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SUMMARY

Most ecological data sets contain missing values, a fact which can cause problems in the analysis and limit the
utility of resulting inference. However, ecological data also tend to be spatially correlated, which can aid in
estimating and imputing missing values. We compared four existing methods of estimating missing values:
regression, kernel smoothing, universal kriging, and multiple imputation. Data on crop yields from the National
Agricultural Statistical Survey (NASS) and the Census of Agriculture (Ag Census) were the basis for our analysis.
Our goal was to find the best method to impute missing values in the NASS datasets. For this comparison, we
selected the NASS data for barley crop yield in 1997 as our reference dataset. We found in this case that multiple
imputation and regression were superior to methods based on spatial correlation. Universal kriging was found to
be the third best method. Kernel smoothing seemed to perform very poorly. Copyright # 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Missing values are common when working with large data sets. During the last few decades,

researchers have applied several methods for imputing missing values, including various ad hoc

methods as well as advanced model-based approaches. One of the most primitive techniques is to fill in

the missing value with the mean of non-missing values. While this technique is simple and easy to

apply, it causes underestimation of standard deviations and standard errors, since there is no variation

in the imputed values. Also, it ignores correlations that often occur in spatially and temporally varying

data.

We compared four methods—regression, universal kriging, kernel smoothing, and multiple

imputation—which are commonly used by researchers. Data on crop yields from national agricultural
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databases were used for the analysis. These data sets were spatially correlated and contain large

numbers of missing values. We conclude with a discussion of the strengths and weaknesses of these

four methods in the present setting.

2. DATA

Crop yields, aggregated at the county level, are reported in two main agricultural databases maintained

by the US Department of Agriculture (USDA): the National Agricultural Statistical Survey (NASS)

and the Census of Agriculture (Ag Census). The NASS crop yield data are produced annually using a

statistical sampling approach and surveys done on selected farms within a county (Karkosh, 2002),

whereas Ag Census crop yield estimates are produced every 5 years, based on a survey covering

almost the total number of farms in a county. There are gaps (missing data) in both databases, but our

aim was to fill the gaps in the NASS database, since it reports yields every year.

Several reasons exist for the presence of missing values in the NASS even when Ag Census

has recorded data. A major source of missingness is that NASS only surveys those states that produce

90%–95% of the US total for each crop, whereas Ag Census tries to cover every acre for each crop. We

also found that for certain states, NASS does not have county yield records because the state offices of

NASS may not report certain crops to the national database. For example, NASS does not report county-

level data for alfalfa hay in California, although California is known to be a state that produces significant

quantities of alfalfa. In contrast, Ag Census does report county-level alfalfa hay information for

California. Since this type of underreporting appears to be mainly due to policy-related considerations

for some individual states, it does not represent a systematic bias with respect to crop yield potential.

However, if such a state is far and away from the greatest crop yield potential, and if all the county level

data is missing for the particular state, it might lead to a bias. Also NASS surveys use the location of the

household as the location of the actual farm, and Ag Census uses the county in which the most of the

income of the farmer is produced, again causing some discrepancies between the recorded crop yields.

For this particular study, we selected barley crop yields for 1997, and only the counties that have yields

recorded by both NASS and Ag Census were used for the purpose of comparison of imputation

methodologies. County locations (i.e., 355) for NASS barley yields in 1997 are given in Figure 1.

Figure 1. County locations for barley yields in the US in 1997

340 R. S. LOKUPITIYA, E. LOKUPITIYA AND K. PAUSTIAN

Copyright # 2005 John Wiley & Sons, Ltd. Environmetrics 2006; 17: 339–349



3. METHODS

We compared four methods for accounting for missing data: regression, kernel smoothing, universal

kriging, and multiple imputation. A brief explanation of each approach is given below.

3.1. Regression

Regression analysis can be used to estimate the missing values when both NASS and Ag Census data

sets are available. Variables in the Ag Census database can be regressed on the variables in the NASS

database to obtain the model

NASS ¼ �0 þ �1 � Ag Census

where �0 and �1 are intercept and slope parameters, respectively. Then this model is used to impute the

missing NASS values when Ag Census data is available.

3.2. Kernel smoothing

Kernel smoothing is a model-based approach, which utilizes the spatial variation in data. Here a

missing value is estimated as a weighted average of available data. The weights depend on the

distances from location of the missing value to the locations of available data. Data locations closer to

the missing location get more weight than the locations further away from the missing location. In this

analysis, we have used a Gaussian distribution as the kernel.

If we are given a data set yiwith locations si, where i¼ 1, 2, . . . , n, then the estimated missing value

ŷ at location s is given by

ŷ ¼
Pn

i¼1 Wðs� siÞyiPn
i¼1 Wðs� siÞ

with

WðxÞ ¼ e
� x2

2c2

where c is a scaling parameter controlling the size of the neighborhood, which corresponds to the

standard deviation of the Gaussian distribution. Here, we choose J neighboring points around

location s and compute the distances from s to these points and parameter c is computed as twice the

average of these neighboring distances. The choice of c depends on the choice of the neighborhood

size (J), or vise versa. In this experiment, we have kept c constant while selecting J as the tuning

parameter.

The problem of selecting J, the neighborhood size, is analogous to the problem of selecting

the degree for a polynomial regression or selecting variables in multiple regression. Choosing a

small neighborhood will produce an estimate that is close to the original data. Overfitting can produce

a nearly unbiased estimate, but smoothing will create a large variance under repeated sampling.

A large neighborhood will produce a very smooth estimate. A popular method for selecting

neighborhood size is leave-one-out cross validation, or prediction sum of squares (Altman, 1992).
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3.3. Universal kriging

Universal kriging is also a model-based approach, which accounts for the existing spatial correlation

of the data. Suppose that ZðsÞ is a real-valued Gaussian random field on R at location s with mean

E½ZðsÞ� ¼ xðsÞ0�
where xðsÞ ¼ ½x1ðsÞ; x2ðsÞ; . . . ; xpðsÞ�0 is a known p� 1 vector valued function and � is a p� 1 vector

of unknown regression coefficients. The covariance function is represented by

Cov½ZðsiÞ; ZðsjÞ� ¼ �Cðsi; sjÞ for all si; sj 2 R

where �> 0 is a scale parameter. Let z ¼ ½zðs1Þ; zðs2Þ; . . . ; zðsnÞ�0 be a vector of observed values

at locations s1; s2; . . . ; sn. Then E½z� ¼ X�, where X ¼ ½xðs1Þ; xðs2Þ; . . . ; xðsnÞ�0 and Cov½z� ¼
�fCðsi; sjÞgn�n.

If we need to predict a value zðsÞ at the location s, then the kriging predictor, which is the best linear
unbiased predictor that minimizes the variance of the prediction error, is given by

ẑðsÞ ¼ f½xðsÞ � X0C�1cðsÞ�0ðX0C�1XÞ�1
X0C�1 þ c0ðsÞC�1gz

where cðsÞ ¼ Cðs; siÞ.
Spatial correlation of the data is examined on the basis of semivariogram analysis. The

semivariogram is estimated by the equation

�̂ðhÞ ¼ 1

2jNðhÞj
X
NðhÞ

½zðsiÞ � zðsjÞ�2

where NðhÞ denotes the set of pairs of locations at distance h and jNðhÞj denotes the number of

corresponding pairs of locations (Cressie, 1993). The estimated semivariogram can be modeled by

various models such as the spherical, Gaussian, or exponential models (Cressie, 1993). For example,

the exponential model with a nugget effect is given by

�ðhÞ ¼
0; if jhj ¼ 0

c0 þ c1 1� e�
jhj
a

h i
; if jhj > 0

8<
:

where c0 is the nugget effect, which provides a discontinuity at the origin, a is related to the range

(3a¼ range), which provides a distance beyond which the semivariogram value remains essentially

constant, and c0þ c1 is called the sill, which is the semivariogram value for very large distances

(Isaaks and Srivastava, 1989).

3.4. Multiple imputation

Multiple imputation (MI) was originally proposed by Rubin as a three-step process (Little and Rubin,

1987; Rubin, 1987, 1996). First, a set of plausible values is estimated for each missing value, which

reflect uncertainty about the non-response model. By filling the missing values with these imputations,

complete data sets are created. Second, each complete data set can be analyzed using standard

statistical analyses. Finally, the results are combined such that the uncertainties of imputations have

been taken into account (Horton and Lipsitz, 2001).

Two major assumptions are made regarding the data. First, it is assumed that the missingness is

missing at random (MAR), that is, the probability that an observation is missing may depend on the

observed values but not the missing values. Second, multivariate normality is assumed for the data.
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A Markov Chain Monte Carlo (MCMC) method is used to impute the missing values. Mean vector

and the covariance matrix for the data that do not have missing values are computed as starting values.

These estimates are considered as the prior distribution. Filling missing values with the random

numbers, which are drawn from the available distribution, creates a complete data set. The mean

vector and covariance matrix are recomputed for the complete data set. This is the posterior

distribution. Then the missing values are imputed again by generating random numbers from the

posterior distribution. This procedure is iterated until the mean vector and covariance matrix are

unchanging as we iterate. Imputations from the final iteration are taken to form a data set with no

missing values.

SAS/STAT software, Version 8.2, introduces the experimental versions of MI and MIANALYZE

procedures for imputing and analyzing the incomplete multivariate data sets (Horton and Lipsitz,

2001).

4. ANALYSIS

Cross-validation methods have been widely used for selecting the best models (Efron, 1982; Efron and

Tibshirani, 1993; Hjorth, 1994; Libiseller and Grimvall, 2003; Shao, 1993; Shao and Tu, 1995; Stone,

1974; Wahba and Wald, 1975; Zhang, 1993). In traditional cross-validation methods, the data set is

randomly divided into two halves, where the first half is used to fit the model. The model fitted to the

first half is used to predict the second half. However this method has a disadvantage because it uses

only half of the data for model fitting.

A better approach to overcome this deficiency is to use the ‘‘leave-one-out’’ cross validation, which

uses all but one observation in each subsample (Efron, 1982; Hjorth, 1994; Libiseller and Grimvall,

2003). The omitted observation changes with each subsample so that every observation is held out

exactly once. Each time the subsample is used to estimate the left-out observation and compare the

estimated value with the left-out observation. For example, in the regression approach, the data consist

of pairs fðX1; Y1Þ; . . . :; ðXn; YnÞg, where Yi is the response variable and Xi is the predictor variable. A

subsample fðX1;Y1Þ; . . . ; ðXi�1; Yi�1Þ; ðXiþ1; Yiþ1Þ; . . . ; ðXn; YnÞg is created by deleting the ith data

point ðXi; YiÞ for each i¼ 1, 2, . . . , n. A model is fit to the subsample and used to re-estimate the deleted

observation, say ŷðiÞðxiÞ. Then the deleted residuals can be computed as rðiÞ ¼ ½ yi � ŷðiÞðxiÞ�. Best
models were selected based on the mean absolute prediction error (MAPE), which was calculated as

MAPE ¼
Pn

i¼1 jrðiÞj
n

Efron (1986) showed that the leave-one-out cross validation could produce unsatisfactory

prediction errors due to overfitting and suggested that some form of bootstrap method would be

more appropriate. Another problem with leave-one-out cross validation is lack of continuity—a small

change in the data can make a large impact on the selected model. Geisser (1975) introduced multifold

cross validation, where several (k> 1) observations were deleted instead of a single observation.

However this method is computationally intensive because there are nCk possible subsets are involved.

A nice application was given in Wahba and Wald (1975), who used k-fold cross-validation mean

square errors to determine the correct degree of smoothing in fitting smoothing splines.

Breiman et al. (1984) introduced a less expensive deleting-k multifold cross validation method,

where m mutually exclusive subsamples s1, s2, . . . , sm were selected from the total data set {1, . . . , n}
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such that n¼ k�m. Partition was done randomly to avoid possible biases. MAPE was computed for

each model as

MAPE ¼ 1

n

Xm
i¼1

jYsi � Ŷð�siÞj

where Ysi is a vector of observed values in subsample si and Ŷð�siÞ is the vector of predicted values

computed after deleting the same subsample (Zhang, 1993).

The above four methods used for imputing missing data were compared using the leave-one-out

cross validation procedure and deleting-5 multifold cross validation. Relative errors for each

observation were computed using the formula

Relative error ¼ True value� Estimated value

True value
; for each method:

If the true value is zero, the relative error is undefined. In this particular example, we have only

selected the counties, which produce the given crop. Hence the true value cannot be zero.

We compared the correlation coefficients of the results of different imputation methods (Table 1).

Regression and multiple imputation showed high correlations with the actual observations. Kriging

showed a relatively high correlation (0.8094) with the true values whereas kernel smoothing showed

the lowest correlation (0.4609). There is a very high correlation (0.9998) between the regression and

the multiple imputation method. Hence it seems that both methods perform equally well in this

particular application. This fact was further confirmed by the MAPE values given in Table 2.

Table 1. Correlations between results of different imputation methods (based on the leave-one-out cross
validation)

True value Regression Kernel Universal Multiple
smoothing kriging imputation

True value 1.0000 0.9825 0.4609 0.8094 0.9823
Regression 1.0000 0.4206 0.7744 0.9998
Kernel smoothing 1.0000 0.5768 0.4205
Universal kriging 1.0000 0.7742
Multiple imputation 1.0000

Table 2. Mean absolute prediction errors for each method

Method MAPE

Leave-one-out CV Deleting-5 multifold CV

Regression 2.8272 2.8370
Multiple imputation 2.8003 3.0450
Universal kriging 8.8162 9.2356
Kernel smoothing 25.1922 25.5886
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5. RESULTS AND DISCUSSION

All four methods were compared using barley crop yield data for year 1997, which consisted of both

Ag Census and NASS data. Crop yield data from NASS were regressed against the data from Ag

Census. According to the regression analysis, there exists a high correlation between the NASS and the

Ag Census databases. Hence this correlation can be utilized in filling the missing values in the NASS

database. The regression equation obtained for this data set was

NASS ¼ 0:80753þ 1:00923 Ag Census; with R2 ¼ 0:97

According to the p-values of the intercept parameter ( p-value¼ 0.2017) and slope parameter ( p-

value< 0.001), the intercept parameter was statistically insignificant and the estimated slope

parameter was approximately equal to 1, which agrees with our prior knowledge about the data.

Hence it is logical to force the regression line to go through the origin. The regression equation after

forcing through the origin was found as

NASS ¼ 1:02143 Ag Census

Considering the spatial locations of the NASS data, we performed kernel smoothing and universal

kriging. For kernel smoothing, according to the plot of neighborhood size (J) versus cross validation,

we selected 150 as the suitable size for J, which corresponds to a relatively low cross validation value

(see Figure 2).
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Figure 2. Plot of the neighborhood size (J ) versus the cross-validation (CV) for kernel regression
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In universal kriging analysis, we considered a third-order polynomial of northing and easting of the

survey locations as the trend surface for the data. Here the distances were measured in 10-km

increments. The assumption of stationarity and isotropy can be checked approximately, by observing

the directional semivariograms for small distances. The semivariograms were estimated from the

residual observations, z� X�̂, with respect to the trend surface model. The directional semivariograms

provided little evidence of anisotropy (see Figure 3). Hence, we assumed isotropy in this analysis. The

isotropic semivariogram given in Figure 4 is fitted well by the exponential model with range parameter

39.29, sill 267.38, and nugget effect 86.05, according to the AIC values.

In multiple imputation, we considered a bivariate distribution of NASS and Ag Census data. For

each iteration, a single observation of NASS data set was set to missing and imputed using the proc MI

procedure. Five imputations were drawn for each missing value and the average of them was taken as

the estimate for the missing point. Usually in multiple imputation, final results are combined using the

MIANALYZE procedure. However, in this analysis, since we did not perform any analysis on data and

our primary goal was to fill the missing values, the average of imputations were taken as the final

estimate.
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Figure 3. Plots of the directional variograms
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Each method was compared using the leave-one-out cross validation and deleting-kmultifold cross

validation methods. Based on the leave-one-out cross validation, we plotted observation number

versus relative error for each method (Figure 5). Plots of the relative error for deleting-k multifold

cross validation were similar (results not shown here). MAPE values computed using both cross

validation methods are shown in the Table 2. The MAPE values for the multiple imputation and

regression were very small and similar. Kernel smoothing gave the largest MAPE value and universal

kriging was moderately acceptable. At some locations, kernel smoothing appears to have over

estimated the missing values. Kernel smoothing is a distance-based method. Hence overestimates of

missing values could occur when estimating a value that belongs to a state with a low crop yield that is

surrounded by states with high yields.

Even though we assumed isotropy in universal kriging, the directional semivariograms show some

evidence of anisotropy. Estimation can be improved by correcting for anisotropy. However, since

several crops and several years of yields have been considered in this study, spatial covariance

structure could be different for each case. Because universal kriging involves a great deal of cost in its

implementation without significant benefit it was not judged to be practical to use as a missing value

imputation tool in this case.

6. CONCLUSION

This study compared four major methods of estimating missing values. According to the MAPE

values, regressing Ag Census on NASS and multiple imputation performed equally well in filling the

missing values (Table 2). Based on our results, and the simplicity of the method, we suggest regressing

Ag Census on NASS data, as the most appropriate method to fill missing values in NASS database (for
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Figure 4. Plot of the isotropic variogram. The lags are expressed in 10 km
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the years when both NASS and Ag Census datasets are available). However, Ag Census data are

produced only every 5 years. Hence, in the absence of Ag Census data, multiple imputation can be

used to impute the missing values, by considering the multivariate normal distribution of yearly crop

yields of NASS. Multiple imputation can be effectively done by lumping the years with high

correlations. It is noted that most years tend to be highly correlated for the crop yield data sets.

Universal kriging was found to be the third best method. One of the drawbacks of the universal kriging

is that some observations have been overestimated by the method (Figure 5). Kernel smoothing

performed very poorly among all four methods. Most of the observations were overestimated by

kernel smoothing, and gave the largest MAPE value (Table 2 and Figure 5).
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