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Abstract 

A new method of computing all optimal certain rules from an incomplete information 
system is presented and proved. The method does not require changing the size of the 
original incomplete system. Additionally. several existing rough set methods of 
computing decision rules from incomplete information systems are analyzed and 
compared. We show which of these methods are capable of generating ail optimal 
c&lain rules or a class of optimal certain rules and which methods mdy lead to 
generation of false rules. 0 1999 Elsevier Science Inc. All rights reserved. 

~qwJJYb: Incomplete inform:ition systems; Decision rules: Rough sets 

1. Introduction 

The problem of knowledge discovering from incomplete information sys- 
tems is considered. By an’incomplete system we mean a system with missing 
data (null values). We do not consider the case of nul: value meaning inup- 
plicuhle value. This problem may be solved by adding a special symbol de- 
noting inapplicable value to the attribute domains. In the paper we deal with 
the problem of unknown values. 

Several solutions to the problem of generating decision tree from the 
training set of examples with unknown values have been proposed in the area 
of .\rtificial fntelligence (AI). The simplest among them consist in removing 
examples with unknown values or replacing unknown values with the most 
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common values. More complex approaches were presented in [I ,2]. A Bayesian 
formalism is used in [l] to determine the probability distribution’ of the un- 
known value over the possible values from the domain. This method could 
either choose the most likely value or divide the object into fractional objects, 
each with one possible value weighted according to the probabilities deter- 
mined. It is suggested in [2] to predict the value of an attribute based on the 
value of other attributes of the object, and the class information. 

‘The problem of rules generation from incomplete, systems was also inves- 
tigated in the context of Rough Sets [3-51. h&telling uncertainty caused by the 
appearance of unknown values by means of fuzzy sets was discussed in [4]. Two 
methods of treating unknown values are available in the LERS system [3]. The 
first one consists in transforming an incomplete system into a complete system, 
where each object incompletely described in the source system is replaced by a 
set of possible subobjects in the target system. This method is hardly applied in 
practice because of the large size of a new table. The second method is the AI 
simple method mentioned earlier which reduces the size of the original table by 
removing objects with unknown values. The methodology proposed in [5] al- 
lows to generate generalized rules directly from the original incomplete deci- 
sion table. 

In the paper, a new method of computing all certain rules from an incom- 
plete information system is presented and proved. The method does not require 
changing the size of the original system. Additionally, selected rough set 
methods of computing decision rules from incomplete information systems are 
analyzed and compared. We show which of these methods are capable ot 
generating all certain rules or a class of certain rules and which methods may 
lead to generation of false rules. 

The paper is organized as follows. In Section 2 basic notions related to in- 
formation systems are presented. Section 3 provides definitions and properties 
of an indiscernibility relation, a similarity relation and set approximations. 
Basic notions related to decision tables and decision rules are presented in 
Section 4. Section 5 describes generation of certain decision rules from com- 
plete decision tables by means of Boolean reasoning. The notion of a certain 
rule in an incomplete system is defined and investigated in Section 6. As a 
result of the obtained properties, a new method of generating all optimal 
certain rules from an incomplete system is proposed. In Sections 7-9. the ca- 
pabilities of the selected rough set methods [3,5] of certain rules generation are 
investigated. 

2. Information systems 

Injbrmutirm system (IS) is a triplet .Y’ - (C . AT,f), where (’ is a non-empty 
finite set of objects and AT is a non-empty finite set of uttributq such that 
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fU : di -+ V, for any a E AT, where 4, is called domuin of an attribute a. 
fnf(x> = {(a,&(x)) 1 a E AT} is called an information vector of x. Any attribute 
domain V, may contain special symbol “*” to indicate that the value of an 
#attribute is unknou~ Here, we assume that an object x E k! possesses only one 
~ value for an attribute a, u E AT. in reality. Thus, if the value of an attribute a is 
missing then the real value must be one from the set V, \ {*}. Any domain 
value different from *‘*” will be called regulur. A system in which values of all 
attributes for all objects from P are regular (known) is called comple!e. oth- 
erwise it is called incomplere. 

Let ,Y = (C, AT,/). 9” = (I’,‘, AT’./‘) is called an extension of .Y iff P’ = 8. 
AT’ = AT and.fu(,x) # * impliesJ1:(x) = .f,(x) for any (I E AT and x E 6. We say 
that 9” is a completion of ,v’ iff .‘Y’ is a complete information system which is 
an extension of 9. The set of all extensions of the system Y will be denoted by 
EXZN(Y), whereas the set of all completions of .Y will be denoted by 
CoMP(.Y). We will indicate that a notion is considered in some extension of 
the system 9’ by adding the respective upper index denoting that extension. In 
the paper, we will also refer to extension,s of .Y of a partrcular kind. 9” is called 
x-extension of 9’ iff 9 E EXTN(.‘/‘) and for any y E c \ {x}: Inj’(v) = fs’(v) 
and for any a E AT:f:(x) is regular. The set of all .u-extensions of 9 will be 
denoted by CIEXIiV(Y,r). 

Example 2.1. Table 1 illustrates an exemplary incomplete information system 
.Y. Fig. I presents extensions 9” and 9” of the system Y. .‘I”’ is a 2-extension 
of Y, so it differs from .Y only for object 2 and all attribute values of object 2 
are regular in 9”‘. All completions of .Y are presented in Fig. 2. 

In the sequel, any attribute-value pair (11.1’). N E AT. I* E K, will be called an 
atcynic* property. Any uro~~~ri~* proppcrty or its con.junction will be called (ie- 
scriptor. Conjunction of atomic properties (u.~‘), where u E A C AT. will 3e 
called A-dwriptor. Descriptor that does not possess null values will be called 
~on~plerc. The set of objects having the atomic property (N,I*) will be denoted by 

Table I 
Exemplary incomplete information system :/ 
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Oabcd 0 a bm c d’ 
1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 21111 
3 2 1 1 1 32 111 
4 1 2 * 1 412*1 
51112 51*12 
62222 62222 
71112 71112 

S’ S” 
Fig. 1. .‘/’ E Eh’N(J/), .‘4” 5 CIE,Yfl(,/‘. 2). where 9 is the syskm from Table I. 

/Ku, r)ll (i.e. //(a. rT)/l = {.Y E t 1 J,(x) = I‘}). Let us note that Il(a? *)lln 
Il(a? I*)// = Q, if r # *. The set of objects satisfying any descriptor I will be de- 
noted by lltll and will be computed in the usual way. e.g. Ilt A ~11 = lltll n IIsli. 

3. Indiscernibility of objects and set approximations 

Let 9 = (C .AT..f’). Each subset of attributes .4 C AT determines a binary 
incbwrnibilit~ rclutir~n lND( A): 

ND(A) = {(s,.l.) E c x t ( vu E A.j&Y) = j;,(x)}. 

The relation IND(d 1, A C AT. is an equivalence relation and constitutes a 
partition of C . 

Let 1.4(.x) denote the set of objects {y E C 1 (x.g) E fND(A)). Objects from 
IA(s) are indiscernible with regard to their description in the system. but they 
may have different properties in reality, unless the system is complete. In a 
complete system. objects perceived as indiscernible in the system are indis- 
cernible also in reality. 

A similarity relution SIM( A). 

SlM(A) = {LY,~) E (1 x C 1 Vu E A.J;(x) =j;l(y) or./;(s) = * 
or f;(v) = *} 

treats two objects as similar if they may have the same properties in reality. 
Similarity relation is reflexive and symmetric. but may not be transitive, so it is 
a tolerance relation. 

By Sd(s) we will denote the, set of possibly indiscernible objects: 
{v E t’ 1 (.Y,.V, E SfM(.A)\. Of course, SlM(A) and IND(A), A G AT. are 
equivalent :’ ‘.t!ions i!l a complete system. 



0 a b c d 
‘1 I 1 1 1 1 1 1 1 1 

2 1 1’1 1 2 1 1 11 
3 2 1 1 1 3 2 1 1 1 
4 1 2 11 4 1 2 1 1 
51112 51212 
62 2 22 6 2 ‘2 2 2 
71112 71112 

S’ S2 

u 0 b cd 0 a 6 cd 

1 1 1 1 1 1 1 1 1 1 
21111 2 1 2 1 1 
3 2 1 1 1 3 2 1 1 1 
4 1 2 2 1 4 1 2 1 1 
512 12 51112 
62 2 22 62222 
71112 71112 

1 1 1 1 t 
2 1 1 11 
3 2 1 1 1 
4 1 2 2 1 
51112 
62222 
71112 

S3 

8 a b c d 

1 1 1 1 1 
2 1 2 1 1 
3 2 1 1 1 
4 1 2 1 I 
* 

1 2 1 2 
ii2222 
71112 

S6 

Ua h cd Oa b cd 

11111 1 1 1 1 1 
2 1 2 1 P 2 1 2 1 1 
3 2 1 1 I 3 2 1 1 1 
4 1 2 2 1 4 1 2 2 1 
51112 51212 
62222 62222 
71112 71112 

S7 S8 



Property 3.3. Let 9’ = (C . A T, f’) hta m injhwutim swtcwz rand A C AT. Then 

S,(x) = {y E I’ I3.v E COfw(.‘~).y E I,;}. 

Proof. y E l;(x) for some 9 E CUM&S) iff for any a E AT:f:(,v) = f:(x) for 
:r)me.Y” E COMp(Y) iffforanya E AT:f,(y) =f&x) orA, = * or,f;(x) = + 
iffy E &(x). Cl 

Property 3.4. Let .Y = (C , AT,j) he un i~jbrrmrtion sywm cud A C AT. Then 

i .oof. It is stated in Property 3.3 that SA(s) is the set of all objects each of 
which is indiscernible with .Y by attributes A in some completion of 9. Hence, 

Example 3.1. Let us consider the properties of the system presented in Table 1 
and the properties of its completions presented in Fig. 2. Let A = {u,h,c}. 

Let us consider object 2: S.4(2) = {1,2.4,5,7}.1,d(2) = {2.5}, so 
!4(2) C S,J(2) (see also Property 3.1). 
S.!(2) = l‘:(2) := {1:2.5.7] (see also Property 3.2). 
S;(2) = l;(2) = (1.2.7) (see also Property 3.2). 
s;(2) = !i(2) = {1,2.5,7} (see also Property 3.2). 
$2) = 1,j(2) = { 1.2.7) (see also Property 3.2). 
Sj(2) = f,;(2) = (2.4) (see also Property 3.2). 
s,;(2) = f,!(2) = i2.4.5) (see also Property 3.2). 
s,;(2) = l:(2) = (2) (see also Property 3.2). 
S,!(2) = 1-j(2) = {2.5) (see also Property 3.2). 

U ,/‘,C(.~~,t,r,,,)f,;(2) = (1.2.4.5.7) = S,.,(2) (see also Property 3.4). II! 

Let X C C and A 2 AT. First we recall classical rough set detinitions of/o\rf*r 
upprosinlution &&’ and upper clpprosir,lclticnl ;il,tDX of $ in a complete IS: 
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A,,& = {x E e 1 l,(x) nx # 0). 

A_,.,& is the set of objects that &long to X with certainty, while ;il.&F is the set 
of objects that possibly belong to X 

We generalize these notions for the case of incomplete IS: 

&,,X is Ionleer approximation of X. iff &,X 

= {XEC’ I&(x) CX}. 
Z.s,,f Y is upper approximation of X, iff &,0X 

= {x E I’ IS,&) r-lx # 0). 

&,,X is the set of objects that belong to X with certainty in each completion of 
.‘I’. &,.,,.rtX is the set of objects that possibly belong to A’ in completions of 9. 
Obviously. &,,Y = &,,X and ~~.Yr.,,X = ;i,,,X in a complete IS. 

4. Decision tables and decision rules 

Decision ttrhk (DT) is an information system ://’ = (C ..4T u {d}.,f‘). where cl 
such that d $ AT and * &c KI is a distinguished attribute called the clwision. and 
the elements of A 7’are called cwrditiorzs. If DT is a complete IS then it is called 
a c~~nrpl& cki.siort lohk. otherwise it is called an imtmplrtc ckci.sim tuhle. 

Let us define the function i)., : C - .P( k&).,4 C: AT. as follows: 

3, will be called the ~cvuwrlixtl (/CC~S~~NI in DT. iIt,.( .I E ( determines to 
which decision classes the object .Y may be classihied to baaed on the available 
information on s. If c~rr/(i!,~ (s)) = I thcr: .Y ear bc classified without ambi- 
guity. 

Property 4.1. Lc*t x E 6 . A C: .-I T. 

Example 4.1. Tablr 2 describes an incomplete decision table containing 
information about cars. Price, .2lilargt~, Six and Altr.v-.~~t~~~l are the condi- 
tional attributes of the system. whereas cl is the decision attribute. (In the 
sequel. P. M, S, A’ will stand for hiw. .Ililqyc. Six and Mu X-Speed, 
respectively.) The attribute domains are as follows: Vp,,,(. = {hi,f$r./ow~ . 
V .,,,, c,,r,, = (hi~/J.h~]. V.S,z,- := { fdl.cwt~ipirc~t i . V \I ,,,., \,,Ci.C, = 1 Iri.gh, low i , V,, = 
~poor.Sc~tu/.~~.~~~r~/k,~lt~. Additionally. the sgstcm in ‘Table 2 is extended by th; 
column containing the values of the generahzcd decision i!,r ‘for all objects in 
the system. 

Table 3 presents the complete decision table. which is a completion of the 
system :from Table 2. 



Incomplete car table 

Car Priw .U&m: Six .Llu‘k--splwl 11 iI+/ 

I high lo\* full li~,V good I good ; 

2 low * ful! l9W good Igo@& 
3 * 

high : 
compact low v-J* ; poor 1 

4 full high +Jood ~good, excellent! 

5 * * full high excrllent i good, excellent I 
6 low high full * good I good. excellent f 

Table 3 
Complete car table 
- 

Car Pril? Alilc yyc Six, .Mr.Y-.sjwc<l iI i)f, 

I high IOW full IO\\ good : food I 
7 I(\\% IO\\ fttll IOW good lg00dl 

3 high high compact IOU poor 1 poor: 

1 high IOW full high g00J : pod excellent i 

5 high IOW full high excellent :good. excellent~ 

6 low high full high ~0od : golf i 

It is trivial to observe that the value of the generalized decision $,, for an 
object in an incomplete decision table .‘/ is a superset of its generalized deci- 
sion’s value in the completion of 9 (see iIlr-(6) in Tables 3 and 3). 

The knowledge hidden in decision tables data may be discovered and ex- 
pressed in the form of tkwision rdt~s: I - s. where t = A(c. ,-). C’ E .4 2 ,4 T. 
r E K. \ {*}. and s = V(d. w). w’ E C:,. In the sequel. we will 41 t and s (ON- 
clirion and tiwisiott purr of a rule, respectively. A rule with a single decision 
value in the decision part will be called clt~fit~iw. otherwise i: will be called WU- 
t/e$%tr. We will say that an object s, s E C . supports a rule I -1 s in .‘/ iff .Y has 
both property r and .s in .‘/ , 

Example 4.2. The following rules may be induced from roivs in Table 2: 
(P. high) A (hf. low) A (S..%,ty A (.%-. ifW) -~ (cl. <@xd) I/ object i 
(P. lowi A (S..firll) A f*Y. low) -- (tl.gootl) II object 3 
(S. COtttplr’f) A (.“i. lO\V 1 -- (d. cy’C?r) II object 3 
(P. high) A (S,,/irl/) (7 (S. high) - (d.good) ‘i (cl. exwllettf j II object 4 
(S.,ficll) A (A’. high) - (ti.gooti) v (d. cwt~llettr) II object 5 
(P. low) A (M. high) A {Xfirll) - (d.<@xxl) v (d, i~.wPllcvlI) II object 6 

The first three rules are definite. while the last three rules are non-definite. 
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We can easily observe that the second rule in Example 4.2 is more general 
than the first rule and is supported both by object 2 and I. Hence, rule 1. which 
is supported only by object 1. may be removed. We may also notice that the 
third rule may be replaced by the shorter rule: (S.compwr) -t jd,por). 

5. Complete decision tables 

An information system .‘I‘ = (C .dT u {(r}..f) considered in. Section 5 is as- 
sumed to be a complete decision table. 

5.1. Crrtififf cit~t*i.vitf f f rrfh 

Any decision rule t - s is culled ccrtcfifz in .Q’ iff I - s is definite and 
/II// C IIs// in 9. Any decision rule I - s is ofpriffftfl rwlcfifi in .Y iff it is certain in 
.‘/’ and no other rule constructed from a proper subset of atomic properties 
occurring in t is certain in .‘/ _ 

Property 5.1. LCi .v E C . .v supports ff tvrtuifr fx/t’ iff .‘/ i.[/’ f.,r(s) c I~J) (x) in 
.‘f’. 

Proof. (*) Let t - s be a certain rule supported by .V in .‘I. Let T be the set of 
attributes occurring in /. Since .V supports t - .s in the complete information 
system .‘/’ then II-(.r) 7 /jr// and /In,. -- ‘j.s!/. Additi,mally. since t - s is 
certain then jj/‘i & ‘!s I. By means of Property 3.1 vve also have: /,if(.r) (;I_ I&). 
Thus, /~T(XJ C 1ri.v) -= Itl;i C ~‘.v:/ = ll,,;(s) and tinally I.,r(.r) s liCl)\~\‘). 

(x=) It is necessary to wove that: if f,r(.r) _ C li,,)(.r) then there is some cer- 
tain rule f -s supported by x in :I. Let t =: A(~.,/;,:x)), 11 E ,dT. and 
s = (tf.,/;,(.\-)I. Then ;/t/l = Ill(r) and : .Y j =.. liClk~.~i. Hence. “f:/ 2 $1~ ; and t - s 
is de&tire. Thus. t - s is a certain rule supported hy- s. I7 

Property 5.2. Lrt .\’ E l crrrd .-I < .4T. 

txmfji14(s)~ =- I i/j I,l.rl 2 fi,, Ix). 

Proof. Follovvs immediately from Properties 1.1 and Property 3.2. C 

5.; Ct~fffpf.vf,’ 41 ,i4 tytimrl c rtiifff rtrlt3 

Here we will present a methbd of computing all optimal certain rules sup 
ported by an arbitrary object .Y E C . ,\ny certain rule scpported by .v will have a 
conjunction of some atomic properties of .Y in the condition part and the 
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property (d,fj(.r)) in the decision part. So. s may be used as a generator of 
rules. Let us also note that certain rules are supported only by objects .Y such 
that 1,&~) E 1{1/) (x) (i.e. card(i?.ir(x)) = 1). In order to determine the condition 
part of an optimal decision rules supported by an object s we may employ the 
notion of an s-reduct: 

Let A 5 AT and x E C and J.&K) g $t(.r) (i.e. t.~~d(i).ir(~)) = I). The set A 
is a c~errtiin s-r&c.t in Y’ iff A is a minimal set such that: 

If A is an s-reduct then the condition part of an optimal certain rule will be a 
conjunction of atomic propcrtics (u..fY,(s)). where CI c A. 

In order to compute reducts of DT we will exploit the idea of c/i.rc*rr~ri/Gfir~ 
.functions (61. Their main properties are that they are monotonic Boolean 
functions and their prime implicants determine reducts uniquely. Constructing 
suitable discernibiiity functions for generation of decision rules from complete 
systems has been subject of many papers e.g. [7-131. 

Let x(s.~*) = {u E AT 1 (x..v) @ SlM({fr})}. I-et C x(.Y,J~) be a Boolean ex- 
pression which is equal to 1. if 2(x.?) = fl. Otherwise. let C x(x.!) be a dis- 
junction of variables corresponding to attributes contained in X(X,?). 

Let .V E C and I,ir(x) C If,,;(+) (i.e. crrru/(i!ir(.~)) = 1). A,.(X) is a c~rruirr s- 
tii.wernibilit~ firi~ciiorr i ff 

Example 5.t. We will illustrate the method of optimal certain rules generation 
for the case of the complete system from Table 3. Certain rules may bc 
supported only by objects with single value generalized decisions. Hence, we 
will use objects 1.~3 and 6 as rules’ generators. 

First. let us consider object I: /f,11(l) = l!(d.g~l)/j 2: (1.3.4.6). Hence. 
l;.=C \~~,,~(I)={~.S}.A\,(I)~~~(I.~)~?~~;~.~)~(,MVS)A(X)=~I~~ 
VS‘Y . 

Thus, there are two certain I -reducts {M. .V) and {S. X}. Therefore object I 
supports two optimal certain rules: 

Similarly, one can find optimal certain rules suppl>rted by objects 2 -3 and 6: 
Ii,,)(l?j = jl(d.gptfjll = { 1.2.4.6). Hence. Y: = C \,f1,,)(2) = (3.5). A,.(2) 
= c ~(2.3) A c x(2.5) = (P V M v S) A (P V .U) = P L MY V S.X. Hence, there 
are three optimal certain rules supported by object 2: 



(P, /OH’) --+ (d,good). 

(h’f. /OH’) A (x, !W) ---t (d,~fJfJff). 

(s.jiirl;l A (X. low) - (d.goOfi). 

&q(3) = W.po4ll = (31. H ence, x. = C \ I(J)(~) = { 1.2,4,5.6}. A&) 
=~2(3,1)~~r(3:2)n~r(3,4)~~r(3.5)~~r(3,6)=(MvS)A(PvM 
VS)A(MVSV.~)A(MVSVX)A(f’VSVX)=(iklVS)A(PVSVX) =sV 

MP v MY. 
Hence, ‘there are three optimal certain rules supported by object 3: 

(S. compact) - (ti.poor). 

l{,!)(6) = l!(ff,gf~od)l( = { 1.2.4.6). Hence, V, = P \SI,,,j(6) = (3.5). A,.(6) 
=C~(~.~)AC~(~.~)=(PVSV.Y)A(P~M)~PVIZIS’JIZI,Y. Hence, 
there are three optimal certain rules supported by object 6: 

(P. lw) -t jd. good). 

(M. high) A jS..fif/l) - (rl.~~ord). 

(M.kigh) A (S.lti,q/t) - (d,pod). 

6. Incomplete decision tables 

Following the approach to incomplete int’ormation systems presented by 
Lipski in [14], WC propose the rollowing definition or :I certain rule: Any de- 
cision rule I - s is called cvrruitt in .‘/ ilf it is certaizl in every completion of .‘I’. 
Any decision rule t -+ s is optitttctl cuttritt in .‘I off it is certain in .V and no c’her 
rule constructed from a proper subset ~71‘ atomic properties occurring in I is 
certain in .‘/. 

Proof. By detinition of a certain rule in a complete IS, a rule f - s is certain in 
any completion of ‘/’ in which fjlj/ g IIS/‘/. Hence. it is certain in every 
completion of .Y in wh1g.h 1 i/i j = 111. Proposition is an immediate consequence of 
this fact and the definition ~‘f a certain rule. Cl 
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Proposition 6.2. Let De.scT( Y) tltwotc drs st’l t?f T-dtwriptors t$ ‘trll ohjt~crs, frmr Y. 
Let I -+ s be a definite decision rule supported in some completion of .‘/’ and T 
be the set of all attributes occurring in I. t - s i:~ cwtuin in .‘f iff 

t g u.v It t‘l~M’( ‘I I Dcst$(C \ Ilsl[). 

Proof. In order to prove the proposition we will prove the following equivalent 
statement: f - (d, L‘) is no1 uerroitt in .‘/: t#t E U,,,,rr.~j,,,rq, ,De.sc;((r \ jl(t/. 1:)11). 
The rule I - (d. r) is not certain in .y’ iff there is some completion 9” of ,i/’ in 
which Iltll’ $Z ll(d.r)ll ilT there is a completion .Vof .‘f in which some object 
possesses the properties t and (c/,w). w # I’. ilf I E U ,,tC’O,,,,c , ,Desc~(C \ 11 
(d. C*)li). Cl 

Proposition 6.2 justifies the correctness of a rules generation approach. in 
which an initial incomplete system :I is transformed into a complete .‘I ’ which 
contains all possible descriptors of the objects incompletely described in .V (see 
[3]). Then rules are generated from the complete system Y’. Next propositions 
will justify another approach to rules generation. which allows to compute 
rules directly from s-extensions of the initial incomplete system. 

Proposition 6.3. Lcr x E C . :P hc cut s-t~srcvwiott c!f’:/’ ttmi .r E /I/I I”. lf’t - s is 

cvrtuitt in ,(I”’ thtw t -+ s is czvmiti itt .‘I’. 

Proof. It is necessary to prove that if t - s is certain in an s-extension 9” of .‘Y 
where x E l/t/!“ then t - s is certain in .V . Let us consider an arbitrary 9 from 
COM!‘(.‘~‘). From the definition there exists a completion 9” of 9” which can 
differ from A/” at most on .Y. So it is enough to prove that for any .I’ E 6: iJ’ 
x E Ipi’ t/fen ~9 E ij.sII’ follows from: lt’.r E lltll” rlwn J’ E (/s/“. Let us assume 
that J’ E Jltll’. Suppose ~3 e’ /isi/‘. it means that Ibr some J’ # x such that F E /111/’ 
we have d(.r) # L!(Y). However. Ir$‘(~*j is also an information vector in :/“. 
which contradicts l/f\/” C //.v/!“. C 

Proposition 6.4. LA .x E c cd .‘I’, hc tm s-t~.~rcwsiotr c!t’ .\I . Art otpritttttl cw-tctin 

ritlt~‘.s~rpporteci hy s in .‘/” is ctptitrml wrluin itt .‘I 

Proof. Let I - s be an optimal certain rule supported by s in .V”‘. Immediate 
conclusion from Proposition 6.3 is that I - s is certain in .‘I’. Additionally. 
since r - s is optimal certain in .(I” then any rule r - s constructed from a 
proper subset of atomic properties occurring in I is not certain in any 
completion of .V’ and hence r - s is not certain in .‘I’. The above observations 
allow us to conclude that I - s is an optimal certain rule in .Y . q 
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Proof. Let f --+ s be a certain rule supported by s in .V’. The object s supports 
t --+ s in .!I”’ itfs supports t --+ s in every completion .‘/” of 9” iff l,&(x) C Ii,,(w) 
(by Property 5.1) in each completion IV” of .‘/” iff U,,~Ec‘o,,,p~~,‘.I I:,(X) g 
I(d) (x) [[f S,;,(x) C f(I~) (x) (by Property 3.4). !J 

It is stated in Proposition 6.4 that optimal certain rules supported by an 
object x in any s-extension .Y” of .‘f are optimal certain in .Y’. Additionally, 
it follows from Property 6.1 that the condition F;,.(X) G 1(,,)(r) in 9” (i.e. 
cc~d(2~r(-u)) = 1) is necessary for an object s to support a certain rule. 
Clearly, the set of all optimal certain rules each of which is supported by x 
in some completion of .‘/’ is equal to the set of all optimal certain rules each 
of which is supported by .Y in some r-extension of .V. In this subsection we 
show how to compute optimal certain rules (certain s-reducts) in an .r-ex- 
tension 9”‘. First we show how to obtain this goal by examining all com- 
pletions of .‘/“‘. Next we prove that the rules may be computed directly 
from .V’. 

Let A C AT. .I E I , .V” be an .v-e.itension of :I and S,‘;r(s) C_ IldI(s) (i.e. 
c~rd(i4~(.r)) = I). The set A is a cwtuitl s-rrrLct in .‘/ “ iff A is a minimal set 
such that: 

The prime impkants of A:(X) determine .v-reducts in .‘I’ uniquely. 

Proof. Let ‘1’ be a completion of :/’ such that for any J E 1 \ {Xj:./;(r) = * 
implies ,/;:(J,) =: J:;‘(X). Let .+I ” f~ &/ ’ be an arbitrary completion of I’/’ . One may 
easily notice that for each y E x. c r’[.r..l*) A c r”(X. v) = t: z’(.x.)‘) 
= C r’(s..,,). Therefore. A:‘(S) =- I-1 , ,. (.ou,,i ,/, / fl,,.. ) C z”(x..v) = n,, ,, C z’ 
(x.?.: =r 11, ..,: 1 f’(.V.~i D 
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Example 6.1. We will illustrate the method of optima! certain rules generation 
from an incomplete system by means of Proposition 6.5. Table 2 presents the 
system .‘/’ to be considered. Object 5 will be used as a rule generator. There are 
four possible complete A T-descriptors of this object: 
1. (P. low) A (M. low) A (S,,fufl) A (X,&$7). 
w. ’ (P, low) A (M.high) A (S.jirll) A (X.high). 
3. (P, hip/i) A (M, lotv) A (s,jiurrj A (A-, high). 
4. (P. high) A (M. high) A (S,jid/) A (X, hiplr). 
where P. M, S, X stand for Prier, Mileugt~. Six and MUX-Sped respectively. 

(a) Let .V’ E CiExnV(S, 5) and object 5 has the descriptor in .‘I” as in the 
case I. Table 4 illustrates the extension Y’. 

S’;,(5) = (5) and 11~)(5) = Il(d.t~.~c,ell~nt)I! = (5). so y;,(5) C_ Ild)(5) (i.e. 
curcl(q&.( 5)) = I) and according to Property 6.1 object 5 supports some certain 
rule in .V” V,.-6 \,l~,,,(5)={I.2.3.4.6}. Hence. A~(~)=C~“(~,I)AC~’ 
(5.2) AC i’(5.3) A CY(5.4) AC ~‘(5.6) = (Pv.Y) A (A’) A (Svx) A(P) 
A(M) = m4.Y. 

Thus. there is only one certain 5-reduct (P. ,W.X} in .‘/“. which means that 
only one optimal certain rule is supported by object 5 in -c/l’. namely: 

(P. low) A (M. few) A (X. high) + jd. twclltwf ). 

(b) Let .Y’ E CIEX7iV(S, 5) and object 5 has the descriptor in 9“ as in the 
case 2. Table 5 illustrates the extension .V’. 

S,;,(5) = {5.6} and &i(5) = Ij(d.e.~ce/lent)I/ = (51, SOS;,(~) g IIJ)(5) (i.e. 
t*urJ(ir;,(5)) # 1). Therefore. by Property 6. I. object 5 does not support any 
certain rule in .V’. 

Similarly, there are no optimal certain rules supported by object 5 in the 5- 
extensions of Table 2 in which object 5 has the descriptor as in the cases 3 and 
4. respectively. In these 5-extensions c~trc/(ir;~( 5)) # I. 

Performing analogous computations for each object we would receive the 
following set of all optimal certain rules in Table 3: 



(S.,firil) A (X. low) - (t/.good), // found in some s-exten- 
sions. where s = 12.6 

( S. 4mpmt j -- i cl. pmr ) . // found in all 3-i.t:ensions 
(P. high) A (:\I. high) A (A’. iow) - (11. par). // found in some 3-extension 
(P. iow) A l&f. ‘0ktj 4 (X. iii<qh) - (d. mdlrt~t). // found in some 5-exten- 

sions 

7. Computing certain ruies from original incomplete decision table 

In this section we will show that an important class of optimal certain rules 
which are supported in all completions of .‘/ can be computed directly from the 
original incomplete system .‘I. We will prose that definite generalized rules. 
which are a special case of gawxlized rules presented in [-il. constitute such a 
class of rules. 

In this subsection we will provide the formal definition of gcneraliz<d rules 
(after [5]) and present a method of <omputing them. Nest WC will examine 
specific properties of dekGtt2 generalircd rules. 

Any decision rule r - s is called ,~twmrlixl in :I itf T,,, ;‘t;] C ; isi;. where T 
is the set of all attributes occurring in 1. Any decision rule t -+ s is nptimd 
gtvwa!iad ir! :/ itf it is generalized in :/ and no other rule constructed from a 
proper subset of iftomic properties occurring in I or .S is generalized in :/ The 
decision part of an optimal generalize$ decision rule generated from the in- 
formation vector of s.‘.r E C . is equal to (cl. wl) ‘v’ fd. w:j v . . v (ii, w,,), where 
(~1. ~2.. . . . w,~} = i&r(x). The reduced set of condition attributes can be 
computed as generalized .v-reducts: 



&(x) = i).,T(X). 

Let .K E C . 4.x) is a gmmrlixd .\--tli.sc~mrihilit~~ ~irtwtiott in .‘/’ iff 

The prime implicants of A,&) determine generalized s-reducts uniquely. 

Example 7.1. Let us illustrate the method of generation of optimal genelitlized 
rules directly from an incomplete system. Table 1 presents the system 9’ 
under consideration. Objects 1 and 5 will be used as exemplary rules 
generators. 

Object 1: I’v == C \ {.v E C 1 t/t\,) E O.,r( I)} = C \ { 1.2.4.6) = (3.5). Hence, 
A,~(~)=~~(I.~)A~~(~.~)=(S)A(X)=SX. 

Thus, there is only one optimal generalized ruk supported by object 1 in Y’, 
namely: 

(S.,firll) A (X. IOM.) - (d.gooJ). 

Object 5: u, = C’ \ {y E C / (i(y) E iI,$r( 5)) = C \ { 1.2.4.5.6) = (3). Hence, 
A,C(5) = x2(5,3) = (SvX) =SvX. 

Thus. there are two optimal generalized rules supported by object 5 in .V’, 
namely: 

(S.,firll) - (ti. ,~ooti) v (cf. erLdletlt). 

(X, high) - (d. good) V (d. twelltwr). 

Altogether, the following set of all optimal generalized decision rules can be 
induced from Table 1: 

(S.Jitll) A (,Y, fo\C) - (tl.gomI). /I generated by objects: I,:! 
(S. t.otnpact) - (ti.pmr), // generated by object: 3 
(S..full) - (d.good) v (d.twc~llrt?t). II generated by objects: 4.5,6 
(X. high) - (d.gootf) v (d. e.rcrcellent). It generated by objects: 4.5 

The first two generaiized rules are definite. Let us note that the third rule, 
which is non-definite. is supported by the objects: 1. 2, 4. 5, 6, but it is get+ 
erated only by the objects: 4. 5. 6. The objects I and 2 generate more specific. 
but definite rule 1. 

The next two properties refer to definite generalized rules. 



Proof. (3) Let I -9 s be a definite generalized rule supported by s in 9’. Let T 
be the set of attributes occurring in t. Since s supports t -+ s in 9’ then 
I&) = IIII( and Sr(.r) =, T,~~,+Iltll and II~J(x) = [Is/l. Additionalty, since I - s is 
generalized then 7;s,,l((rll C IIsII. By means of Property 3.1 we also have: 
&T(X) C ST-(X). Hence. h(x) E ST(X) = ~~~llrlI 5 ll.siI = Ii,tl(x) and finally 
%JT(X) c ~(,I)W. 

(+) It is necessary to prove that: if &r(x) C I,,,)(x) then there is some 
definite generalized rule t - s supported by s in 9’. Let t = A(u..f;,(.r)). u E T, 
where T = {u E AT I./J-r) # *}, and s = (d.,f;,(x)). Then .‘$,r(.r) = ;iTSIM~~~~~ 
= ~.s,,rrIItIl and //,~I/ = f~,,)(.r). Hence, T.s,,\,iltlj Cr +I[ and I - s is definite. Thus, 
r - s is a definite generalized rule supported by .Y. Cl 

Property 7.2. Let A C_ AT trtd .r E l’ cud S.,I (x) 2 I,/(x). T?WII 

Proof. By Property 4.1, &r(s) E Z!(x) implies ~~u.(l(iI~~.(.r)) = 1. Hence, 
C&~(X) = {d(x)}. Thus, yq == c \ {.v E c 1 qt.) E {dhj )} = c \ {.v E c 1 4~) 
= d(x)) - (’ \ 1(,,)(X). q 

7.2. Ci7toitt twl~~.~ uteri ttt$itiitc gtwtwlixtl talcs 

In this subsection. we discuss the relationship between certain and definite 
generalized rules. 

Proof. Let :/“’ be an .*-extension of .‘I. By Property 6. I. certain rules in .‘I “ are 
supported only by objects .Y. .V E C , such that S:;,(X) C I{,,)(X). On the other 
hand, by Property 7.1. detinite generalized rules are supported only by objectss 
such that $,r(.~) 2 /(~,~(.Y). By Property 3.1. S’;,.(s) C: S.,r(.r). Thus, the set of 
objects {X E C 1 s..,&) C /idI( supporting o$imal definite generalized rules 
in .‘I’ is a subset of objects {,I- E ( / .!?!,(.v) C: l{,,) (.ri} supporting optimal certain 
rules in V”. lI! 



Proof. Let Y be an .v-extension of .Y. By properly 7.1. an object that supports 
some optimal dctinite generalized rule in .‘/ supports also some Optitllill certain 
rule in ‘1”. Thus, it is enough to show that the set of generalized .\--reducts in 9 
is a subset of certain s-reducts in .‘I”’ if S:rr(.r) c II,II(.r). To this end, we will 
consider the respective s-discernibility functions. 

Let us consider an object x E f such that S4r(x) C Id(s). Then S,:;T(x) C id(x) 
since S,;;,(x) C Slr(.r) (by Property 3.1). Let C \ It,II(x) = {J-I.. . . ..v,,}. The 
generalized s-discernibility function in .‘/’ has the following form: 

k!(J) = n c X(.T,j’) = h(.\...l’, ) A . . A &(.r.j;,). ,” ( I,,,, I / 
whereas the certain .v-discernibility function in .‘I” looks as follows: 

A:‘(I) = nc f(.T.J’) == W(X.j) ) r\ . . A ,w(.r.J;,). 
0 ( l,,,)itl 

We may easily notice th,tt for any ,~;.i = 1 . . .I? : f(.r.>;) 1-1 cL(s.j;) = X(.L~,). 
Hence, 

A:‘(x) = lz(r(.r..l;) u tp,x,,l;)) A.. . A X(+-..I;,) u cp(.r.j;,j), 
where q(x..~,) = ~‘(x.c;) \ r(x.?;). i = 1.~1. 

The obtained form of A::(s) allow us to infer that the sot of all prime implicants 
of A,(x) is iI subset of all prim- implicants of A::(x). This means that the set of 
all optimal definite generalized rules supported by an object .V in .V is a subset 
of all optimal certain rules supported by .x in .V”. iJ 

8. Computing certain rules by replacing examples 

In this approach. an initial incomplete system .‘/ is transformed into a 
complete system .‘/’ as follows: any information vector in an incomplete system 
.‘I with unknown values is replaced with a set of all possible information 
vectors consistent with the incomplete original information vector. Next, any 
method computing optimal certain rules from the complete system may be 
applied. e.g. the method dcscribt:d in Section 5. One can find in [3] an algo- 
rithmic description of how to generate certtin rules in accordance with the 
presented approach without the use of discernibility functions. 

We proved the validity of this approach in Proposition 6.3. .L/’ possesses all 
information vectors that could occur in any completion of .‘I’, so all objects- 
p,enerators of certain rules may be used in a discovery process if required. As a 
resull. all optimal certain rules supported in Y’ can be induced from .(I”. The 
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drawback of the replacing examples’ method is it possible exponential growth 
of the information system. 

Example 8.1. According to the presented approach, the incomplete system 9” 
from Table 2. would be transformed into the complete system .V presented in 
Table 6. 

The following set of all optimal certain rules can be inferred from Table 6: 

//supported by objects 
I .?a,2b,hs 

llsupportcd by objects: 
Ra.3b.3c.3d 

(P. hi%gh) A (IV, high) A (A’. /ow) - (11. pw). l/supported by object: 3d 
(P. /mr~) A (M. /OH.) A (X. high) - (ri. cwvllcwf ). Dsupportcd by object: Sa 

9. Computing certain rules by removwg examples 

The method con.;Lts in removing all the information vectors with unknown 
values from the initial system. The rules obtained by this method may not be 
certain at all or some certain rules will not be gcncratrd from such a red&iced 
system. which illustrates Exam+ 9.1. 



790 .Il. IiryAicrc ic I Infortti~rtirv~ .(;~iulwv I13 / /VW i 271 2V.T 

Table 1 

cur Prim Mih~l(Sl~ Six ,Ilfl.Y-.spwrl cl 

I high IOU full IOU $hh,d 

Example 9.1. Table 7 shows the result of removing objects with unknown 
attribute values from the incomplete system .v’ presented in Table 2. 

The following certain optimal rule can be induced from Table 7: 

- (d.good). 

The obtained rule is not certain in the original system .V . 

IO. Conclusion 

The indiscernibility relation and similarity relation are useful notions for 
expressing the relationship between an incomplete system and its completions. 
Among the completions there is one which reflects the real world described by 
the incomplete system. Unlike the majority of the existing methods of know- 
ledge discovery. we did not try to find out which completion is the most hkety 
so that to perform the discovery process in it. A new method, we presented, 
allows to discover the knowledge in the form of optimal certain decision rules 
that arc valid in all completions. The method requires only completing the 
information vector of an object-generator in the process of computing rules 
supported by that object. The information vectors of other objects remain 
unchanged. If all optimal rules supported by the object-generator arc of inte- 
rest then the computations of rules should be performed for all possible in- 
formation vectors of the object. The computations for ditlirent descriptors of 
the object-generator may be performed in parallel. The method guarantees the 
discovery of all optimal certain rules supported in any completion of the sys- 
tem. 

The new method is an extension of the method presented in [5], whrrr the 
problem related to generalized rules was considered. Optimal generalized rules 
can be computed directly from the initial system. No completion of informa- 
tion vectors is performed. In the paper we proved that all optimal definite 
generalized rules constitute a subset of all optimal certain rules. 

Additionally, we showed that all certain rules may be generated when ap- 
plying the method of replacing examples. Unfortunately, space complexity of 
the method may prevent its usage. We also showed tha! removing objects in- 
completely described ma.y lead to generation of rules that are not certain in the 
original system. This method does not assure either that the rules generated 
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from a reduced system will cover the whole set of certain rules that could be 
induced from the initial system. 

The work [ I5j is a continuation of this paper. In [15]. we investigate several 
interesting properties of incomplete systems and propose ,new methods of 
computing other kinds of decision rules. 
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