant analysis (NDA), which improves the
classification results by using the nearest neighbor clas-
sifier and also overcomes the two main drawbacks of
FLD:

e Gaussian assumption over the class distribution of the
data samples.

e Dimensionality of the subspaces obtained which is lim-
ited by the number of classes.

2.1. Discriminant analysis

2.1.1. Fisher discriminant analysis

The objective of discriminant analysis is to find the fea-
tures that best separate the different classes. One of the most
used criterions _# to reach is to maximize

where the matrices S£ and S’ generally represent the scatter
of sample vectors between different classes and within a
class respectively. It has been shown (see Refs. [8,9]) that
the M x D linear transform that satisfies

A

W=arg max tr(WISEw) 2)

wTs'w=I
optimizes the separability measure _#. This problem has an
analytical solution based on the eigenvectors of the scatter
matrices. The algorithm presented in Table 1 obtains this
solution [9].

The most widely spread approach for defining the within
and between class scatter matrices is the one that makes use
of only up to second-order statistics of the data. This was
proposed in a classic paper by Fisher [3] and the technique is
referred to as FLD. In FLD the within class scatter matrix is
usually computed as a weighted sum of the class-conditional
sample covariance matrices. If equiprobable priors are as-

sumed for classes Cy, k=1, ..., K, then
| X
I _
§'=— ; ., 3)

where X is the class-conditional covariance matrix, esti-
mated from the sample set. The between class-scatter matrix
is defined by

1 K
SE = K Z(ﬂk — po) (e — po) ™, @)
k=1

where py is the class-conditional sample mean and gy is the
unconditional (global) sample mean.

Notice the rank of S€ is K — 1, so the number of extracted
features is, at most, one less than the number of classes. Also
notice the parametric nature of the scatter matrix. The solu-
tion provided by FLD is blind beyond second-order statis-
tics, so we cannot expect this method to accurately indicate
which features should be extracted to preserve any complex

E ¢l . .
S =tu(S"S"), (D classification structure.
Table 1
General algorithm for solving the discriminability optimization problem stated in Eq. (2)
(1) Given X the matrix containing data samples placed as N D-dimensional columns, S! the within class scatter matrix,
and M maximum dimension of discriminant space.
(2) Compute eigenvectors and eigenvalues for S7. Make @ the matrix with the eigenvectors placed as columns and
A the diagonal matrix with only the nonzero eigenvalues in the diagonal. M/ is the number of non-zero eigenvalues.
(3) Whiten the data with respect to S!. to obtain M! dimensional whitened data,
Z=A""2oTx
(4) Compute S¥ on the whitened data.
(5) Compute eigenvectors and eigenvalues for S¥ and make ¥ the matrix with the eigenvectors placed as
columns and sorted by decreasing eigenvalue value.
6 Preserve only the first ME :min{MI, M,rank(SE)} columns, Yy ={Yy, ..., £} (those correspondin
y 1 M g

to the ME largest eigenvalues).

7 The resulting optimal transformation is W =¥LA~/2®T and the projected data, Y =WX =¥, Z.
M M
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(a)

(b)

Fig. 1. First directions of NDA (solid line) and FLD (dashed line) pro-
jections, for two artificial datasets (a) and (b). Observe the results in (b),
where the FLD assumptions are not met.

2.2. Nonparametric discriminant analysis

In Ref. [7] Fukunaga and Mantock present a nonparamet-
ric method for discriminant analysis in an attempt to over-
come the limitations of FLD. In NDA the between-class
scatter S¥ is of nonparametric nature. This scatter matrix is
generally full rank, thus loosening the bound on extracted
feature dimensionality. Also, the nonparametric structure of
this matrix inherently leads to extracted features that pre-
serve relevant structures for classification. We briefly expose
this technique, extensively detailed in Ref. [9].

In NDA, the between-class scatter matrix is obtained from
vectors locally pointing to another class. This is done as
follows. The extra-class nearest neighbor for a sample x €
Cy is defined by xf = {(x' € Ci/|Ix' —x|I<|z — x|, Yz €
Cy}. In the same fashion we can define the set of intra-class
nearest neighbors by x! ={x’ € L./||x' —x| <|z—x|, ¥z €
Cr}.

From these neighbors, the extra-class differences are de-
fined by 4¥ = x — x¥ and the intra-class differences by
A" =x—x! . Notice that A points locally to the nearest class
(or classes) that does not contain the sample. The nonpara-
metric between-class scatter matrix is defined by (assuming
uniform priors),

N
§F = bl )
n=1

where A% is the extra-class difference for sample x;,.

A parametric form is chosen for the within-class scatter
matrix S’, defined as in (3).

Fig. 1 illustrates the differences between NDA and FLD
in two artificial datasets, one with Gaussian classes where
results are similar, and one where FLD assumptions are not
met. For the second case, the bimodality of one of the classes
displaces the class mean introducing errors in the estimate
of the parametric version of S£. The nonparametric version
is not affected by this situation.

In Ref. [10] Bressan and Vitria introduced also a nonpara-
metric form of the within-class scatter matrix S, which is
expected to improve the NN classification:

N
1 T
Sy = 5 21: ATAL (6)

n=

In fact, the use of the nonparametric within scatter matrix
achieves an intra-class normalization. Instead of assuming
a gaussian distribution on the points of the same class, it
normalizes the distances between each point and their near-
est neighbors, which has been shown to benefit the nearest
neighbor rule.

3. Discriminant embedding

Once the bases of discriminant analysis have been shown,
we will focus on the construction of the embedding pro-
posed in this work. We will not consider a linear projection
built by maximizing some criteria over a statistic measure
of the whole set of points. Instead of that, our mapping will
take into account each point as a generator of a potential
one-dimensional projection. Our objective is to build a high-
dimensional discriminant embedding from a large set of po-
tential one-dimensional discriminant projections. One of the
simplest discriminant projections can be built considering
that each point with its nearest neighbor of each class can
generate a linear classifier, and the goal will be to find the
embedding that optimally combines these classifiers mini-
mizing the classification error.

Given a set of N points we build N simple classifiers
as linear projections to a one-dimensional subspace. Then
we choose the best combination of this projections to build
the final embedding from the high-dimensional space to the
lower one. Our approach uses the AdaBoost algorithm as a
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method of classifier selection [11] and combination, which
has been proved to be very efficient in machine learning
literature. As we will show, we also obtain a way of ranking
the axis of projection as a natural application of the classifier
coefficients intrinsic of the boosting algorithm.

4. Obtaining discriminant 1D subspaces

Let x; be a data point, x; its nearest neighbor of the
same class and x, its nearest neighbor of the other class
(xk, xi, x¢ € X). We will define the vectors u# and v which
point to x; and x, from xg.

We need to find a linear projection f(x) : X — RY that
minimizes the distance between the point xj to the points
of its same class, and maximizes the distance to the points
of the other class. In our case we will deal with extreme
dimensionality reduction (d = 1), so the projection matrix
will be a simple vector. To find this vector we try to maximize
the following criteria:

Fe(0) = (v, r) — (u,r). )

We try to find the direction r where the projection of the extra
class vector is maximum and at the same time the projection
of the intra class vector is minimum. The vector r is a generic
rotation vector, defined as a function the unknown parameter

0:

sin(0) + cos(0) ®)

(cos(@) - sin(H))
We also have added a restriction to the problem, we impose
that the vector solution lies in the plane defined by u and v.
So we project the points xg, X;j, X into the plane, and only
the 2-D problem must be solved. The resulting vectors r can
be easily retroprojected to the original n-dimensional space.
The 2-D problem has a closed solution by deriving F:

oF
a_QE = cos O(—uj + us + vy — v2)

—sin O(u; + uy — vy — v2), ©))

— V] — v
0 = arctan urtust v 2 (10)
Uy +ur —vy — v

Using the resulting 0 it is straightforward to find the coordi-
nates of the projection vector r in the n-dimensional space.

5. AdaBoost embedding

In this section the construction of the global embed-
ding using the simple one-dimensional projections will be

explained. We are interested in a combination of the one-
dimensional projections that can yield a strong nearest
neighbor classifier. Our scheme takes benefit of a very tested
algorithm in machine learning to perform it: AdaBoost
[12,13].

The use of boosting in our scheme is specially justified,
because our 1D projections perform always as weak clas-
sifiers, and we can exploit the sample weight actualization
intrinsic in the boosting scheme to focus the selection of the
next feature axis to the examples more difficult to classify.
This allows us to build a global embedding that combines
simple discriminant projections that together can achieve
more separability on the whole training data set. We also
obtain a simple way of ranking the different features ex-
tracted, by taking into account the weights that receive each
classifier at each step.

5.1. AdaBoost

We have followed a boosting implementation similar to
the one proposed by Viola and Jones [14]. Given a training
set of n points X1, (k points of the label 1 and m points of
the label 2), the algorithm performs as follows:

1. First we define a set of weights Wy 1, (each weight

assigned to one vector). The weights corresponding to
the class 1 are initialized to %, and the weights of the
members of the class 2 are initialized to %
We also build the set of partial classifiers as 1D pro-
jections as it was defined in (10), so each sample X;
generates a projection to a 1D space. Notice that this
projections are stored, and not recomputed again in the
algorithm.

2. Then a fixed number of boosting steps are generated. At
each boosting step s:

o The whole set of classifiers is tested using the
training points X1 ,. We project each data point
in the 1D space generated by each feature extrac-
tion and classify it according to its nearest neigh-
bor. For each different projection, we evaluate its
classification error by

n
Error; = Z Wv,ili,j, (11)

i=1

where [; ; is set to 1 if the point X; has been
correctly classified by the classifier j and to 0
otherwise. Finally we select the classifier ¢ with
minimum Errory_,.

o Using the classification results of the classifier c,
the set of weights W is actualized as:

Wipti = W, e (12)
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where

Error,

B= (13)

1 — Error,
o The coefficient ¢ corresponding to the classifier
at the step s is computed as:

os = log <%> . (14)

o Finally the weights are normalized:
Ws,i
> W,

3. The output of the algorithm is a projection matrix, where
we place at each column iy the 1-D projection corre-
sponding to the best classifier at the step s of the Ad-
aBoost algorithm. In addition the o coefficients are
used to rank the importance of the features extracted for
each 1-D projection.

Wyl = 15)

The projection vectors have been selected taking into ac-
count the nearest neighbor classification rule of the training
set, and at each step complementary projections are selected
(trying to focus the projection on the misclassifed samples),
so the final embedding should be a set of vectors that de-
fine an optimal subspace for classifying using the nearest
neighbor rule.

The complexity of the learning algorithm is quadratic with
respect to the number of training samples and the original
dimensionality of the data. But it is important to note that
the generation of the classifier pool is performed just once.
Further learning can be done adding just the information of
the new vectors. The complexity of the technique in operat-
ing time is reduced to a product matrix as is the case of the
other discriminant analysis algorithms described.

6. Experiments

In order to see the performance of our embedding algo-
rithm, we have tested it in two different experiments. First
we have tried to solve a gender recognition problem, using
the samples of two public available face databases, and then
we have used some digits of the MNIST database [15] for
the same purpose. In both cases we compare our scheme
with classic discriminant analysis solutions.

6.1. Gender recognition

In this experiment we have taken a set of 2500 images
from two public face databases: the AR face database [16]
(leaving out the images with occlusions), and the XM2VTS
[17]. There were 1323 male images and 1177 females in
the global database. To perform our experiments we have
broken the set of images into five independent sets (500

samples each set), and we have averaged the results of all
our tests using a five-fold cross validation (using each time
500 images to train and 2000 to test).

Face images have been preprocessed before the gender
recognition experiment. We have selected the center of the
eyes, and we have aligned and cropped each face image ac-
cording to the inter-eye distance (obtaining a 32 x 40 im-
age) . Also we have normalized each image with respect to
the mean and variance, in order to mitigate the effects of
changes in illumination. In Fig. 2(a) we show some exam-
ples of the face images and their normalized versions. As
can be seen only the internal features of the images have
been taken into account, there is almost no hair or external
information, what makes the problem harder. The final im-
ages are represented as a 1280-dimensional vector.

The results of our experiment show that using the em-
bedding proposed we achieve significantly higher accuracy
ratios than using any other discriminant projection. We have
tested our embedding using two kind of distance measures.
First we have used the nearest neighbor rule with Euclidean
distance. Then we have used the L1 distance. Both algo-
rithms achieve similar ratios. In the Fig. 3(a) we show the
accuracies obtained as a function of the final dimension. We
compare our embedding with the classic Fisher discriminant
analysis (which is equivalent to a one-dimensional projec-
tion in a two class problem), and with the NDA algorithm
using one and five nearest neighbors. We have selected the
projection axis of our embedding according to their im-
portance encoded in the coefficients o . The maximum
classification rate is obtained using our embedding with
Manhattan distance (89%).

6.2. MNIST digit database

In addition to the gender recognition problem, we have
also built a completely different data set to test the perfor-
mance of the embedding. We have selected two digits of the
MNIST database to build a two class classification problem
(we have selected the 1 and the 7 due to their similarity).
Each digit is a 28 x 28 image that is represented as a 784-
dimensional vector. As before we have tested the embed-
ding with Euclidean and L1 distance, and also we have ob-
tained similar results. Again the results obtained using our
embedding are better than NDA and the nearest neighbor in
the original space. The best accuracy is obtained using our
embedding with euclidean distance (98%).

7. Conclusions

In this work we have proposed a new discriminant embed-
ding that makes no assumptions on the data distribution and
that shows better performance than related methods when
used for data classification using the nearest neighbor rule.
We have used the AdaBoost algorithm to select among a
large set of simple projections that best separate the training
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Fig. 2. Examples of the male and female images used in the experiments, taken from the AR face database, the XM2VTS and the MNIST. We also show
the normalized version of the faces. (a) Original faces and their normalized version. (b) Some digits of the MNIST database.

data, so we have not restricted our projection to an orthog-
onal transformation. Moreover, our discriminability criteria
has a nonparametric nature that does not require any global
statistic measure on the input data. The resulting embedding
is specially suited to the nearest neighbor rule by construc-
tion, a fact that is supported by empirical tests.

A notable weak point of the algorithm can be found
when dealing with low-dimensional data. Further experi-
ments made using the UCI repository with databases of
dimensionality lower than 20 showed accuracies not signif-

icantly better than the ones obtained using classic FLLD or
NDA. So, the method we are proposing is specially suitable
for feature extraction on high-dimensional subspaces, typi-
cal from computer vision problems.

There is still some future work to do. Further research
about the influence of the weak 1D classifiers on the re-
sulting embedding could be done. It is possible to extend
this approach to the nonlinear case. Also other maximiza-
tion criteria could be used to achieve higher performance
or better learning rates. Also we plan as a feature work to
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Fig. 3. Accuracies obtained in the Gender Recognition and the MNIST
tests as a function of the dimensionality reduction (number of features
extracted using each method). We also show the results using the near-
est neighbor in the original space (which is shown as a horizontal
line). (a) Gender recognition accuracies. (b) MNIST databases recognition
accuracies.

extend the algorithm to the multi-class case. Two differ-
ent approaches can be followed for this purpose: the most
straightforward one is to use a pairwise based scheme us-
ing the 2-class algorithm. The second option is to extend a

boosting algorithm specifically designed for the multi-class
problem (Adaboost.M1).
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