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Abstract

This study investigated the impact of missing data in the evaluation of artificial neural network (ANN) models
trained on complete data for the task of predicting whether breast lesions are benign or malignant from their
mammographic Breast Imaging and Reporting Data System (BI-RADSTM) descriptors. A feed-forward, back-
propagation ANN was tested with three methods for estimating the missing values. Similar results were achieved
with a constraint satisfaction ANN, which can accommodate missing values without a separate estimation step. This
empirical study highlights the need for additional research on developing robust clinical decision support systems
for realistic environments in which key information may be unknown or inaccessible.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Among American women, breast cancer is the most common cancer, excluding skin cancers, and is
the second leading cause of cancer deaths, after lung cancer [1]. Early detection via mammography
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improves survival [2]. However, mammography is not perfect and improvements in both the sensitivity
and specificity of the exam are needed. One approach is to develop computer-aided detection and diagnosis
(CAD) systems to aid radiologists in the interpretation of mammograms [3–5].

Some previous studies in breast cancer CAD have explored the use of statistical and machine learning
models for predicting the pathology of breast lesions from experts’descriptions of mammographic findings
[6–10]. This approach is most compelling when the Breast Imaging and Reporting Data System (BI-
RADSTM) lexicon [11] is used since in principle these data are routinely collected already. However, one
limitation of the work to date in this area is that carefully curated databases with minimal missing values
have been collected for research purposes, yet most clinical databases in routine practice are missing
some pieces of information.

The purpose of this study was to explore the impact of missing data in the evaluation of artificial
neural network (ANN) models trained on complete data for the task of predicting whether breast le-
sions are benign or malignant based on their BI-RADSTM descriptors. We investigated two forms of
ANNs that have been successfully applied in prior breast cancer CAD studies: feed-forward, back-
propagation ANN (BP-ANN) and constraint satisfaction ANN (CSNN). In order to use the BP-ANN,
estimates are needed for missing values. Three methods for estimating the missing values were com-
pared: simply replacing missing values with zero, replacing missing values with the mean value from
the training set, and using a multiple imputation procedure. In the multiple imputation method, several
estimates are produced for the missing values to create multiple imputed versions of the data set [12].
The analysis is then performed on each imputed version of the data set and the results are subsequently
combined. Prior studies have found that multiple imputation methods are frequently better than sin-
gle imputation methods, such as replacing missing values with the mean. Thus, one goal of this study
was to compare single and multiple imputation methods for coping with various levels of missing data
processed by an ANN trained on complete data for this CAD task. In addition, we hypothesized that
the non-hierarchical nature of the CSNN would enable it to effectively estimate the missing values at
the same time that it predicted the biopsy outcome, avoiding the extra estimation step needed in using
the BP-ANN.

2. Materials and methods

2.1. Data set

The data set consisted of 604 non-palpable, mammographically suspicious breast masses that underwent
biopsy (core or excisional) at Duke University Medical Center from 1990 to 2000. The pathology outcome
was coded as binary variable of benign vs. malignant. Experienced mammographers described each case
using the BI-RADSTM lexicon [11]. In particular, the descriptors used in this study were mass margin,
mass shape, mass size, and mass density, which were numerically encoded as described in our previous
studies [13]. Patient age was also included since it was found to be an important variable in prior analyses
of CAD systems that utilize BI-RADSTM descriptors [14]. Summary characteristics of the data set are
shown in Fig. 1. The data were randomly partitioned into two sets of equal size, A and B. Summary
properties of the cross-validation sets are provided in Table 1. Only cases for which all variable values
were present were included in this study.
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Mass Margin Number Mass Shape Number Mass Density Number

Well-
circumscribed

203 Round 89 Fat-containing 5

Microlobulated 28 Oval 223 Low density 19
Obscured 124 Lobulated 122 Isodense 488
Ill-defined 163 Irregular 170 High density 92
Spiculated 86

Average Standard
Deviation

Mass Size (mm) 12.1 6.3
Age (years) 54.8 12.9

Fig. 1. Summary characteristics of the database of mammographic masses used in this study.

Table 1
Summary characteristics of the cross-validation data sets of mammographic masses used in this study

Benign Malignant (%) Total

Set A 204 98 (32%) 302
Set B 205 97 (32%) 302
Total 409 195 (32%) 604

2.2. Missing data estimation

Alternate versions of each data set (A, B) were created in which a fraction of the variable values
were missing. The amount of missing data as a fraction of the total number of variable values (302
cases × 5 = 1510) was 10%, 20%, 30%, or 40%. In the remainder of the paper, the notation “A0” will be
used to indicate set A with 0% missing, “A10” to indicate set A with 10% missing, and so on.

Three methods for estimating the missing values were compared: simply replacing missing values with
zero, replacing missing values with the mean value from the training set, and using a multiple imputation
procedure. The multiple imputation was performed in SAS� (SAS, Cary, NC) using the MI procedure
with the default parameters. Five imputed versions were created of each data set at each level of missing
data. The BP-ANN outputs were averaged across the five imputations.

2.3. BP-ANN

A feed-forward back-propagation artificial neural network (BP-ANN) was trained to predict the biopsy
outcome from the BI-RADSTM descriptors and patient age. BP-ANN is common machine learning
algorithm that has been described in several excellent textbooks (e.g., [15,16]). Briefly, the output of each
neuron in a BP-ANN is the result of an activation function (y = 1/(1 + e−x)) applied to a weighted
sum of the inputs to the neuron. The weights are the parameters adjusted as the network learns a given
task. The ANN is feed-forward in the sense that each neuron in one layer feeds into each neuron in the
next layer. The BP-ANN is trained to minimize the mean of the sum-of-squares error (MSE) using the
back-propagation algorithm. The MSE is the squared difference between the network output (yi ∈ (0, 1))
and network target (ti ∈ {0, 1}), averaged over all of the cases (N, indexed by i). The back-propagation
algorithm details how the error should be propagated back through the network to adjust the weights.
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The number of hidden nodes, learning rate, momentum, and number of iterations were empirically
optimized through leave-one-out training on sets A0 and B0 separately. The network parameters deter-
mined were then used for the remainder of the study. Custom software in the C language was used to
implement the BP-ANN. Three methods for estimating the missing data as described above were applied
prior to testing the BP-ANN.

2.4. CSNN

A CSNN was also trained to predict the biopsy outcome from the BI-RADSTM descriptors and patient
age. Briefly, the CSNN is a Hopfield-type network of neurons arranged in a non-hierarchical way. There
are symmetric, bidirectional weights between all pairs of neurons but there are no reflexive weights. The
CSNN operates as a nonlinear, dynamic system that tries to reach a globally stable state by adjusting
the activation levels of the neurons under the constraints imposed by the a priori fixed weight values.
The Lypaponov energy function was used as a measure of the network stability. The weights were
predetermined using autoassociative back-propagation neural networks (auto-BP). Custom software in
the C language was used to implement the CSNN and has been previously described [10,17]. Because
of its non-hierarchical structure, the CSNN is able to analyze data for which values are missing without
a prior estimation step. In essence, the CSNN imputes the missing input values in parallel with inferring
the value of the biopsy node. The structures of the BP-ANN and CSNN networks are compared in Fig. 2.

2.5. ROC

Receiver operating characteristic (ROC) curves can be used to show the trade-off in sensitivity and
specificity achievable by a classifier by varying the threshold on the output decision variable [18,19].
Sensitivity or the true positive fraction (TPF) is the fraction of positive cases that were classified correctly
as positive. The specificity, or one minus the false positive fraction (FPF), is the fraction of negative cases
that were correctly classified as negative. An ROC curve is generated by applying a threshold to the output
of a classification scheme and then plotting the (FPF, TPF) pairs for each threshold. The performance of
classification methods can be compared in terms of indices calculated from their curves. In particular,
the area under the ROC curve (AUC) is often used as a measure of classifier performance. The values for
AUC range from 0.5 for chance to 1.0 for a perfect classifier.

In this study, empirical (non-parametric) ROC curves were used and the AUC was numerically inte-
grated using the trapezoid rule. The standard errors and paired statistical comparisons were computed
using bootstrap sampling on the classifier outputs. Custom software in the C language was used to
implement the ROC analyses.

2.6. Summary of experimental design

A BP-ANN model was trained on data A0, without any missing data values. For each level of missing
data (10%, 20%, 30%, and 40%) in set B, the missing values were estimated in three ways: simply
replacing missing values with zero, replacing missing values with the mean value from the training set,
and using a multiple imputation procedure. The BP-ANN model trained on A0 was then tested on set B
with different quantities of missing data after values were estimated for the missing data (sets B10, B20,
B30, B40). The same procedure was repeated for training on B and testing on A.
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Fig. 2. In both the BP-ANN (A) and CSNN (B), the inputs to network nodes are combined by weighted summation and passed
through an activation function to form the network output or activation level. External inputs (data values) are indicated by
dashed arrows above. In the BP-ANN, each node in the “hidden” layer accepts multiple data inputs and the outputs of those
nodes are passed to the “output” layer nodes. In the CSNN, the nodes are not organized into layers. Each node in the CSNN
accepts a single data input as well as inputs from all other nodes. Moreover, the connections between nodes within the CSNN
are all bidirectional while they are unidirectional in the BP-ANN. The non-hierarchical structure of the CSNN enables it to
simultaneously solve for the activation levels of multiple nodes that lack external inputs.

3. Results

The learning parameters and network structure for a BP-ANN model were determined empirically by
leave-one-out training on set A with no missing values, i.e., A0, for the task of predicting biopsy outcome
of breast masses from BI-RADSTM descriptors and patient age. The selected parameters were then used
to train the BP-ANN on set A0 and test it on set B with no missing values, i.e., B0. The area under
the resulting ROC curve was 0.94 ± 0.01. Similarly, network parameters were optimized for set B0 and
used to train a model which was tested on set A0. The AUC for training on B0 and testing on A0 was
0.92 ± 0.02. The difference in AUC between the two cross-validation directions was not statistically
significant (p = 0.28, unpaired z-test).
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Table 2
Performance in terms of ROC AUC for ANN models trained on complete data but tested on data sets with various percentages
of missing values

Train Test BP-ANN (0) BP-ANN (Ave) BP-ANN (MI) CSNN

A0 B0 0.94 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01
A0 B10 0.84 ± 0.03 0.94 ± 0.01 0.94 ± 0.01 0.95 ± 0.01
A0 B20 0.78 ± 0.03 0.92 ± 0.02 0.91 ± 0.02 0.92 ± 0.02
A0 B30 0.69 ± 0.03 0.90 ± 0.02 0.89 ± 0.02 0.91 ± 0.02
A0 B40 0.72 ± 0.03 0.94 ± 0.02 0.89 ± 0.02 0.90 ± 0.02

B0 A0 0.92 ± 0.02 0.92 ± 0.02 0.92 ± 0.02 0.91 ± 0.02
B0 A10 0.81 ± 0.03 0.92 ± 0.02 0.92 ± 0.02 0.88 ± 0.02
B0 A20 0.75 ± 0.03 0.89 ± 0.02 0.90 ± 0.02 0.88 ± 0.03
B0 A30 0.76 ± 0.03 0.89 ± 0.02 0.89 ± 0.02 0.85 ± 0.02
B0 A40 0.73 ± 0.03 0.84 ± 0.02 0.83 ± 0.02 0.79 ± 0.03

For the BP-ANN models, the missing values were estimated three ways: simply replacing missing values with zero (“0”),
replacing missing values with the mean value from the training set (“Ave”), and using a multiple imputation procedure (“MI”).

The BP-ANNs trained on complete data sets were then evaluated on data sets with various levels
of missing data. One way that the missing values were estimated was by simply replacing them with
zeros. This method is sometimes used because it is very easy to do. Because of the way the BI-RADSTM

variables were encoded, using a “0” value for a mass descriptor is the same as indicating that no mass was
present. Thus, this approach optimistically assumes that there is no evidence for cancer when a variable
value is missing. As might be expected, this method of estimating the missing values is not very effective
and the performance of the BP-ANN drops of quickly as the fraction of missing data increases (Table 2).
Even with only 10% of the values missing, the decrease in the AUC (B10, 0.84 ± 0.03) is statistically
significantly (p>0.01) lower than that for testing on the set with no missing data (B0, 0.94 ± 0.01) for
the BP-ANN trained on set A0. The difference is likewise significant for the model trained on set B0
(p>0.01).

The second way that missing values in the test set were estimated for the BP-ANN analyses was by
replacing missing values with the mean of that variable in the training set. This method of estimating the
missing values was effective. For the model trained on set A0, there was no statistically significant drop
in performance relative to that of testing on B0 seen for 10% missing data (p = 0.31), but the difference
was significant for 20%, 30%, or 40% missing data (p>0.01). Similarly, for the BP-ANN trained on set
B0, at least 10% of the values in the testing set could be missing before there was a statistically significant
decrease in AUC relative to testing on A0.

The third way that missing values in the test set were estimated for the BP-ANN analyses was using
a multiple imputation procedure. Five imputed versions were created of each data set at each level of
missing data and then the BP-ANN outputs were averaged across the five imputations. As with the mean
imputation method, no statistically significant decrease in AUC was seen for the model trained on set A0
at 10% missing data (p = 0.28), but there was a significant decrease for higher levels of missing data.
Likewise, for the BP-ANN trained on set B0, at least 10% of the values in the testing set could be missing
before there was a statistically significant drop in performance relative to testing on A0.
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While multiple imputation methods are better than single imputation methods in general and this has
been demonstrated in other applications, for this CAD task no benefit was seen. For both cross-validation
directions, there was no statistically significant difference in the AUC between the BP-ANN using mean
imputation and the BP-ANN using multiple imputation for any of the levels of missing data studied.

Finally, CSNNs were trained for the task of predicting biopsy outcome of breast masses from BI-
RADSTM descriptors and patient age. As with the BP-ANN analyses, CSNN models were trained for
each of the two sets without any missing values (A0, B0) and then tested on the other set with various
levels of missing data. However, unlike the BP-ANN, the CSNN does not require a separate estimation
step. The non-hierarchical structure of the CSNN enables it to predict the values of multiple variables at
once, including both the biopsy outcome and mass descriptors.

In a previous study, we demonstrated that the CSNN model was able to achieve a performance compa-
rable to that obtained with a BP-ANN for this breast cancer CAD task using a data set containing multiple
lesion types [10]. The two ANN models were likewise similar in this study using only breast masses
(Table 2). The CSNN performed better than the BP-ANN when trained on A0 and tested on B0 (p=0.04),
but for the other cross-validation direction the BP-ANN was non-significantly better (p=0.24). The trend
was that both models performed somewhat better in the first cross-validation than the second in the case
of no missing data. As discussed above, the difference was not significant for the BP-ANN (p = 0.28,
unpaired z-test). However, for the CSNN, the difference was borderline significant (p = 0.05, unpaired
z-test).

For the CSNN trained on set A0, there was not a statistically significant drop in performance relative
to that of testing on B0 for 10% missing data (p = 0.63), but the performance decrease was significant
for higher levels of missing data. This is exactly the same trend that was seen with the BP-ANN using
either mean imputation or multiple imputation. The results were similar for the CSNN trained on set B0
(Table 2); however, the drop in performance at 10% missing was already significant (p < 0.01).

4. Discussion

The purpose of this study was to explore the impact of missing data in the evaluation of ANN models
trained on complete data for the task of predicting whether breast lesions are benign or malignant based
on their BI-RADSTM descriptors. We investigated two forms ofANNs that have been successfully applied
in prior breast cancer CAD studies: feed-forward, BP-ANN and CSNN. For testing the BP-ANN, three
methods for estimating the missing values were compared: simply replacing missing values with zero,
replacing missing values with the mean value from the training set, and using a multiple imputation
procedure.

As expected, the method of simply replacing missing values with zeros resulted in a dramatic drop in
performance relative to that using the complete data set. The decrease in the area under the ROC curve
was statistically significant even for a missing data level of only 10%. Clearly, this simple approach to
dealing with missing data is not advisable, at least for this breast cancer CAD task.

Replacing missing values in the test set with the mean of that variable in the test set and using a
multiple imputation procedure were found to be equally useful in this situation. Either approach enabled
the BP-ANN model trained on a complete data set to maintain high performance when evaluated on a set
with missing information. For levels of missing data above 10%, the decrease in the ROC AUC relative
to evaluation on the complete set was statistically significant. However, the trend is that reasonable
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performance levels are maintained up to about 30% missing data using either method for estimating the
missing values with a BP-ANN model (Table 2).

Most interesting, the CSNN model trained on complete data was shown to maintain a high performance
level when evaluated on data with missing values, without a separate estimation step. The non-hierarchical
structure of the CSNN enables it to predict the values of multiple nodes in the network simultaneously,
such as both the biopsy outcome and the value of a missing mass descriptor. This is a very appealing
property since it allows for a one-step process that avoids the additional task of optimizing a separate
estimation procedure. However, while we conclude that the CSNN and BP-ANN models have comparable
performance for this task, there is some evidence that the CSNN was more sensitive to the chance
differences between the data set partitions in the cross-validation analysis.

In conclusion, we have demonstrated for a breast cancer CAD task the dramatic impact that missing data
can have in the performance of an ANN that was trained on a complete data set. It is encouraging that even
very simple imputation methods may be adequate for some applications, such as was shown here. Finally,
the comparison of different forms of ANN models suggests that ease of accommodating missing data may
be an important factor to consider in selecting a classifier for a use in a CAD system. Classifiers that have
equivalent performance in ideal laboratory conditions may have differing merits when the additional
challenges of the clinical setting are taken into account. This empirical study highlights the need for
additional research on developing robust clinical decision support systems for realistic environments in
which key information may be unknown or inaccessible.

5. Summary

Artificial neural networks (ANN) are frequently used in the development of computer-aided diagnosis
systems for breast cancer detection and diagnosis. One class of models uses descriptions of mammographic
lesions encoded following the Breast Imaging and Reporting Data System (BI-RADSTM) lexicon. Data
sets that have been carefully curated to ensure completeness are generally used; however, in routine
practice, some information is typically missing in clinical databases. The purpose of this study was to
explore the impact of missing data in the evaluation of ANN models trained on complete data for the
task of predicting whether breast lesions are benign or malignant from their BI-RADSTM descriptors.
A feed-forward, back-propagation ANN (BP-ANN) was tested with three methods for estimating the
missing values: replacing missing values with zero, replacing missing values with the mean value, and
using a multiple imputation procedure. As expected, replacing missing values with zeros results in a
large drop in performance relative to the no missing data condition, as measured by the area under the
receiver operating characteristic curve. Both estimation by the mean and multiple imputation enabled the
BP-ANN model to maintain high performance in the presence of a small amount of missing data in the
testing set. Similar results were achieved with a constraint satisfactionANN (CSNN). Since the CSNN can
accommodate missing values without a separate estimation step, it may be an advantageous ANN model.
This empirical study highlights the need for additional research on developing robust clinical decision
support systems for realistic environments in which key information may be unknown or inaccessible.
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