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Abstract

The model-based approach to inference from multivariate data with missing val-
ues is reviewed. Regression prediction is most useful when the covariates are
predictive of the missing values and the probability of being missing, and in
these circumstances predictions are particularly sensitive to model misspecifica-
tion. The use of penalized splines of the propensity score is proposed to yield
robust model-based inference under the missing at random (MAR) assumption,
assuming monotone missing data. Simulation comparisons with other methods
suggest that the method works well in a wide range of populations, with little loss
of efficiency relative to parametric models when the latter are correct. Extensions
to more general patterns are outlined.



Draft Dec 24, 2003 

 

 

 

 

 

Robust likelihood-based analysis of multivariate data with 

missing values 
 

Roderick Little and Hyonggin An 
University of Michigan 

Hosted by The Berkeley Electronic Press



 1

Abstract 

 

The model-based approach to inference from multivariate data with missing values is reviewed. 

Regression prediction is most useful when the covariates are predictive of the missing values and 

the probability of being missing, and in these circumstances predictions are particularly sensitive 

to model misspecification. The use of penalized splines of the propensity score is proposed to 

yield robust model-based inference under the missing at random (MAR) assumption, assuming 

monotone missing data. Simulation comparisons with other methods suggest that the method 

works well in a wide range of populations, with little loss of efficiency relative to parametric 

models when the latter are correct. Extensions to more general patterns are outlined. 

KEYWORDS: double robustness, incomplete data, penalized splines, regression imputation, 

weighting  

1. Introduction 

 Missing values arise in empirical studies for many reasons. For example, in longitudinal 

studies, data are missing because of attrition, when subjects drop out prior to the end of the 

study. In most surveys, some individuals provide no information because of non-contact or 

refusal to respond (unit nonresponse).  Other individuals are contacted and provide some 

information, but fail to answer some of the questions (item nonresponse).  Often indices are 

constructed by summing values of particular items. For example, in economic studies, total net 

worth is a combination of values of individual assets or liabilities, some of which may be 

missing. If any of the items that form the index are missing, some procedure is needed to deal 

with the missing data. 
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 The missing data pattern simply indicates which values in the data set are observed and 

which are missing. Specifically, let Y yij= ( )  denote an ( )n p×  rectangular dataset without 

missing values, with ith row y y yi i ip= ( ,..., )1  where yij  is the value of variable Yj  for subject i.  

With missing values, the pattern of missing data is defined by the missing-data indicator matrix 

M mij= ( )  with ith row 1( ,..., )i i ipm m m= , such that mij = 1 if yij  is missing and mij = 0  if yij  is 

present. We assume throughout that ( , )i iy m  are independent over i.  

 Some methods for handling missing data apply to any pattern of missing data, whereas 

other methods assume a special pattern.  For simplicity we consider methods for the simple 

pattern of univariate nonresponse, where missingness is confined to a single variable, say pY , 

and 1 1,..., pY Y −  are fully observed. In Section 7 we discuss extensions of our methods to more 

general patterns, such as monotone missing data, where the variables can be arranged so that 

Y Yj p+1 ,...,  is missing for all cases where Yj  is missing, for all j = 1, ..., p-1.  This pattern arises 

commonly in longitudinal data subject to attrition.  

 The performance of alternative missing-data methods depends strongly on the missing-

data mechanism, which concerns the reasons why values are missing, and in particular whether 

missingness depends on the values of variables in the data set.  For example, subjects in a 

longitudinal intervention may more likely to drop out of a study because they feel the treatment 

was ineffective, which might be related to a poor value of an outcome measure.  Rubin (1976) 

treated M as a random matrix, and characterized the missing-data mechanism by the conditional 

distribution of M  given Y, say f M Y( | , )φ , where φ  denotes unknown parameters.  When 

missingness does not depend on the values of the data Y, missing or observed, that is: 

f M Y f M Y( | , ) ( | ) ,φ φ φ=  for all , 
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the data are called missing completely at random (MCAR). With the exception of planned 

missing-data designs, MCAR is a strong assumption, and missingness often does depend on 

recorded variables. Let obsY  denote the observed values of Y and misY  the missing values.  A less 

restrictive assumption is that missingness depends only on values obsY  that are observed, and not 

on values misY  that are missing. That is: 

obs mis( | , ) ( | , ) for all ,f M Y f M Y Yφ φ φ= . 

The missing data mechanism is then called missing at random (MAR). Many methods for 

handling missing data assume the mechanism is MCAR or MAR, and yield biased estimates 

when the data are not MAR (NMAR).  

 The main ideas of this article can be summarized in the following propositions: 

(a) When the missing data mechanism is unknown and NMAR, methodological options are 

limited and not very appealing to the practitioner. Thus, in studies where missing data are likely 

to arise, efforts should be made to render the MAR assumption plausible, by measuring 

covariates that characterize nonrespondents (Little and Rubin, 1999). 

(b) The most useful covariates for nonresponse adjustment are (i) predictive of the missing 

values misY  and (ii) predictive of the missing data indicator M. Of the two, criterion (i) is the most 

important, since conditioning on a covariate that is predictive of M but not of misY  leads to a loss 

of efficiency without a compensating reduction in bias. Section 3 presents an analysis in support 

of these statements. 

(c) All missing-data adjustments require modeling assumptions relating the missing data to 

observed covariates. Sensitivity to assumptions is a particularly serious issue for analysis 

involving covariates that are useful for missing-data adjustments, as described in (b).  

(d) Given (a) - (c), missing-data methods based on MAR and models that make relatively weak 

assumptions relating the covariates to the missing data are useful. Methods of this kind based on 
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propensity splines are proposed in Sections 4 and 5 below, for the special case of univariate 

nonresponse. These methods are assessed by simulation in Section 6. Some extensions of these 

methods to more general missing data problems are outlined in Section 7, and Section 8 presents 

concluding remarks. 

 

2. Limitations of NMAR analyses when the missing data mechanism is unknown. 

 There is an extensive literature of methods for NMAR missing-data mechanisms; early 

examples include Heckman’s (1976) proposals for handling selectivity bias, and Rubin’s (1977) 

Bayesian analysis. See also Little and Rubin (2002, chapter 15). The difficulty of the problem 

can be seen by considering the simplest situation of a single variable 1Y  (that is, p = 1), observed 

for r cases and missing for n - r cases, with no covariate information. Suppose the respondent 

values of 1Y  are independently distributed with mean 1Rµ  and variance 11σ , and the 

nonrespondent values are independently distributed with mean 1NRµ  and variance 11σ . If the 

observations are independent, then MCAR=MAR, and 1 1R NRµ µ= . In that case, the sample mean 

1y  based on the r complete cases is unbiased, and in many cases optimal for the mean. If, on the 

other hand, the data are NMAR, the bias of 1y  for inference about the overall mean is easily seen 

to be 1 /2
11f λσ , where ( ) /f n r n= −  is the fraction of missing values and 1 /2

1 1 11( ) /R NRλ µ µ σ= −  is 

the standardized difference in respondent and nonrespondent means. Assuming asymptotic 

normality and ignoring t corrections, the noncoverage rate of the usual 95% confidence interval 

1 111.96 /y s r±  based on the complete cases is  

 ( 1.96 ) ( 1.96 )r f r fλ λΦ − + + Φ − − ,  
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Table 1. Coverage of 95% confidence interval for population mean when the respondent 

mean has a bias  0.1f λ = . 

Respondent sample size 20 50 100 200 

Coverage rate (%) 7.4 10.9 18.0 29.2 

 

where Φ  denotes the normal cumulative density function. Table 1 tabulates this noncoverage 

rate as a function of the respondent sample size r, for a fixed bias of 0.1f λ = . Clearly bias has 

an increasing distorting effect on the noncoverage as the sample size increases. 

 Analysis options are clearly limited in the absence of information about the 

nonrespondents. Other than assuming the bias away, the only alternative is to widen the interval 

to allow for potentia l bias. Three approaches to this are:  

 (a) To develop bounds for the quantity of interest that include all possible values of the 

missing data. For example, for a binary outcome, one might calculate the sample proportion with 

all missing values imputed as one, and all missing values imputed as zero (Horowitz and Manski, 

2000). This approach tends to be very conservative, and is limited to variables that have finite 

support. 

 (b) Conduct a sensitivity analysis for alternative models for nonignorable nonresponse 

(Rubin, 1977; Little and Wang, 1996; Scharfstein, Rotnitsky and Robins, 1999). 

 (c) Add a prior distribution for the nonrespondent values and apply the Bayesian 

paradigm. For example, Rubin (1977) considers the model: 

 1 ~  const.Rµ ; 1 1 1 11| ~ ( , )NR R RNµ µ µ λσ  

 An alternative approach is to attempt to measure covariates that capture differences 

between respondents and nonrespondents, so that the missing-data mechanism can be considered 

MAR. For the remainder of this paper we consider models under the assumption that the missing 
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data are MAR, while recognizing that residual dependence of the missing data indicators on 

missing values of the data may require one of the approaches (a) - (c) delineated above. 

3. Covariates to the rescue? 

 Suppose now that fully observed covariates are available, and let 1 1,... pY Y −  denote the 

variables observed for all n cases, and pY  the variable with missing values, observed for the first 

r cases. The mean of pY  can be written as  

[(1 ) ] [ ( | )]p p pE M Y E ME Y Xµ = − + , 

and [(1 ) ]pE M Y−  can be estimated from the complete cases. To estimate the second term 

[ ( | )]pE ME Y X , note that under MAR, ( | ) ( | , 0) ( | , 1)p p pE Y X E Y X M E Y X M= = = = . Hence 

for incomplete cases ( 1M = ) one can estimate ( | )pE Y X  from the complete cases and predict 

the Y for each incomplete case by substituting the X for that case into the regression formula. If 

the regression is linear, this leads to the regression estimate: 

 1

1 1

ˆ ˆ
r n

p ip ip
i i r

n y yµ −

= = +

 
= + 

 
∑ ∑  (1) 

where { , 1,..., }ipy i r=  are the observed values of pY , and 
1

0 1
ˆ ˆˆ p

ip j ijj
y yβ β

−

=
= + ∑  is the prediction 

from the regression of pY  on 1 1( ,..., )pY Y − , computed on the r complete cases. Eq. (1) is the 

maximum likelihood (ML) estimate of pµ  for a variety of models, including multivariate 

normality for 1( ,..., )pY Y  (e.g., see Little and Rubin, 2002). 

 The impact of regressing on covariates for inference about pµ  can be assessed by 

comparing the mean squared error of ˆ pµ  relative to the estimate based on the complete cases, 
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py =  
1

/
r

ipi
y r

=∑ . Consider this comparison for a single covariate (p = 2), where 1Y  and 2Y  are 

bivariate normal, and the missing data are MAR. The regression estimate (1) is then unbiased for 

2µ  with mean squared error (e.g. Little and Rubin, 2002) 

 ( )2 2 2 2 2
2 22ˆ( ) ( / ) (1 ) ( / ) (1 )(1 / )mse r r n r nµ σ ρ ρ ρ= − + + − − ∆ , 

ignoring 2(1/ )O r  terms, where ρ  is the correlation between respondent values of 1Y  and 2Y , 

and ∆  is the difference in the nonrespondent and respondent mean of 1Y , divided by the  

respondent variance of 1Y . Note the 2ρ  measures the association between 1Y  and 2Y  and 2∆  

measures the association between 1Y  and M. The mean squared error of 2y  is 

 2 2 2
2 22 22( ) ( / ) (1 / )mse y r r nσ ρ σ= + − ∆ , 

where the first term on the right side is the variance and the second term is the bias. Subtracting 

and simplifying yields 

 2 2 2 2 2
2 2 22ˆ( ) ( ) (1 / ) (1 / ) / (1 / )(1 ) /mse y mse r n r n r r n rµ σ ρ ρ ρ − = − − ∆ + − − − ∆  . (2) 

The first term in the square parenthesis in Eq. (2) is (1)O  and is the bias that has been eliminated 

by the regression of 2Y  on 1Y  (more generally under NMAR one expects the regression to reduce 

bias, although it could increase). Both 2ρ  and 2∆  must be large for this term to be substantial. 

The second and third terms in the square parenthesis represent variance reduction from the 

regression on 1Y . This variance reduction is substantial when 2ρ  is large. In fact, if 2ρ  is small 

and 2∆  is large, as when 1Y  is predictive of M  but not predictive of 2Y , the net value of these 

terms may be negative, reflecting an increase in variance from the regression on 1Y . These results 

are summarized in Table 2. Eq. (2) generalizes to a multivariate set of predictors, with the  

 

http://www.bepress.com/umichbiostat/paper5



 8

Table 2. Effect on bias and variance of the estimated mean of 2Y  of regression on a fully-

observed covariate 1Y , for combinations of the association between 1Y  and 2Y  ( 2ρ ) and the 

association between 1Y  and M ( 2∆ ). 

 2ρ  Low 2ρ  High 

2∆  Low bias change: 0≈  

variance change: 0≈  

bias change : 0≈  

variance change: ↓  

2∆  High bias change: 0≈  

variance change: ↑  

bias change : ↓  

variance change: ↓  

 

obvious generalizations of 2ρ  and 2∆ . Clearly, the key for both bias and variance reduction is 

that 1Y  is a good predictor of 2Y . 

 

4. Robust MAR inference with a single covariate 

4.1. Robust Prediction 

 In the previous section we noted that the key to reduce mean squared error for inference 

about the mean of pY  is to find predictors that are predictive of pY  and the missing data indicator 

M. These are the circumstances under which inference are most sensitive to misspecification of 

the regression of pY  on 1 1,..., pY Y − , since the bias reduction is dependent on an appropriate 

specification of the model relating pY  to 1 1,..., pY Y − . Thus we now consider robust alternatives to 

the linear additive model (1). We first consider the case of a single covariate, 2p = . Extensions 

to more than one covariate are discussed in Sections 5 and 7. 

 Standard regression modeling methods, such as adding polynomial terms and interactions 

to the regression in (1), are useful strategies. Perhaps the simplest way to weaken assumptions 
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about the relationship between 2Y  and a continuous covariate 1Y  is to group the covariate into 

categories and regress on dummy variables for the categories. The resulting regression estimate, 

 2 2
1

ˆ
C

c c
c

p yµ
=

= ∑ , (3) 

is the average of the respondent mean 2cy  in each category weighted by the sample proportion 

/c cp n n=  in that category.  

 An attractive alternative to categorization of continuous covariates is to fit a smooth but 

relatively nonparametric relationship between 2Y  and the covariate (Cheng, 1994). For example, 

one might model the regression of 2Y  on 1Y  via a penalized spline (Eilers and Marx, 1996, 

Ruppert and Carroll, 2000) with a power-truncated spline basis: 

 
( )

( ) ( )

2
2 1 2 1

2 1 0 1 1
1 1

( | , ) ~ ( , ),

, ,
q K

qj
j i q k k

j k

Y Y N s Y

s Y y Y

φ φ σ

φ φ φ φ τ+ +
= =

= + + −∑ ∑
, (4) 

where q is the degree of polynomial, ( ) ( )0
q qx x I x
+

= ≥ , 1 Kτ τ< <L  are selected fixed knots, 

and K is the total number of knots. Then, the penalized least-squares estimator 

$ $( )T

0
ˆ , , q Kφ φ φ += … can be obtained by minimizing the penalized sum of squared errors  

( ) ( )
2

2 0 1 1
1 1 1 1

qn K K
qj

i j i q k i k q k
i j k k

y y yφ φ φ τ λ ζ φ+ ++
= = = =

 
− − − − + 

 
∑ ∑ ∑ ∑ , 

where ζ  is a suitable nonnegative function, and λ  is a smoothing parameter. The smoothing 

parameter can be estimated by generalized cross validation or by ML for a linear mixed model, 

treating ( )T

0 , , qφ φ…  as a fixed parameter vector and ( )T

1, ,q q Kφ φ+ +…  as a random vector. Cheng 

(1994) achieves nonparametric smoothing by another method, kernel regression; an attractive 

feature of the ML version of penalized splines is that they are easily implemented with widely 
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available software such as PROC MIXED in SAS (SAS, 1992) and lme( ) in S-plus (Pinheiro 

and Bates, 2000).  

4.2. Weighting the complete cases. 

 An alternative to prediction, commonly used for unit nonresponse adjustments in sample 

surveys, is to weight the complete cases by the inverse of an estimate of the probability of 

response (e.g. Little and Rubin, 2003, Section 3.3). The mean of 2Y  can be written as: 

2
2

1 1

(1 ) 1
/

( ) ( )
M Y M

E E
Y Y

µ
π π

   − −
=    

   
, 

where 1 1( ) Pr( 0 | )Y M Yπ = =  is the probability that 2Y  is observed given 1Y . The denominator in 

this equation can be ignored under correct specification of the 1( )Yπ , since it then equals one. 

Replacing population quantities by sample estimates yields the weighted complete-case estimate: 

 2 2 2
1 1

ˆ /
r r

w i i i
i i

y w y wµ
= =

   
≡ =    

   
∑ ∑ , (5) 

or 

 2 2 2
1

ˆ /
r

w i i
i

y w y nµ
=

 
≡ =  

 
∑ , (5A) 

where the weight iw  for respondents is a reciprocal of an estimate of 1( )iyπ . If 1Y  is grouped 

into categories, and respondents in category c are weighted by the inverse of the estimated 

response rate /c cr n  in category c, then the resulting estimator (5) or (5A) is identical to the 

regression estimate (3). Note that if the true response rate is the same for all the categories c, as 

when the data are MCAR, then weighting by the true response rate yields the unweighted sample 

mean 2y  based on the complete cases, which is less efficient if the categorized covariate is 

predictive of response. This is a simple and instructive illustration of increased efficiency when 

weights are estimated from the sample rather than from population parameters (e.g. Robins, 

Rotnitsky and Zhao, 1994). 
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 In section 4.1 we used splines to smooth the predictions from a regression model. A 

different use of smoothing is to smooth the weights in the weighted estimator (5). That is, the 

weights are replaced by the inverse of the estimated propensity to respond, computed by fitting a 

spline to the logistic regression of the missing-data indicator M on 1Y .  

 
( )

1

1

ˆ1/ ( ), ( ) Pr( 1| , ),

logit ( ) ( ; ),
i i i i i

i M i

w M y

s y

π φ π φ φ

π φ φ

= = =

=
 (6) 

where 1( ; )M is y φ  is a spline for the binary outcome iM  analogous to (5), with unknown 

parameters φ , and φ̂  is an estimate of φ . The latter can be obtained by fitting a generalized 

linear mixed model for the spline regression of M on 1Y  (Breslow and Clayton, 1993). The utility 

of splines for prediction, as in Eq. (4), and for weighting, as in Eq. (6) is compared in the 

simulations in Section 6. 

4.3. Calibration estimators  

 The mean of 2Y  can be written in a way that combines the features of prediction and 

weighting: 

( ) ( )2 2 2 1 2 1
1

(1 )
( | ) ( | )

( )
M

E Y E Y Y E E Y Y
Y

µ
π

 −
= − + 

 
. 

Estimating quantities in this expression leads to a “calibration” estimator of the form 

 1 1
2 2 2 2

1 1

ˆ ˆ ˆ( )
r n

i i i i
i i

n w y y n yµ − −

= =

   
= − +   

   
∑ ∑ . (7) 

where the predictions 2ˆiy  from the model are calibrated by adding a term consisting of weighted 

residuals from the model. The estimator (7) has properties of semi-parametric efficiency and 

“double-robustness” (Robins, Rotnitsky and Zhao, 1994; Robins and Rotnitsky, 2001), in the 

sense that the estimate is consistent if just one of the models for prediction and weighting are 

correctly specified. However, since the calibration of the predictions is to correct effects of 
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model misspecification, we believe that the calibration of the predictions in Eq. (7) is 

unnecessary if the prediction model does not make strong parametric assumptions, as in (4). This 

conjecture is supported by the simulation studies in Section 6. 

 

5. Robust MAR Inferences with More than One Covariate 

 With sufficient sample size, a penalized spline provides a useful model for predictions 

based on a single covariate. With several covariates an additive model might be fitted with 

splines on the continuous covariates. In particular, Scharfstein and Izzary (2003) consider a 

flexible class of estimators that includes (7) as a special case where the propensity score model 

and mean model follow generalized additive regressions. We propose here a prediction model 

that addresses the “curse of dimensionality” by focusing the spline on a particular function of the 

covariates most sensitive to model misspecification, namely the propensity score. Suppose that 

pY  is subject to missing va lues and 1 1,..., pY Y −  are fully observed covariates, and 3p ≥  so that 

there are at least 2 covariates. We first define the logit of the propensity score for pY  to be 

observed, given the covariates 1 1,..., pY Y − :  

 ( )*
1 1 1logit Pr( 0 | ,..., )pY M Y Y −= = . (8) 

The key property of the propensity score is that conditional on the propensity score and assuming 

MAR, missingness of pY  does not depend on 1 1,..., pY Y −  (Rosenbaum and Rubin, 1983). Thus the 

mean of pY  can be written as: 

*
1[(1 ) ] [ ( | )]p p pE M Y E M E Y Yµ = − + × . 

This motivates the following method: 
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(a) Estimate *
1Y  by a logistic regression of M on 1 1( ,..., )pY Y − , yielding estimated propensity 

*
1̂Y ; this regression can include nonlinear terms and interactions in 1 1( ,..., )pY Y − , and with 

sufficient data could be modeled by a spline as in (6).  

(b) Predict the missing values of pY  by a spline regression of pY  on *
1̂Y . Since variables other 

than *
1̂Y  may be good predictors of pY , the other covariates are entered in the regression 

parametrically, for example as linear additive terms.  

More specifically, we replace one of the predictor variables, say 1Y , by *
1Y , to avoid 

multicollinearity; we then predict the missing values of pY  using the following model for the 

distribution of 2 ,... pY Y  given *
1Y : 

 
( )( )

( )

* * *
2 1 1 2 1 1 1

* * * * * 2
1 2 1 1 1 2 1

( ,..., | ) ~ ( ),..., ( ) ,

( | , ,..., , ) ~ ( ) ( , ,..., , ), ,

p p

p p p p

Y Y Y N s Y s Y

Y Y Y Y N s Y g Y Y Yβ β σ

− −

− −

Σ

+
 (9) 

where * *
1 1( ) ( | )j js Y E Y Y=  is a spline for the regression of jY  on *

1Y , * *
1( )j j jY Y s Y= − , 

2,..., 1j p= − , and g is a parametric function indexed by unknown parameters β , with the 

property that 

 *
1( ,0,...,0, ) 0 for all g Y β β= . (10) 

Examples of functions g() that satisfy (10) include a linear additive model for * *
2 1( ,..., )pY Y − ,  

 
1

* * * *
1 2 1

2

( , ,..., , )
p

p j j
j

g Y Y Y Yβ β
−

−
=

= ∑ , (11) 

and a model that includes first order interactions between * * *
1 2 1 and ( ,..., )pY Y Y − : 

1 1
* * * * * *

1 2 1 2 1
2 2

( , ,..., , )
p p

p j j j p j
j j

g Y Y Y Y Y Yβ β β
− −

− + −
= =

= +∑ ∑ . 
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 We call Eq. (9) a propensity spline prediction model. The idea of explicitly including the 

propensity score as a covariate in the prediction model was previously proposed by David et al. 

(1983) and in a more general context in Robins (1999). The use of a spline on one regressor 

variable is an application of Yu and Ruppert’s (2002) partially linear single- index model in the 

missing-data setting.  

 The following theorem defines a double robustness property of prediction estimates of 

the mean of pY  based on the model (9). 

Theorem 1. Let ˆ pµ  be the prediction estimator (1) based on the model (9), and assume MAR. 

Then ˆ pµ  is a consistent estimator of pµ  if either (a) the mean of pY  given *
1 2 1( , ,..., )pY Y Y −  in the 

model (9) is correctly specified, or (b1) the propensity *
1Y  is correctly specified, and (b2) 

* * *
1 1( | ) ( ) j jE Y Y s Y=  for 2,...,j p= , that is, the splines *

1( )js Y  correctly model the regressions of 

jY  on *
1Y  for 2,...,j p= . The robustness feature of condition (b2) is that the regression function 

g does not have to be correctly specified. 

Outline proof of Theorem 1. Consistency under (a) follows from the usual properties of 

prediction under a well-specified regression model. For consistency under (b1) and (b2), we need 

to show that 

 ( )1
ˆ /( ) ( | 1) as ( )

n

ip pi r
y n r E Y M n r

= +
− → = − → ∞∑ . (12) 

Let ˆipy  be a prediction for a nonrespondent ( 1,..., )i r n= + . Note that  

µ* * * *
1 1 2 1ˆ ˆ ˆ ˆ ˆ( ) ( , ,..., ; )pip i i i ipy s y g y y y β−= +$ , 
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where * *
1ˆ ˆ ˆ( )ij ij j iy y s y= −  and ˆ js  denotes the sample estimate of the spline js . Since by 

assumption the propensity model and the splines are correctly specified, 

* * * * *
1 1 2 1ˆ ( ) ( , ,..., ; )ip ip p i i i ipy y s y g y y y β−→ = +% , 

where *β  is the limiting value of β̂ , and the estimates *
1ˆiy  and ˆ js  have been replaced by 

limiting values *
1iy  and js . Now 

( )
( )
( )

* * * * * * *
1 1 1 2 1 1

* * * * * * *
1 1 2 1 1 1

* * * * *
1 1 1 1

( | ) ( ) ( , ,..., ; ) |

( ) , ( | ),... ( | );

( ) ,0,...0; ( ) ( | ).

ip i p i i i ip i

p i i i i ip i

p i i p i ip i

E y y s y E g y y y y

s y g y E y y E y y

s y g y s y E y y

β

β

β

−

−

= +

+

= + = =

%
;  

Hence the conditional expectation of ˆipy  given *
1iy  converges to *( | )ip ipE y y , which equals 

*( | , 1)ip ip iE y y m =  by the balancing property of propensity scores. Hence 
1

ˆ /( )
n

ipi r
y n r

= +
−∑  

converges to ( | 1)pE Y M = , as required for consistency.  

 The double robustness property in this theorem is more restrictive than the double 

robustness property for the calibration estimator (7), which requires only (a) or (b1) and does not 

require (b2) in addition to (b1). On the other hand, (b2) is weak, since the univariate regressions 

on *
1Y  are modeled nonparametrically in (9) with splines *

1{ ( )}js Y . The inclusion of g in (9) does 

not affect consistency even if it is misspecified, and it has the potential of improving efficiency, 

as for example when the variables 2 1( ,..., )pY Y −  are predictive of pY  but the propensity score *
1Y  

is not. The properties of propensity spline prediction are further explored in the simulation study 

in the next section.  
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6. Simulations  

We conducted three simulation studies to examine the performance of the estimators of 

the mean of Y with missing data under MAR. The first simulation study involved a single fully-

observed covariate 1Y , generated from a uniform distribution between –1 and 1, and one variable 

2Y  with missing values, generated from a normal distribution with one of four mean structures:  

(I) constant : ( )26, 2N ,  

(II) linear : ( )2
16 10 , 2N Y+ ,  

(III) cubic: ( )( )3 2
14 5 1 , 2N Y− + + , and  

(IV) sine : ( )( )2
16 15sin , 2N Yπ+ .  

The expected value of 2Y  is 6 for four mean structures, and (II) – (IV) model a strong predictive 

relationship between 1Y  and 2Y . We created missing values from four different models for the 

propensity to respond:  

(I)       constant (MCAR) : ( )( )1logit 0 | 0.5pr M Y= = ,  

(II)       linear : ( )( )1logit 0 |pr M Y= 13Y= ,  

(III) cubic : ( )( ) 3
1 1logit 0 | 3pr M Y Y= = , and  

(IV) sine: ( )( ) ( )1 1logit 0 | 1.5sinpr M Y Yπ= = .  

The response rate for all these propensity structures is 0.5, and (II) – (IV) model a strong 

predictive relationship between 1Y  and M. The non-MCAR simulations are thus focused on the 

fourth cell of Table 2, when a well-specified regression adjustment has strong gains. For each 

combination of mean and propensity structure, 500 simulated data sets with sample size n=100 
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were generated. Then, six estimators of the mean of Y2 are compared with the mean of Y2 before 

deletion (BD), namely: 

(CC) The complete-case estimate, deleting the incomplete cases. 

(LP) The prediction estimator (1) based on linear regression. 

(SP) The prediction estimator (1) based on a penalized spline regression model (4). 

(LW) The weighted estimator (5) with weights computed as the inverse of the response 

propensity estimated by linear logistic regression of the missing-data indicator on 1Y . 

(SW) The weighted estimator (5) with weights computed as the inverse of the response 

propensity estimated by spline logistic regression of the missing-data indicator on 1Y , as in (6). 

(SPW) The calibration estimator (7) with predictions computed as for SP and weights computed 

as for SW.  

For the penalized splines methods, we chose 20 equally spaced fixed knots over Y1 and a 

truncated linear basis.  

The results from this simulation study are summarized in Table 3 and Figure 1. For each 

combination of mean structure and response propensity structure and for each estimator, the 

standardized bias  

STDBIAS = 100×(bias/empirical standard error), 

is tabulated, where bias is the deviation of the average estimate over the 500 simulated data sets 

from the true parameter value, and the empirical standard error is standard deviation of the 

estimates over the 500 simulated data sets. Also the relative root mean squared error compared 

with the BD estimator  

RRMSE = 100×(RMSE(estimator) – RMSE(BD))/RMSE(BD)  

is tabulated, where RMSE is the square root of the average squared deviation of the estimate 

from the true value over the 500 simulated data sets. The RRMSE values for methods other than 
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CC are displayed in Figure 1, with means and medians as summaries of overall performance. We 

conclude the following from Table 3 and Figure 1: 

(1) In terms of median or mean RRMSE over problems, SP and SPW are the best methods, SW, 

LW and LP are intermediate, and CC is much worse than the other methods. In particular, 

methods that include predictions based a spline (SP or SPW) do better than the method that uses 

weights based on a spline (SW).  

(2) The bias of SP is minor and comparable to that of SPW, and the biases and RRMSE’s of SP 

and SPW are very similar. This suggests that calibration is not needed for SP, although it does 

not hurt the method.  

(3) For the constant mean model, 1Y  and 2Y  are independent; in this case the missing data 

mechanism is always MCAR since missingness depends on a variable 1Y  that is independent of 

2Y . None of the methods display bias in this situation, as theory would predict. For data from the 

constant propensity model, the RRMSE’s of all the methods are very similar; for data from the 

other propensity models, CC analysis is best. For non-constant mean models and missing-data 

mechanisms other than MCAR, CC analysis has a large bias and is not competitive with other 

methods. 

(4) When 1Y  and 2Y  are linearly related, LP is the best method, as predicted by theory, but SP is 

nearly as good, showing little loss in efficiency. LW and SW are noticeably inferior in this case.  

(5) When 1Y  and 2Y  are not linearly related and data are not MCAR, LP predictably suffers from 

bias from model misspecification; SP does much better in these cases since it is not based on a 

linearity assumption. 

(6) When the model for the propensity is not linear, there is some evidence that SW is better than 

LW, consistent with the fact that SW does not make a linearity assumption for the logit of the 

propensity. However gains are less dramatic than for SP over LP. 
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 The second simulation study involved two fully observed covariates 1Y  and 2Y , and one 

variable 3Y  with missing values. We generated 1Y  and 2Y  as independent uniform deviates 

between –1 and 1, and 3Y  from a normal distribution with one of four mean structures: 

(I) constant: ( )210,2N ,  

(II) linear : ( )( )2
1 210 1 3 , 2N Y Y+ + ,  

(III) additive : ( ) ( )( )3 3 2
1 2118 3 3 3 3 , 2N Y Y+ − + − ,  

(IV) non-additive : ( )( )2
1 2 1 210 1 4 , 2N Y Y Y Y+ + + .  

The expected value of 3Y  for all these mean structures is 10. We simulated four response 

propensity structures, all of which yield an expected response rate of 0.5:  

(I) constant : ( )( )1 2logit 0 | , 0.5pr M Y Y= = ,  

(II)  linear : ( )( )1 2 1 2logit 0 | ,pr M Y Y Y Y= = + ,  

(III) additive : ( )( ) 3 3
1 2 1 2logit 0 | ,pr M Y Y Y Y= = + ,  

(IV) non-additive : ( )( )1 2 1 2 1 2logit 0 | , 3pr M Y Y Y Y YY= = + + .  

For each combination of mean and response propensity structures, 500 simulated data sets of size 

n=100 were generated. Then, we compared the mean before deletion (BD) with the following 

eight estimators of the mean of 3Y  from the incomplete data: 

(CC)  The complete-case mean. 

(LP) Regression prediction from a linear regression of 3Y  on 1Y  and 2Y . 

(ASP) Additive Spline Prediction, namely the prediction estimator (1) based on an additive 

regression model of 3Y  on penalized splines for 1Y  and 2Y . 
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(LW) The weighted estimator (5) with weights computed as the inverse of the response 

propensity estimated by linear logistic regression of the missing-data indicator on 1Y  and 2Y . 

(ASW) Additive Spline Weighting, namely the weighted estimator (5) with weight s 

computed as the inverse of the response propensity estimated by an additive spline logistic 

regression of the missing-data indicator on 1Y  and 2Y .  

(ASPW) The calibration estimator (7) with predictions computed as for ASP and weights 

computed as for ASW.  

(SPP) Penalized spline propensity prediction based on a regression of 3Y  on the spline of *
3Y , 

the linear predictor of the estimated propensity to respond from a linear logistic regression of 

M on 1 2,Y Y ; that is, Eq. (9) with g = 0. 

(SPPL) Penalized spline propensity prediction based on Eq. (9) with a linear parametric term 

for 2Y . That is, Eq. (9) with g given by Eq. (11). 

We chose 15 equally spaced knots over 1Y  and 2Y  respectively and a truncated linear basis 

for the ASW and ASPW. We also chose 20 equally spaced knots over the estimated response 

propensity and a linear truncated basis for the SPP and SPPL.  

Results in Table 4 and Figure 2 can be summarized as follows: 

(1) The propensity spline prediction methods (SPP, SPPL) and the prediction methods based on 

additive splines (ASP, ASPW) do best overall, followed by the linear prediction methods LP and 

the weighting methods, LW and ASW; CC is much worse than the other methods since it is very 

biased except for simulations with a constant mean model or an MCAR response propensity. 

(2) The methods based on additive splines (ASP, ASPW) do slightly better than propensity 

spline methods (SPP, SPPL) when the prediction model is additive, and considerably worse 

when the prediction model is non-additive. In that case the additive models are misspecified, and 

Hosted by The Berkeley Electronic Press



 21

the calibration estimator is also biased when the propensity model is not additive. In fact all the 

methods were biased for this rather demanding problem, but the propensity spline methods have 

less bias than the others. 

(3) Little gain was seen from adding 2Y  to the propensity spline, since SPP and SPPL performed 

very similarly. Greater gains might be expected in problems with more useful covariates. 

(4) Results for ASPW are very similar to those of ASP, suggesting that calibration of ASP has 

little effect for this particular set of problems. 

(5) As in the first simulation, the weighting methods LW and ASW are less efficient than the 

prediction methods, and smoothing the weight by a spline does not appear to help much. 

 This simulation study does not display the potential for SPPL to yield gains in precision 

over SPP when the covariates other than the propensity are predictive of the outcome. We thus 

simulated two additional cases where the logit of response was linear in 1 2Y Y+ , but the mean 

was more strongly correlated with 1 2Y Y− . In the first case the mean of 3Y  is a nonlinear additive 

function of 1Y  and 2Y , namely  

Y3|Y1,Y2 ~ N( (3*Y1 – 3)3-(32/27)*(3*Y2 – 3)3,  22 ). 

In the second case the mean of 3Y  is a nonlinear non-additive function of 1Y  and 2Y , namely  

Y3|Y1,Y2 ~ N( 10 * ( 1 + Y1 – 3*Y2 + 3*Y1*Y2 ),  22 ): 

The results of these simulations are shown in Table 5. Note that in these cases both SPP and 

SPPL display minimal bias, but SPPL shows the expected gain in precision, reflected in lower 

RRMSE’s. As might be expected, the methods that fit additive splines, ASP and ASPW, have the 

lowest RRMSE’s in the additive case, but are inferior to SPP and SPPL in the non-additive case. 

 The results of any simulation study are limited by the choice of populations simulated, 

and should be interpreted with caution. Our conc lusion from these simulations is that the 

predictions from spline models can yield relatively robust estimates of the population mean. 
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With several covariates, additive splines work well when the effects of the variables are additive, 

but the propensity spline method provides an attractive alternative way of addressing the “curse 

of dimensionality”.  

 

7. Extensions to Monotone and General Patterns  

 The propensity spline model (9) of the previous section can be extended to a monotone 

pattern by applying it sequentially to each block of missing variables. Missing values of 

covariates are replaced by their predictions in this sequence of regressions. Multiple imputation 

versions of this approach, where draws from the predictive distribution are imputed rather than 

means, and extensions to general patterns of missing data based on the sequential imputation 

methods of Raghunathan et al. (2001), will be examined in future research.  

 

8. Conclusions  

 Despite the large literature devoted to nonignorable missing data adjustments, we believe 

that the key to successful treatment of missing data is to measure covariates that are predictive of 

the missing values, and to model carefully the relationships between the missing variables and 

these covariates. Likelihood-based methods based on multivariate models for the data are useful 

tools for making efficient use of the available data, but standard models such as the multivariate 

normal imply linear additive relationships between the variables that may be too simplistic in 

certain settings. We propose easily-fitted spline models that yield regression predictions that are 

more robust to nonlinearity in the relationship between the missing variables and the covariates, 

under the MAR assumption. A key idea is to single out the propensity score for this robust form 

of modeling.  
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 A limitation of the work on propensity spline methods described here is that it is focuses 

on point estimation. Inferences for the propensity spline prediction model require valid estimates 

of standard errors, and ideally Student t corrections for small samples. Possible approaches to 

estimating standard errors include: 

(a) computing the estimate on a set of bootstrap samples, and calculating a bootstrap 

standard error from the sample variance over the bootstrap samples, or from percentiles 

of the bootstrap distribution; 

(b) ignoring sampling error in estimating the propensity µ
1 1( ,..., )pY Yπ − , and using asymptotic 

standard errors for the model (9) based on standard linear mixed model formulae.  

(c) using the propensity spline prediction model to multiply- impute draws from the 

predictive distribution of the missing values, and then using multiple imputation methods 

for estimating the variance (e.g. Rubin, 1987; Little and Rubin, 2002, chapter 10). 

Simulations comparing these approaches are currently underway. Future work will also consider 

extensions to general patterns of missing data and non-normal outcomes, based on extensions of 

the sequential imputation method of Raghunathan et al. (2001).  
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Table 3. Simulation Study Comparing Estimators with a Single Covariate. 

Constant (MCAR)(I) Linear (II) Cubic (III) SINE (IV) Propensity Model→  

↓ Mean Model STDBIAS RRMSE STDBIAS RRMSE STDBIAS RRMSE STDBIAS RRMSE 

BD -3 0 0 0 1 0 -4 0 

CC -3 25 -5 40 1 39 -4 35 

LP -3 25 -8 85 1 53 -6 45 

SP -3 25 -9 94 0 55 -6 48 

LW -3 25 -6 115 0 52 -6 52 

SW -3 25 -5 107 0 54 -6 54 

Constant 

(I) 

SPW -3 25 -8 116 -1 58 -5 55 

BD 6 0 1 0 4 0 2 0 

CC 8 36 504 493 286 293 269 295 

LP 5 5 3 15 3 9 3 10 

SP 5 5 3 18 2 10 3 10 

LW 6 5 11 92 23 19 -26 43 

SW 6 5 22 79 32 27 9 22 

Linear 

(II) 

SPW 5 5 3 23 2 11 3 11 

BD -4 0 6 0 6 0 2 0 

CC -1 28 383 466 247 333 228 239 

LP -6 6 -149 147 -68 53 -38 13 

SP -4 2 0 11 -1 3 0 3 

LW -3 6 17 42 16 5 -13 5 

SW -4 3 25 42 27 12 12 11 

Cubic 

(III) 

SPW -4 2 2 11 0 3 1 3 

BD 6 0 -2 0 -1 0 -5 0 

CC 5 24 430 421 168 160 408 395 

LP 6 12 50 75 -79 61 182 144 

SP 6 1 -43 65 -20 10 -1 3 

LW 6 12 -2 33 -87 52 156 114 

SW 6 11 5 31 -51 32 72 39 

SINE 

(IV) 

SPW 6 1 -42 65 -19 10 -2 3 
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Table 4. Simulation Study Comparing Estimators with Two Covariates. 
Constant (MCAR) (I) Linear (II) Additive (III) Non-Additive (IV) Propensity Model →  

↓ Mean Model STDBIAS RRMSE STDBIAS RRMSE STDBIAS RRMSE STDBIAS RRMSE 

BD 5 0 -4 0 -4 0 1 0 

CC 7 35 -3 42 -6 48 0 52 

LP 7 36 -5 57 -6 57 -5 56 

ASP 7 36 -3 60 -6 58 -5 58 

LW 7 36 -4 61 -6 56 -6 66 

ASW 7 36 -4 62 -5 57 -7 71 

SPP 7 36 -4 59 -5 57 -5 59 

SPPL 7 36 -4 58 -5 57 -5 58 

Constant 

(I) 

ASPW 7 37 -3 64 -4 59 -5 66 

BD 1 0 5 0 3 0 -8 0 

CC -1 25 232 240 147 137 168 188 

LP 1 1 5 1 3 1 -8 1 

ASP 1 1 5 1 3 1 -8 1 

LW 2 1 6 25 3 5 -113 82 

ASW 2 1 11 25 9 6 -111 90 

SPP 1 1 4 4 1 2 -22 5 

SPPL 1 1 5 1 3 1 -8 1 

Linear 

(II) 

ASPW 1 1 5 1 3 1 -8 1 

BD -5 0 2 0 8 0 -3 0 

CC -2 25 272 264 180 166 191 233 

LP -3 5 38 21 36 16 24 25 

ASP -5 0 3 0 9 0 -2 1 

LW -6 5 7 48 19 30 -91 134 

ASW -5 3 15 40 25 26 -103 141 

SPP -5 4 10 11 24 9 51 40 

SPPL -5 3 14 11 23 8 69 39 

Additive 

(III) 

ASPW -5 0 3 0 9 0 -2 1 

BD 2 0 -2 0 -7 0 7 0 

CC 6 35 116 154 71 90 303 393 

LP 5 28 -82 113 -35 55 221 215 

ASP 5 30 -80 131 -34 67 222 243 

LW 5 27 -6 33 -5 30 250 218 

ASW 5 28 -2 33 -4 34 253 224 

SPP 5 18 -11 22 -6 19 154 106 

SPPL 5 18 -10 23 -5 21 155 111 

Non- 

Additive 

(IV) 

ASPW 6 29 -18 90 -13 59 236 308 
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Table 5. Supplemental Simulations where Covariates Other than the Propensity Score are 

Predictive of Outcome. 

 

 Additive Mean Non-Additive Mean 

METHOD STDBIAS RRMSE STDBIAS RRMSE 

BD 6 0 -3 0 

CC -25 31 -115 99 

LP -3 13 -64 42 

ASP 5 1 -64 51 

LW -2 27 -7 43 

ASW 1 18 -9 42 

SPP -1 31 -25 21 

SPPL 2 11 -23 12 

ASPW 5 1 -16 36 
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Figure 1. Histograms of RRMMSE for Methods other than CC Analysis, for Simulation 1 with a Single Covariate. 
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Figure 2. Histograms of RRMMSE for Methods other than CC Analysis, for Simulation 2 with Two Covariates. 
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