Rules in incomplete information systems

Marzena Kryszkiewicz ${ }^{\prime}$

Institute of Cimputer Scicnce, Wirsan Unitcrsity of Technology: Nowonicjska 15/19. 00-665 W'arsan, Poland

Received 1 February 1998: received in revised form 26 May 1998: accepted 10 August 1998

Abstract

A new method of computing all optimal certain rules from an incomplete information system is presented and proved. The method does not require changing the size of the original incomplete system. Additionally, several existing rough set methods of computing decision rules from incomplete information systems are analyzed and compared. We show which of these methods are capable of generating all optimal certain rules or a class of optimal certain rules and which methods may lead to generation of false rules. © 1999 Elsevier Science Inc. All rights reserved.

Kenwords: Incomplete information systems; Decision rules; Rough sets

1. Introduction

The problem of knowledge discovering from incomplete information systems is considered. By an incomplete system we mean a system with missing data (null values). We do not consider the case of nuli value meaning inapplicable value. This problem may be solved by adding a special symbol denoting inapplicable value to the attribute domains. In the paper we deal with the problem of unknoun values.

Several solutions to the problem of generating decision tree from the training set of examples with unknown values have been proposed in the area of Artificial Intelligence (AI). The simplest among them consist in removing examples with unknown values or replacing unknown values with the most

[^0]common values. More complex approaches were presented in [1,2]. A Bayesian formalism is used in [1] to determine the probability distribution of the unknown value over the possible values from the domain. This method could either choose the most likely value or divide the object into fractional objects, each with one possible value weighted according to the probabilities determined. It is suggested in [2] to predict the value of an attribute based on the value of other attributes of the object, and the class information.

The problem of rules generation from incomplete systems was also investigated in the context of Rough Sets [3-5]. Modelling uncertainty caused by the appearance of unknown values by means of fuzzy sets was discussed in [4]. Two methods of treating unknown values are available in the LERS system [3]. The first one consists in transforming an incomplete system into a complete system, where each object incompletely described in the source system is replaced by a set of possible subobjects in the target system. This method is hardly applied in practice because of the large size of a new table. The second method is the AI simple method mentioned earlier which reduces the size of the original table by removing objects with unknown values. The methodology proposed in [5] allows to generate generalized rules directly from the original incomplete decision table.

In the paper, a new method of computing all certain rules from an incomplete information system is presented and proved. The method does not require changing the size of the original system. Additionally, selected rough set methods of computing decision rules from incomplete information systems are analyzed and compared. We show which of these methods are capable ot generating all certain rules or a class of certain rules and which methods may lead to generation of false rules.

The paper is organized as follows. In Section 2 basic notions related to information systems are presented. Section 3 provides definitions and properties of an indiscernibility relation, a similarity relation and set approximations. Basic notions related to decision tables and decision rules are presented in Section 4. Section 5 describes generation of certain decision rules from complete decision tables by means of Boolean reasoning. The notion of a certain rule in an incomplete system is defined and investigated in Section 6. As a result of the obtained properties, a new method of generating all optimal certain rules from an incomplete system is proposed. In Sections 7-9, the capabilities of the selected rough set methods [3.5] of certain rules generation are investigated.

2. Information systems

Information system $(I S)$ is a triplet $\mathscr{F}=(C, A T, f)$, where $($ is a non-empty finite set of objects and AT is a non-empty finite set of attributes, such that
$f_{a}: \mathcal{O} \rightarrow V_{a}$ for any $a \in A T$, where V_{a} is called domain of an attribute a. $\operatorname{Inf}(x)=\left\{\left(a, f_{a}(x)\right) \mid a \in A T\right\}$ is called an information vector of x. Any attribute domain V_{a} may contain special symbol "*" to indicate that the value of an attribute is unknown. Here, we assume that an object $x \in \mathcal{O}$ possesses only one value for an attribute $a, a \in A T$, in reality. Thus, if the value of an attribute a is missing then the real value must be one from the set $V_{a} \backslash\{*\}$. Any domain value different from "*" will be called regutar. A system in which values of all attributes for all objects from C are regular (known) is called complete, otherwise it is called incomplete.

Let $\mathscr{\mathscr { S }}=(\mathcal{C}, A T, f) . \mathscr{\mathscr { G }}^{\prime}=\left(c^{\prime}, A T^{\prime}, f^{\prime}\right)$ is called an extension of $\mathscr{\mathscr { F }}$ iff $C^{\prime}=0$. $A T^{\prime}=A T$ and $f_{u}(x) \neq *$ implies $f_{a}^{\prime}(x)=f_{u}(x)$ for any $a \in A T$ and $x \in \mathbb{C}$. We say that $\mathscr{S}^{\prime \prime}$ is a completion of \mathscr{S}^{\prime} iff $\mathscr{Y}^{\prime \prime}$ is a complete information system which is an extension of \mathscr{P}. The set of all extensions of the system \mathscr{P} will be denoted by $\operatorname{EXTN}(\mathscr{Y})$, whereas the set of all completions of \mathscr{f} will be denoted by $\operatorname{COMP}(\mathscr{\mathscr { G }})$. We will indicate that a notion is considered in some extension of the system \mathscr{Y} by adding the respective upper index denoting that extension. In the paper, we will also refer to extensions of $\mathscr{\mathscr { Y }}$ of a particular kind. \mathscr{F}^{\prime} is called x-extension of \mathscr{S}^{\prime} iff $\mathscr{F}^{\prime} \in \operatorname{EXTN}\left(\mathscr{F}^{\prime}\right)$ and for any $y \in \mathscr{C} \backslash\{x\}: \ln f(y)=\ln f^{\prime}(y)$ and for any $a \in A T: f_{u}^{\prime}(x)$ is regular. The set of all x-extensions of \mathscr{F} will be denoted by $\operatorname{CIEXTN}(\mathscr{P}, x)$.

Example 2.1. Table 1 illustrates an exemplary incomplete information system \mathscr{S}. Fig. I presents extensions $\mathscr{I}^{\prime \prime}$ and $\mathscr{S}^{\prime \prime}$ of the system $\mathscr{F}^{\prime} \mathscr{S}^{\prime \prime \prime}$ is a 2 -extension of $\mathscr{\mathscr { F }}$, so it differs from \mathscr{f} only for object 2 and all attribute values of object 2 are regular in $\mathscr{F}^{\prime \prime}$. All completions of \mathscr{F}^{\prime} are presented in Fig. 2.

In the sequel, any attribute-value pair (a, r). $a \in A T . v \in V_{u}$ will be called an atomic property. Any atomic property or its conjunction will be called descriptor. Conjunction of atomic properties (a, v), where $a \in A \subseteq A T$, will be called A-descriptor. Descriptor that does not possess null values will be called complete. The set of objects having the atomic property (a, v) will be denoted by

Table 1
Exemplary incomplete information system :/

1	a	b	c	d	
1	1	1	1	1	
2	1	1	1	1	
3	1	2	1	1	
4	1	2	1	2	
5	1	1	1	2	
6		1	1		

0	a	b	c	d
1	1	1	1	1
2	1	1	1	1
3	2	1	1	1
4	1	2	$*$	1
5	1	1	1	2
6	2	2	2	2
7	1	1	1	2
		\mathcal{S}^{\prime}		

\mathcal{O}	a	b	c	d
1	1	1	1	1
2	1	1	1	1
3	2	1	1	1
4	1	2	$*$	1
5	1	$*$	1	2
6	2	2	2	2
7	1	1	1	2
		$\mathcal{S}^{\prime \prime}$		

Fig. I. $y^{\prime} \in \operatorname{EXTV}\left(\%^{\prime}\right), 夕^{\prime \prime} \in \operatorname{CIEXTN}\left(\%^{\prime} 2\right)$, where $\%^{\prime}$ is the system from Table 1.
$\|(a, v)\|$ (i.e. $\|(a, v)\|=\left\{x \in\left(\mid f_{a}(x)=v\right\}\right.$). Let us note that $\|(a, *)\| \cap$ $\|(a, v)\|=\emptyset$, if $c \neq *$. The set of objects satisfying any descriptor t will be denoted by $\|t\|$ and will be computed in the usual way, e.g. $\|t \wedge s\|=\|t\| \cap\|s\|$.

3. Indiscernibility of objects and set approximations

3.1. Indiscernibility of objects

Let $\mathscr{\prime}=(\boldsymbol{C}, A T, f)$. Each subset of attributes $A \subseteq A T$ determines a binary indiscernibility relation $\operatorname{IND}(A)$:

$$
\operatorname{lND}(A)=\left\{(x, y) \in \mathscr{C} \times \mathscr{C} \mid \forall a \in A, f_{u}(x)=f_{a}(y)\right\} .
$$

The relation $I N D(A), A \subseteq A T$, is an equivalence relation and constitutes a partition of C.

Let $I_{A}(x)$ denote the set of objects $\{y \in C \mid(x, y) \in I N D(A)\}$. Objects from $I_{A}(x)$ are indiscernible with regard to their description in the system, but they may have different properties in reality, unless the system is complete. In a complete system, objects perceived as indiscernible in the system are indiscernible also in reality.

A similarity relation SIM(A):

$$
\begin{aligned}
& S I M(A)=\left\{(x , y) \in \left(\times \mathbb{C} \mid \forall a \in A, f_{a}(x)=f_{a}(y) \text { or } f_{a}(x)=*\right.\right. \\
& \left.\quad \text { or } f_{a}(y)=*\right\}
\end{aligned}
$$

treats two objects as similar if they may have the same properties in reality. Similarity relation is reflexive and symmetric, but may not be transitive, so it is a tolerance relation.

By $S_{A}(x)$ we will denote the set of possibly indiscernible objects: $\{y \in \mathbb{C} \mid(x, y) \in \operatorname{SIM}(A)\}$. Of course, SIM (A) and $\operatorname{IND}(A), A \subseteq A T$. are equivalent hations in a complete system.

0	a	b	c	d
1	1	1	1	1
2	1	1	1	1
3	2	1	1	1
4	1	2	1	1
5	1	1	1	2
6	2	2	2	2
7	1	1	1	2
		\mathcal{S}^{1}		

\mathcal{O}	a	b	c	d
1	1	1	1	1
2	1	1	1	1
3	2	1	1	1
4	1	2	1	1
5	1	2	1	2
6	2	2	2	2
7	1	1	1	2

\mathcal{O}	a	b	c	d
1	1	1	1	1
2	1	1	1	1
3	2	1	1	1
4	1	2	2	1
5	1	2	1	2
6	2	2	2	2
7	1	1	1	2
		S^{4}		

\mathcal{O}	a	b	c	d
1	1	1	1	1

\mathcal{O}	a	b	c	d
1	1	1	1	1

\mathcal{O}	a	h	c	d
1	1	1	1	1
2	1	2	1	1
3	2	1	1	1
4	1	2	2	1
5	1	1	1	2
6	2	2	2	2
7	1	1	1	2

Fig. 2. Completions (OMP (:) of the system $\%$ from Table 1.
Property 3.1. Let $B \subseteq A \subseteq A T$. The following properties hold for any information system $\mathscr{Y}^{\prime}=\left(C^{\prime} . A T, f\right)$ and its extension $V^{\prime}:$

$$
\begin{aligned}
& I_{A}(x) \subseteq I_{B}(x) \\
& S_{A}(x) \subseteq S_{B}(x) \\
& I_{A}(x) \subseteq S_{A}(x) \\
& S_{A}^{\prime}(x) \subseteq S_{A}(x)
\end{aligned}
$$

Property 3.2. Let $4=(4, A T)$ be a complete information system and $A \subseteq A T$. Then

$$
J_{A}(x)=S_{A}(x)
$$

Property 3.3. Let $\mathscr{H}=(C, A T, f)$ be an information system and $A \subseteq A T$. Then

$$
S_{A}(x)=\left\{y \in \mathbb{C} \mid \exists \mathscr{P}^{\prime} \in \operatorname{COMP}(\mathscr{P}), y \in I_{A}^{\prime}(x)\right\} .
$$

Proof. $y \in I_{A}^{\prime}(x)$ for some $\mathscr{S}^{\prime} \in \operatorname{COMP}(S)$ iff for any $a \in A T: f_{a}^{\prime}(v)=f_{a}^{\prime}(x)$ for some $\mathscr{S}^{\prime} \in \operatorname{COMP}\left(\mathscr{S}^{\prime}\right)$ iff for any $a \in A T: f_{a}(y)=f_{u}(x)$ or $f_{u}(y)=*$ or $f_{a}(x)=*$ iff $y \in S_{A}(x)$.

Property 3.4. Let $\mathscr{F}=(\mathbb{C} . A T . f)$ be an information system and $A \subseteq A T$. Then

$$
\bigcup_{\mathscr{X} \in \mathcal{O M P (: N)}} I_{A}^{\prime}(x)=S_{A}(x) .
$$

i . oof. It is stated in Property 3.3 that $S_{\mathrm{A}}(x)$ is the set of all objects each of which is indiscernible with x by attributes A in some completion of \mathscr{P}. Hence,

$$
S_{A}(x)=\bigcup_{X \in \in \mathcal{O} P(: N)} I_{A}^{\prime}(x)
$$

Example 3.1. Let us consider the properties of the system presented in Table 1 and the properties of its completions presented in Fig. 2. Let $A=\{a, b, c\}$.

Let us consider object 2: $S_{A}(2)=\{1,2,4,5,7\}, I_{A}(2)=\{2,5\}$, so $I_{A}(2) \subseteq S_{A}(2)$ (see also Property 3.1).
$S_{f}^{1}(2)=I_{d}^{1}(2)==\{1,2,5,7\} \quad$ (see also Property 3.2).
$S_{A}^{2}(2)=I_{A}^{2}(2)=\{1,2,7\} \quad$ (see also Property 3.2).
$S_{A}^{3}(2)=I_{A}^{3}(2)=\{1,2.5,7\} \quad$ (see also Property 3.2).
$S_{A}^{4}(2)=I_{i}^{4}(2)=\{1,2,7\} \quad$ (see also Property 3.2).
$S_{A}^{5}(2)=I_{A}^{5}(2)=\{2.4\} \quad$ (see also Property 32).
$S_{4}^{6}(2)=I_{4}^{6}(2)=\{2.4 .5\} \quad$ (see also Property 3.2).
$S_{A}^{7}(2)=I_{A}^{\}}(2)=\{2\} \quad$ (see also Property 3.2).
$S_{A}^{\star}(2)=I_{A}^{\star}(2)=\{2.5\}$
(see also Property 3.2).
$\bigcup_{\text {r'ecomply }^{\prime}} I_{A}^{\prime}(2)=\{1,2,4,5,7\}=S_{A}(2)$ (see also Property 3.4).

3.2. Set approximations

Let $X \subseteq C$ and $A \subseteq A T$. First we recall classical rough set definitions of lower approximation $A_{A_{V D}} X$ and upper approximation $\bar{A}_{M D L} X$ of X in a complete IS:

$$
A_{N ⿰ 亻}^{0} \boldsymbol{X} X=\{x \in \mathbb{C}(x) \subseteq X\} .
$$

$$
\bar{A}_{I N D} X=\left\{x \in C \mid I_{A}(x) \cap X \neq \emptyset\right\} .
$$

$A_{N_{V O}} X$ is the set of objects that belong to X with certainty, while $\bar{A}_{N_{V I} X} X$ is the set of objects that possibly belong to X.

We generalize these notions for the case of incomplete IS:

$$
\begin{aligned}
& A_{S M} X \text { is lower approximation of } X, \text { iff } \underline{A}_{S M M} X \\
& =\left\{x \in C \mid S_{A}(x) \subseteq X\right\} \text {. } \\
& \bar{A}_{S M} X \text { is upper approximation of } X, \text { iff } \bar{A}_{S M M} X \\
& =\left\{r \in \subset \mid S_{A}(x) \cap X \neq \emptyset\right\} .
\end{aligned}
$$

$A_{\text {SM, }} X$ is the set of objects that belong to X with certainty in each completion of $\mathscr{Y} \cdot \bar{A}_{\text {SIM }} X$ is the set of objects that possibly belong to X in completions of \mathscr{Y}. Obviously. $A_{S M M} X=A_{M D} X$ and $\bar{A}_{S M} X=\bar{A}_{A D} X$ in a complete $I S$.

4. Decision tables and decision rules

Decision tahle ($D T$) is an information system $\mathscr{f}=\{(\mathbb{C} . A T \cup\{d\} . f)$, where d such that $d \notin A T$ and $* \notin V_{d}$ is a distinguished attribute called the decision, and the elements of $A T$ are called conditions. If $D T$ is a complete $I S$ then it is called a complete decision table, otherwise it is called an incomplete decision table.

Let us define the function $\partial_{A}: C \rightarrow, \mathcal{M}\left(V_{d}\right), A \subseteq A T$. as follows:

$$
\partial_{t}(x)=\left\{f_{t}(y) \mid y \in S_{t}(x)\right\} .
$$

∂_{4} will be called the generulized decisiom in $D T . \partial_{1 T}(x), x \in C$. determines to which decision classes the object x may be classiied to based on the available information on x. If $\operatorname{card}\left(\theta_{\text {II }}(x)\right)=1$ then x car be classified without ambiguity.

Property 4.1. Let $x \in \mathbb{C} . A \subseteq A T$.

$$
\operatorname{card}()_{1}(x)=1 \quad \text { iff } \quad S_{4}(x) \subseteq I_{i, u}(x) .
$$

Example 4.1. Table 2 describes an incomplete decision table containing information about cars. Price, Mileage, Size and Max-Speed are the conditional attributes of the system, whereas d is the decision attribute (In the sequel. P. M, S X will stand for Price Mileage Size and MaX-Speed. respectively.) The atribute domains are as follows: $V_{\text {Price }}=$ thigh.lon:
 \{poorgoodexcellemt. Additionally, the system in Table 2 is extended by the column containing the values of the generalized decision θ_{4} for all objects in the system.

Table 3 presents the complete decision table, which is a completion of the system from Table 2.

Table 2
Incomplete car table

Car	Price	Wiluag	Size	MaX-Sperd	d	∂_{1}
1	high	low	full	16v	good	\{good!
2	low	*	ful:	low	good	'good!
3	*	*	compact	low	pror	ipoori:
4	high	*	full	high	good	'good, excellent
5	*	*	full	high	excellent	igood, excellent;
6	low	high	full	*	good	'good, excellent;

Table 3
Complete car table

Car	Price	Milecte'	Size	What-Speed	d	0
1	high	low	full	low	good	'good:
2	ham	low	full	low	good	igood:
3	high	high	compact	low	poor	ipoor:
4	high	low	full	high	good	\{good, excellent;
5	high	low	full	high	excellent	igood, excellent;
6	low	high	full	high	good	[good

It is trivial to observe that the value of the generalized decision $\partial_{A T}$ for an object in an incomplete decision table $/ f$ is a superset of its generalized decision's value in the completion of \mathscr{Y} (see $\partial_{A r}(6)$ in Tables 2 and 3).

The knowledge hidden in decision tables data may be discovered and expressed in the form of decision rules: $t \rightarrow s$, where $t=\Lambda(c, a), c \in A \subseteq A T$. $t \in V, \backslash\{*\}$, and $s=V(d, w), w \in V_{d}$. In the sequel, we will call t and s condition and decision part of a rule, respectively. A rule with a single decision value in the decision part will be called definite. otherwise it will be called nondefinite. We will say that an object $x, x \in($, supports a rule $t \rightarrow s$ in $\%$ iff x has both property t and s in t.

Example 4.2. The following rules may be induced from rows in Table 2:

$(P, h i g h) \wedge(M, l o w) \wedge(S, f i l l) \wedge(X . l o w)-(d . g o d)$	// object i
$(P$. low $) \wedge(S . f u l l) \wedge(X . l o w) \rightarrow(d$. good $)$	$1 /$ object 2
$(S$. compact $) \wedge(X, l o w)-(d . p o o r)$	11 objcat 3
$(P$. high $) \wedge(S$, full $) \wedge(X$, high $)-(d . g o o d) \cup(d . e x c e l l e n t)$	$1 /$ object 4
$(S . f u l l) \wedge(X . h i g h) \rightarrow(d . g o o d) \vee($ d.excellent $)$	$1 /$ object 5
$(P$. low $) \wedge(M, h i g h) \wedge(S . f u l l) \rightarrow(d, g o o d) \vee(d, e x c e l l e n t)$	$1 /$ object 6

The first three rules are definite. while the last three rules are non-definite.

We can easily observe that the second rule in Example 4.2 is more general than the îrst rule and is supported both by object 2 and I. Hence, rule 1, which is supported only by object 1. may be removed. We may also notice that the third rule may be replaced by the shorter rule: ($\$$. compact) \rightarrow (d, poor).

5. Complete decision tables

An information system $\mathscr{f}=(C, A T \cup\{d\}, f)$ considered in Section 5 is assumed to be a complete decision table.

5.1. Certain decision rules

Any decision rule $t \rightarrow s$ is called certain in iff $t \rightarrow s$ is definite and $\|t\| \subseteq\|s\|$ in \mathscr{f}. Any decision rule $t \rightarrow s$ is optimal certain in \mathscr{f} iff it is certain in \mathscr{Y} and no other rule constructed from a proper subset of atomic properties occurring in t is certain in $\%$.

Property 5.1. Lei $x \in C$. x supports a certain rule in 9 iff $I_{A T}(x) \subseteq I_{\{d\}}(x)$ in \mathscr{F}.

Proof. (\Rightarrow) Let $t \rightarrow s$ be a certain rule supported by x in $\%$. Let T be the set of attributes occurring in t. Since x supports $t \rightarrow s$ in the complete information system \mathscr{f} then $I_{i}(x)=\|t\|$ and $I_{\{d}(x)=\|s\|$. Additionally. since $t \rightarrow s$ is certain then $\| t \leq s$. By means of Property 3.1 we also have: $I_{A f}(x) \subseteq I_{T}(x)$. Thus, $I_{A T}(x) \subseteq I_{T}(x)=\| t \mid \subseteq S_{s}=I_{\{d f}(x)$ and finally $I_{A}(x) \subseteq I_{\{d}(x)$.
(\Leftrightarrow) It is necessary to prove that: if $I_{17}(x) \subseteq I_{\{, i)}(x)$ then there is some certain rule $t \rightarrow s$ supported by x in y. Let $t=\Lambda(a f a(x), a \in A T$. and $s=\left(d . f_{d}(x)\right)$. Then $\| t \mid=I_{A I}(x)$ and $|s|=I_{d d}(x)$. Hence $t \leq \leq|\leq|$ and $t \rightarrow s$ is definite. Thus. $1-s$ is a certain rule supported by x.

Property 5.2. Let $x \in($ und $A \subseteq A T$.

$$
\operatorname{card}\left(\partial_{4}(x)\right)=1 \text { iff } I_{A}(x) \subseteq l_{I d}(x)
$$

Proof. Follows immediately from Properties 4.1 and Property 3.2. \square
5. Comprohi y optimal ntain rutes

Here we will present a method of computing all optimal certain rules supported by an arbitrary obiect $x \in($. Any certain rule steported by x will have a conjunction of some atomic properties of r in the condition part and the
property $\left(d, f_{d}(x)\right)$ in the decision part. So, x may be used as a generator of rules. Let us also note that certain rules are supported only by objects x such that $\Lambda_{A T}(x) \subseteq I_{\{d\}}(x)$ (i.e. $\left.\operatorname{card}\left(\partial_{i r}(x)\right)=1\right)$. In order to determine the condition part of an optimal decision rules supported by an object x we may employ the notion of an x-reduct:

Let $A \subseteq A T$ and $x \in C$ and $I_{A T}(x) \subseteq I_{\{d\}}(x)\left(\right.$ i.e. $\left.\operatorname{card}\left(\partial_{T T}(x)\right)=1\right)$. The set A is a certuin x-reduct in \mathscr{C} iff A is a minimal set such that:

$$
I_{A}(x) \subseteq I_{d d}(x)
$$

If A is an x-reduct then the condition part of an optimal certain rule will be a conjunction of atomic propertics $\left(a . f_{i}(x)\right.$), where $a \in A$.

In order to compute reducts of $D T$ we will exploit the idea of discernibility functions [6]. Their main properties are that they are monotonic Boolean functions and their prime implicants determine reducts uniquely. Constructing suitable discernibility functions for generation of decision rules from complete systems has been subject of many papers e.g. [7-13].

Let $x(x, y)=\{a \in A T \mid(x, y) \notin \operatorname{SIM}(\{a\})\}$. Let $\sum x(x, y)$ be a Boolean expression which is equal to 1 , if $x(x, y)=\emptyset$. Otherwise. let $\sum x(x, y)$ be a disjunction of variables corresponding to attributes contained in $x(x, y)$.

Let $x \in \mathcal{C}$ and $I_{A T}(x) \subseteq I_{\{d\}}(x)$ (i.e, $\left.\operatorname{card}\left(\partial_{t T}(x)\right)=1\right) . \Delta_{c}(x)$ is a certain x discernibility function iff

$$
\Delta_{c}(x)=\prod_{Y} \sum x(x, y), \quad \text { where } Y_{c}=\left(\backslash I_{\{d\}}(x) .\right.
$$

Example 5.1. We will illustrate the method of optimal certain rules generation for the case of the complete system from Table 3. Certain rules may be supported only by objects with single value generalized decisions. Hence, we will use objects $1-3$ and 6 as rules' generators.

First, let us consider object $1: I_{\{d\}}(1)=\|\left(d . g_{e o d} \|=\{1,2,4,6\}\right.$. Hence, $Y_{c}=C \backslash I_{\{d\}}(1)=\{3.5\} . \Delta_{i}(1)=\sum x(1.3) \wedge \sum x_{(}(1.5)=(M \vee S) \wedge(X)=M X$ $\vee S X$.

Thus, there are two certain 1-reducts $\{M . X\}$ and $\{S . X\}$. Therefore object 1 supports two optimal certain rules:

$$
\begin{aligned}
& (\text { M. tow }) \wedge(X, \text { low }) \rightarrow(d, \text { good }) \\
& (S . f u l l) \wedge(\lambda . / o w)-(d . g . o d)
\end{aligned}
$$

Similarly, one can find optimal certain rules supported by objects 2-3 and 6 . $I_{t d\}}(2)=\|\left(d\right.$, good $\|=\{1,2,4,6\}$. Hence, $Y_{c}=c \quad I_{\{, n}(2)=\{3.5\}, \Delta_{c}(2)$ $=\sum x(2.3) \wedge \sum x(2.5)=(P \vee M \vee S) \wedge(P \vee X)=P \vee M X \vee S X$. Hence, there are three optimal certain rules supported by object 2 :

$$
\begin{aligned}
& (P, \text { low }) \rightarrow(d, \text { good }) \\
& (M, \text { low }) \wedge(X, l o w) \rightarrow(\text { d, good }) \\
& (S, \text { full }) \wedge(X, \text { low }) \rightarrow(d, \text { good })
\end{aligned}
$$

$I_{\{d\}}(3)=\|(d, p o o r)\|=\{3\}$. Hence, $Y_{c}=C \backslash I_{\{d\}}(3)=\{1,2,4,5,6\} . \quad \Delta_{c}(x)$ $=\sum x(3,1) \wedge \sum x(3,2) \wedge \sum \alpha(3,4) \wedge \sum x(3,5) \wedge \sum x(3,6)=(M \vee S) \wedge(P \vee M$ $\vee S) \wedge(M \vee S \vee X) \wedge(M \vee S \vee X) \wedge(P \vee S \vee X)=(M \vee S) \wedge(P \vee S \vee X)=S \vee$ $M P \vee M X$.

Hence, there are three optimal certain rules supported by object 3: (S.compact) - (d.poor). $(P$, high $) \wedge(M$. high $) \rightarrow($ d. poor $)$.
$(M$, high $) \wedge(X$. (ow $) \rightarrow($ d. noor $)$.
$I_{\{d\}}(6)-\|(d$, good $) \|-\{1,2,4,6\}$. Hence, $Y_{c}=C \backslash I_{\{d\}}(6)=\{3.5\} . \Delta_{c}(6)$ $=\sum x(6.3) \wedge \sum x(6,5)=(P \vee S \vee X) \wedge(P \vee M)=P \vee M S \vee M X . \quad$ Hence, there are three optimal certain rules supported by object 6 :

$$
\begin{aligned}
& (P, \text { low }) \rightarrow(d, g o o d) \\
& (M, \text { high }) \wedge(S, \text { full }) \rightarrow(d, g o o d) \\
& (M, \text { high }) \wedge(X . h: g h) \rightarrow(d, g o o d)
\end{aligned}
$$

6. Incomplete decision tables

6.1. Certain decision rules

Following the approach to incomplete information systems presented by Lipski in [14], we propose the following definition of a certain rule: Any decision rule $t \rightarrow s$ is called certain in \mathscr{F} iff it is certain in every completion of \mathscr{F}. Any decision rule $t \rightarrow s$ is optimal certain in \mathscr{F} iff it is certain in \mathscr{y} and no c her rule constructed from a proper subset of atomic properties occurring in t is certain in 4 .

Proposition 6.1.1-s is certain in y if it is certuin in eacry completion of \mathscr{F} in which $\| t \neq 0$.

Proof. By detinition of a certain rule in a complete $I S$, a rule $t-s$ is certain in any completion of 4 in which $\|t\| \subseteq\|s\|$ Hence. it is certain in every completion of 9 in wheh $\|t\|=$. Proposition is an immediate consequence of this fact and the definition of a certain rule.

Proposition 6.2. Let Desc $T(Y$ denote the set of T-descriptors of all objects from Y. Let $t \rightarrow s$ be a definite decision rule supported in some completion of \mathscr{T} and T be the set of all attributes occurring in $t, t \rightarrow s$ is certain in \mathscr{f} iff

Proof. In order to prove the proposition we will prove the following equivalent statement: $t \rightarrow(d, v)$ is not certain in \mathscr{F}^{\prime} iff $t \in \bigcup_{y, \in \operatorname{comp}, D_{1}}$ Desc $_{T}(\mathbb{C} \backslash\|(d, v)\|)$. The rule $t \rightarrow(d, r)$ is not certain in \mathscr{y}^{\prime} iff there is some completion \mathscr{P}^{\prime} of \mathscr{Y} in which $\|t\|^{\prime} \mathscr{Z}\|(d, v)\|^{\prime}$ iff there is a completion \mathscr{F}^{\prime} of \mathscr{f} in which some object possesses the properties t and $(d, w), w \neq i$, iff $t \in \bigcup_{,}^{\prime} \in \mathcal{C o m p}_{1}, \operatorname{Desc}_{T}^{\prime}(\mathbb{C} \backslash \|$ $(d, c) \|$.

Proposition 6.2 justifies the correctness of a rules generation approach, in which an initial incomplete system \mathscr{Y} is transformed into a complete \mathscr{V}^{\prime} which contains all possible descriptors of the objects incompletely described in \mathscr{F} (see [3]). Then rules are generated from the complete system $\mathscr{S}^{\prime \prime}$. Next propositions will justify another approach to rules generation, which allows to compute rules directly from x-extensions of the initial incomplete system.

Proposition 6.3. Let $x \in\left(\right.$. f^{e} be an x extension of \mathscr{F}^{\prime} and $x \in\|t\|^{e}$. If $t \rightarrow s$ is certain in we then $t \rightarrow s$ is certain in 9 .

Proof. It is necessary to prove that if $t \rightarrow s$ is certain in an x-extension \mathscr{S}^{e} of \mathscr{S}^{p} where $x \in \|\left. t\right|^{e}$ then $t \rightarrow s$ is certain in $\mathscr{\mathscr { F }}$. Let us consider an arbitrary \mathscr{Y}^{\prime} from $\operatorname{COMP}(\mathscr{\mathscr { F }})$. From the definition there exists a completion $\mathscr{y}^{\prime \prime}$ of y^{e} which can differ from $\mathscr{F}^{\prime \prime}$ at most on x. So it is enough to prove that for any $y \in(:$ if $y \in\|t\|^{\prime}$ then $y \in\|s\|^{\prime}$ follows from: if $y \in\|t\|^{\prime \prime}$ then $y \in\|s\|^{\prime \prime}$. Let us assume that $y \in\|t\|^{\prime}$. Suppose $y \notin\|s\|^{\prime}$. It means that for some $y \neq x$ such that $y \in\|t\|^{\prime}$ we have $d(x) \neq d(v)$. However, $\ln f^{\prime}(y)$ is also an information vector in $\mathscr{F}^{\prime \prime}$. which contradicts $\left\|t\left|\left\|^{\prime \prime} \subseteq\right\| s\right|^{\prime \prime}\right.$.

Proposition 6.4. Let $x \in \ell$ and \mathscr{F}^{x} be an x-extension of \mathfrak{Y}. An optimal certain rule supported hy x in \boldsymbol{K}^{*} is optimal certain in \boldsymbol{F}^{7}.

Proof. Let $t \rightarrow s$ be an optimal certain rule supported by x in y°. Immediate conclusion from Proposition 6.3 is that $t \rightarrow s$ is certain in $\%$. Additionally. since $t \rightarrow s$ is optimal certain in \mathscr{y}^{e} then any rule $r-s$ constructed from a proper subset of atomic properties occurring in t is not certain in any completion of \mathscr{F} and hence $r-s$ is not certain in $\mathscr{\%}$. The above observations allow us to conclude that $t \rightarrow s$ is an optimal certain rule in $\%$.

Property 6.1. Let $x \in\left(\right.$ and x^{*} be an xextension of 4 . x supports a certain rule in \mathscr{y}^{4} iff $S_{A T}^{e}(x) \subseteq I_{\{d \mid}(x)$ in \mathscr{Y}^{*}

Proof. Let $t \rightarrow s$ be a certain rule supported by x in \mathscr{F}^{e}. The object x supports $t \rightarrow s$ in $\mathcal{S}^{T r}$ iff x supports $t \rightarrow s$ in every completion \mathscr{F}^{\prime} of $\mathscr{F}^{\prime \prime}$ iff $I_{A T}^{\prime}(x) \subseteq I_{\{d\}}(x)$ (by Property 5.1) in each completion $f^{\prime \prime}$ of $\boldsymbol{f}^{\prime \prime}$ iff $\bigcup_{\prime^{\prime} \in \operatorname{Comp}_{1}, \mathscr{F}^{\prime}} I_{A T}^{\prime}(x) \subseteq$ $I_{\{d\}}(x)$ iff $S_{A 7}^{c}(x) \subseteq I_{\{d\}}(x)$ (by Property 3.4).

6.2. Computation of optimal certain rules

It is stated in Proposition 6.4 that optimal certain rules supported by an object x in any x-extension \mathscr{P}^{e} of \mathscr{F} are optimal certain in \boldsymbol{F}^{\prime}. Additionally, it follows from Property 6.1 that the condition $S_{A V}^{e}(x) \subseteq I_{\{d\}}(x)$ in \mathscr{F}^{e} (i.e. $\operatorname{card}\left(\partial_{4}(x)\right)=1$) is necessary for an object x to support a certain rule. Clearly, the set of all optimal certain rules each of which is supported by x in some completion of \mathscr{F} is equal to the set of all optimal certain rules each of which is supported by x in some x-extension of \mathscr{F}. In this subsection we show how to compute optimal certain rules (certain x-reducts) in an x-extension $\mathscr{F}^{\prime \prime}$. First we show how to obtain this goal by examining all completions of $\mathscr{y}^{\mathrm{te}}$. Next we prove that the rules may be computed directly from 9°.

Let $A \subseteq A T . x \in C, \mathscr{T}^{e}$ be anl x extension of $: /$ and $S_{A T}^{c}(x) \subseteq I_{\{d\}}(x)$ (i.e. $\left.\operatorname{card}\left(\partial_{A T}^{\prime}(x)\right)=1\right)$. The set A is a certain x-reduct in g^{e} iff A is a minimal set such that:

$$
I_{4}^{\prime}(x) \subseteq I_{\{, t\}}(x)
$$

in each completion \mathscr{F}^{\prime} of \mathscr{F}^{\prime}.
Let $x \in C$, $y^{\prime \prime}$ be an x-extension of ${ }^{\text {a }}$ and $S_{i f}(x) \subseteq I_{d}(x)$ (i.e. $\left.\operatorname{card}\left(\partial_{A T}(x)\right)=1\right) . \Delta_{s}^{\prime}(x)$ is a certain x-discernibility function iff

$$
\Delta^{\prime}(x)=\prod_{c o m P} \prod_{Y} \sum x^{\prime}(x, y), \quad \text { where } Y_{6}=\left(\quad I_{l}(x)\right.
$$

The prime implicants of $\Delta_{c}^{c}(x)$ determine x-reducts in $y^{c t}$ uniquely.
 $\left.\operatorname{card}\left(\partial_{A T}^{\prime}(x)\right)=1\right)$. Then

$$
\Delta^{\prime}(x)=\prod_{r} \sum x^{c}(x, v), \quad \text { where } Y=\left(l_{\|}(x)\right.
$$

Proof. Let y^{\prime} be a completion of $f^{\prime \prime}$ such that for any $y \in \ell \quad\{x\} f(v)=*$ implies $f_{a}^{\prime}(y)=f_{j}^{\prime}(x)$. Let $y^{\prime \prime} \neq y^{\prime}$ be an arbitrary completion of y^{\prime} One may easily notice that for each $y \in Y_{1}, \sum x^{\prime}(x, y) \wedge \sum x^{\prime \prime}(x, y)=\sum x^{\prime}(x, y)$ $=\sum x^{\prime}(x, y)$. Therefore, $\Delta^{\prime}(x)=\prod^{\prime \prime}$ comp, $\prod_{y} \sum x^{\prime \prime}(x, y)=\prod_{r \in} \sum x^{\prime}$ $(x, y)=1, \sum x^{2}(x, y)$.

Example 6.1. We will illustrate the method of optimal certain rules generation from an incomplete system by means of Proposition 6.5. Table 2 presents the system ${ }^{\prime}$ ' to be considered. Object 5 will be used as a rule generator. There are four possible complete $A T$-descriptors of this object:

1. $(P, l o w) \wedge(M$, low $) \wedge(S, f u l l) \wedge(X, h i g h)$.
2. $(P, l o w) \wedge(M$, high $) \wedge(S, f u l l) \wedge(X$, high $)$.
3. $(P$, high $) \wedge(M$, low $) \wedge(S, f u l l) \wedge(X$, high $)$.
4. $(P$, high $) \wedge(M$, high $) \wedge(S, f i l l) \wedge(X, h i g h)$.
where P. M, S, X stand for Price, Mileage. Size and Max-Speed, respectively.
(a) Let $\mathscr{P}^{e} \in C I E X T N(S .5)$ and object 5 has the descriptor in \mathscr{y}^{e} as in the case I. Table 4 illustrates the extension \mathscr{Y}^{e}.
$S_{A T}^{c}(5)=\{5\}$ and $I_{\{d\}}(5)=\|(d$ excellent $) \|=\{5\}$. so $S_{A T}^{c}(5) \subseteq I_{\{d\}}(5)$ (i.e. $\left.\operatorname{card}\left(\partial_{A T}^{\prime}(5)\right)=1\right)$ and according to Property 6.1 object 5 supports some certain rule in $\mathscr{F}^{e} . Y_{c}=\boldsymbol{C} \backslash I_{\{d\}}(5)=\{1.2 .3 .4 .6\}$. Hence, $\Delta_{c}^{e}(5)=\sum \boldsymbol{x}^{c}(5,1) \wedge \sum \boldsymbol{x}^{e}$ $(5.2) \wedge \sum x^{2}(5.3) \wedge \sum x^{e}(5.4) \wedge \sum x^{*}(5.6)=(P \vee X) \wedge(X) \wedge(S \vee X) \wedge(P)$ $\wedge(M)=P M X$.

Thus, there is only one certain 5-reduct $\{P, M, X\}$ in \mathscr{F}^{2}. which means that only one optimal certain rule is supported by object 5 in y^{2}, namely:

$$
(P . \text { low }) \wedge(M . \text { low }) \wedge(X, \text { high }) \rightarrow(\text { d. excellent })
$$

(b) Let $\mathscr{F}^{\circ} \in C \operatorname{LEXTN}(S, 5)$ and object 5 has the descriptor in \mathscr{S}° as in the case 2 . Table 5 illustrates the extension \mathbb{I}^{4}.
$S_{A T}^{c}(5)=\{5,6\}$ and $I_{\{d\}}(5)=\|(d$, excellent $) \|=\{5\}$, so $S_{A T}^{c}(5) \nsubseteq I_{\{d\}}(5)$ (i.e. $\left.\operatorname{card}\left(\partial_{A T}^{*}(5)\right) \neq 1\right)$. Therefore, by Property 6.1, object 5 does not support any certain rule in \mathscr{Y}^{2}.

Similarly, there are no optimal certain rules supported by object 5 in the 5 extensions of Table 2 in which object 5 has the descriptor as in the cases 3 and 4, respectively. In these 5-extensions $\operatorname{card}\left(\partial_{s i}(5)\right) \neq 1$.

Performing analogous computations for each object we would receive the following set of all optimal certain rules in Table 2:

Table 4
A Sextension of Table?

Car	Price	Miluge	Size	Hax-speed	!	$\sigma_{i r}$
1	high	low	lull	low	good	grood:
2	low	*	full	low	good	'good:
3	*	*	comp.	low	poor	ipoor:
4	high	*	lull	high	cood	good'
5	low	low	lull	high	Excel.	Excel.!
6	low	high	lull	*	good	[goodl

Table 5
Another 5-extension of Table 2

Car	Price	'Milcuge	Size	Max-Snerd	1	∂_{1}
1	high	low	full	low	good	'good
2	low	*	full	low	good	Igood
3	*	*	comp.	low	poor	ipoor!
4	high	*	full	high	good	'good;
5	low	high	full	high	excel.	fgood. excel.]
6	low	high	full	-	good	\{good. excel.

$(S, f u i l) \wedge(X . l o w) \rightarrow(d . g o o d)$.
$($ S.compact $) \rightarrow($ d.poor $)$.
$(P$. high $) \wedge(M$. high $) \wedge(X$. low $)-(d$. poor $)$.
$(P . l o w) \wedge(M$. ow $) \wedge(X$. high $) \rightarrow($ d. excellent $)$.
// found in some x-extensions, where $x=1,2,6$ $/ /$ found in all 3-cxtensions // found in some 3-extension // found in some 5-extensions

7. Computing certain rules from original incomplete decision table

In this section we will show that an important class of optimal certain rules which are supported in all completions of y can be computed directly from the original incomplete system \%. We will prove that definite generalized rules. which are a special case of generalized rules presented in [5]. constitute such a class of rules.

7. I. Gencralized rules

In this subsection we will provide the formal definition of generalized rules (after [5]) and present a method of computing them. Next we will examine specific properties of definite generalized rules.

Any decision rule $t-s$ is called generalized in 9 iff $\bar{T}_{\text {su }} t \| \subseteq\{s \|$. where T is the set of all attributes occurring in t. Any decision rule $t-s$ is optimal gencoutized in \Rightarrow iff it is generalized in and no other rule constructed from a proper subset of atomic properties occurring in t or s is generalized in 9 . The decision part of an optimal generalized decision rule generated from the information vector of $x \in\left(\right.$, is equal to $\left(d . w_{1}\right) \vee\left(d, w_{0}\right) \vee \therefore \vee\left(d, w_{n}\right)$, where $\left\{w_{1}, w_{2} \ldots w_{n}\right\}=O_{i f}(x)$. The reduced set of condition attributes can be computed as generalized x-reducts:

Let $A \subseteq A T$ and $x \in C$. The set A is a gencralized x-reduct in iff A is a minimal set such that:

$$
\partial_{A}(x)=\partial_{A T}(x)
$$

Let $x \in\left(\Delta_{g}(x)\right.$ is a generalized x-discernibility function in \mathscr{T} iff

$$
\Delta_{g}(x)=\prod_{X_{g}} \sum x(x, y), \quad \text { where } Y_{g}=i \backslash\left\{y \in i \mid d(v) \in \partial_{A T}(x)\right\}
$$

The prime implicants of $\Delta_{g}(x)$ determine generalized x-reducts uniquely.

Example 7.1. Let us illustrate the method of generation of optimal genetalized rules directly from an incomplete system. Table 2 presents the system \mathscr{F}^{\prime} under consideration. Objects 1 and 5 will be used as exemplary rules generators.

Object 1: $Y_{g}=\boldsymbol{C} \backslash\left\{y \in C \mid d(y) \in \partial_{A T}(1)\right\}=C \backslash\{1.2,4,6\}=\{3,5\}$. Hence, $\Delta_{g}(1)=\sum x(1.3) \wedge \sum x(1,5)=(S) \wedge(X)=S X$.

Thus, there is only one optimal generalized rule supported by object 1 in $S \mathcal{F}$, namely:

$$
\left(S . f_{u} l l\right) \wedge(X . l o w)-(d . g o o d)
$$

Object 5: $Y_{g}=O \backslash\left\{y \in C \mid d(y) \in \partial_{A T}(5)\right\}=C \backslash\{1,2,4,5,6\}=\{3\}$. Hence, $\Delta_{g}(5)=\sum \alpha(5,3)=(S \vee X)=S \vee X$.

Thus, there are two optimal generalized rules supported by object 5 in \mathscr{F}, namely:

$$
\begin{aligned}
& (S, \text { full }) \rightarrow(d, \text { good }) \vee(d, \text { excellent }) . \\
& (X, \text { high }) \rightarrow(d, \text { good }) \vee(d, \text { excellent }) .
\end{aligned}
$$

Altogether, the following set of all optimal generalized decision rules can be induced from Table 2 :
$(S$, full $) \wedge(X$, low $) \rightarrow(d$. good $) . \quad \quad / /$ generated by objects: 1.2
$(S$, compact $) \rightarrow(d$, poor $)$,
// generated by object: 3
$(S, f u l l) \rightarrow(d$, good $) \vee($ d.excellent $) . \quad / /$ generated by objects: 4,5,6
$(X$, high $) \rightarrow(d$, good $) \vee(d$, excellent $)$.
// generated by objects: 4.5
The first two generalized rules are definite. Let us note that the third rule, which is non-definite, is supported by the objects: $1,2,4,5,6$, but it is gererated only by the objects: $4,5,6$. The objects 1 and 2 generate more specific, but definite rule 1.

The next two properties reter to definite generalized rules.

Property 7.1. Let $x \in \mathbb{C}, x$ supports a definite gencralized rule in \mathscr{F} iff $S_{A r}(x) \subseteq I_{\{d\}}(x)$ in $\%$.

Proof. \Rightarrow) Let $t \rightarrow s$ be a definite generalized rule supported by x in f. Let T be the set of attributes occurring in t. Since x supports $t \rightarrow s$ in \mathscr{T} then $I_{T}(x)=\|t\|$ and $S_{T}(x)=\bar{T}_{S M}\|t\|$ and $I_{\{d\}}(x)=\|s\|$. Additionally, since $t \rightarrow s$ is generalized then $\bar{T}_{S M}\|t\| \subseteq\|s\|$. By means of Property 3.1 we also have: $S_{A T}(x) \subseteq S_{T}(x)$. Hence, $S_{A T}(x) \subseteq S_{T}(x)=\bar{T}_{S M M}\|t\| \subseteq\|s\|=I_{\{d\}}(x)$ and finally $S_{A T}(x) \subseteq I_{\{d\}}(x)$.
(\Leftrightarrow) It is necessary to prove that: if $S_{A T}(x) \subseteq I_{\{d\}}(x)$ then there is some definite generalized rule $t \rightarrow s$ supported by x in Let $t \neq \bigwedge\left(a, f_{u}(x)\right), a \in T$, where $T=\left\{a \in A T \mid f_{a}(x) \neq *\right\}$, and $s=\left(d . f_{d}(x)\right)$. Then $S_{G T}(x)=\overline{A T} \bar{T}_{S M}\|t\|$ $=\bar{T}_{S M M}\|t\|$ and $\|s\|=I_{\{d\}}(x)$. Hence, $\bar{T}_{S M i}|t| \mid \subseteq\|s\|$ and $t \rightarrow s$ is definite. Thus, $t \rightarrow s$ is a definite generalized rule supported by.x.

Property 7.2. Let $A \subseteq A T$ and $x \in \mathcal{C}$ and $S_{t 1}(x) \subseteq I_{d}(x)$. Then

$$
\Delta_{k}(x)=\prod_{v=Y_{r}} \sum x(x, y), \quad \text { where } Y_{z}=C \backslash _{\{f\}}(x) .
$$

Proof. By Property 4.1, $S_{i T}(x) \subseteq I_{d}(x)$ implies $\operatorname{card}\left(\partial_{i T}(x)\right)=1$. Hence, $\partial_{A T}(x)=\{d(x)\}$. Thus, $Y_{g}=C \backslash\{y \in \mathbb{C} \mid d(y) \in\{d(x)\}\}=C \backslash\{y \in \mathbb{C} \mid d(y)$ $=d(x)\}=C \backslash \backslash\{d\}$

7.2. Certain rules and definite generalized rules

In this subsection, we discuss the relationship between certain and definite generalized rules.

Proposition 7.1. The set of objects each of which supports some optimal definate generalized rule in ${ }^{*}$ is a subset of ohjects each of which supporss at least one optimal certain rule in some x-extension of "\%.

Proof. Let $\%^{*}$ be an x-extension of $\%$. By Property 6.1. certain rules in \mathscr{F}° are supported only by objects $x, x \in \mathcal{C}$, such that $S_{i f}^{c}(x) \subseteq I_{i d j}(x)$. On the other hand, by Property 7.1, delinite generalized rules are supported only by objects x such that $S_{A T}(x) \subseteq I_{d d\}}(x)$. By Property 3.1. $S_{i d}(x) \subseteq S_{i r}(x)$. Thus, the set of objects $\left\{x \in\left(S_{A T}(x) \subseteq I_{A \mid}(x)\right\}\right.$ supporting optimal definite generalized rules in \mathscr{Y} is a subset of objects $\left\{x \in C \mid S_{A T}^{e}(x) \subseteq I_{\{d\}}(x)\right\}$ supporting optimal certain rules in \mathscr{F}^{2}. \square

Proposition 7.2. The set of all optimal definte generalized rules supported by an object x in is is a sabser of all optimal certain rules supported by x in any x extenswon of \mathscr{C}.

Proof. Let $\boldsymbol{F}^{\prime \prime}$ be an x-extension of f By Property 7.1 an object that supports some optimal definite generalized rule in $\%$ supports also some optimal certain rule in 4%. Thus, it is enough to show that the set of generalized x-reducts in \mathscr{F}^{\prime} is a subset of certain x-reducts in y if $S_{i t}(x) \subseteq I_{\{d\}}(x)$. To this end, we will consider the respective x-discernibility functions.

Let us consider an object $x \in\left(\right.$ such that $S_{A T}(x) \subseteq I_{d}(x)$. Then $S_{A T}^{C}(x) \subseteq I_{d}(x)$ since $S_{A r}^{e}(x) \subseteq S_{i r}(x)$ (by Property 3.1). Let $\left(\backslash I_{d d}(x)=\left\{y_{1} \ldots \ldots y_{n}\right\}\right.$. The generalized x-discernibility function in \mathscr{F} has the following form:

$$
\Delta_{y}(x)=\prod_{y} \sum x(x, y)=\Sigma x\left(x, y_{1}\right) \wedge \ldots \wedge \Sigma x\left(x, y_{n}\right)
$$

whereas the certain x-discernibility function in $\mathscr{F C}^{\prime \prime}$ looks as follows:

$$
\Delta_{1}^{\prime}(x)=\prod_{r, X_{1, n}(x)} \sum x^{\prime}(x, y)=\Sigma x^{c}\left(x, y_{1}\right) \wedge \ldots \wedge \Sigma x^{\prime}\left(x, y_{n}\right) .
$$

We may easily notice that for any $y_{i}, i=1 \ldots n: x^{i}\left(x, y_{i}\right) \cap x\left(x, y_{i}\right)=x\left(x, y_{i}\right)$. Hence,

$$
\begin{aligned}
\Delta^{\prime}(x)= & \Sigma\left(x\left(x, y_{i}\right) \cup \varphi\left(x, y_{i}\right)\right) \wedge \ldots \wedge \Sigma\left(x\left(x, y_{n}\right) \cup \varphi\left(x, y_{n}\right)\right) \\
& \text { where } \varphi\left(x, y_{i}\right)=x^{c}\left(x, y_{i}\right) \backslash x\left(x, y_{i}\right), i=1 . . n .
\end{aligned}
$$

The obtained form of $\Delta_{c}^{\prime}(x)$ allow us to infer that the set of all prime implicants of $\Delta_{g}(x)$ is a subset of all prime implicants of $\Delta_{r}^{c}(x)$. This means that the set of all optimal definite generalized rules supported by an object x in 4 is a subset of all optimal certain rules supported by x in \mathscr{F}^{\prime}.

8. Computing certain rules by replacing examples

In this approach, an initial incomplete system $\%$ is transformed into a complete system y^{\prime} as follows: any information vector in an incomplete system if with unknown values is replaced with a set of all possible information vectors consistent with the incomplete original information vector. Next, any method computing optimal certain rules from the complete system may be applied, e.g. the method described in Section 5. One can find in $[3]$ an algorithmic description of how to generate certain rules in accordance with the presented approach without the use of discernibility functions.

We proved the validity of this approach in Proposition 6.2. 7^{\prime} possesses all information vectors that could occur in any completion of \mathscr{Y}, so all objectsgenerators of certain rules may be used in a discovery process if required. As a result, all optimal certain rules supported in γ can be induced from $\%^{\prime \prime}$. The
drawback of the replacing examples' method is a possible exponential growth of the information system.

Example 8.1. According to the presented approach, the incomplete system \mathscr{F} from Table 2, would be transformed into the complete system \mathscr{F}^{\prime} presented in Table 6.

The following set of all optimal certain rules can be inferred from Table 6:

$(S . f$ fll $) \wedge(X . l o w) \rightarrow(d . g o o d)$.	//supported by objects $1.2 \mathrm{a}, 2 \mathrm{~b}, 6 \mathrm{a}$
$(S$. compue 1$) \rightarrow$ (d.peor $)$.	//supported by objects: $3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}, 3 \mathrm{~d}$
$(P$. high $) \wedge($ M. high $) \wedge(X . / \mathrm{low}) \rightarrow($ d, poor $)$.	//supported by object: 3d
$(P$. low $) \wedge(M, l o w) \wedge(X$, high $) \rightarrow($ d.excollent $)$.	//supported by object: 5 a

9. Computing certain rules by removing examples

The method consiss in removing all the information vectors with unknown values from the initial system. The rules obtained by this method may not be certain at all or some certain rules will not be generated from such a redaced system, which illustrates Example 9.1.

Table 6

Cir	Price	Wiluest	Sにい	Mun-Spud	d	.$_{4,}$
1	high	low	Pull	low	E00d	'good'
$2 a$	low	low	full	low	gend	'goted
2 b	low	high	full	10 H	ramed	frond,
3:1	How	low	comp	low	pror.	ipoor:
3b	low	high	comp	low	pour	'poor:
3 c	high	low	comp	low	poor	'poor:
34	high	high	comp	low	poor	iporer
4	high	low	full	high	gool	'sood. excel:'
46	high	bigh	6ll	high	mow	egood. excel:
sa	low	low.	lull	high	cusel.	duxel::
$5 b$	low	high	full	high	excel:	ggood excel.;
5	high	Inw	full	high	excel.	tyood. excel.'
5 d	high	high	full	high	cxel	'good, excel:
ba	Low	bigh .a.	full	How	good	igood:
6 b	104	high	full	high	good	igood. excel.:

Table 7

Car	Price	Milcage	Sies	MaK-Speed	4
1	high	low	full	low	good

Example 9.1. Table 7 shows the result of removing objects with unknown attribute values from the incomplete system if presented in Table 2.

The following certain optimal rule can be induced from Table 7 :
\rightarrow (d.good).
The obtained rule is not certain in the original system $\%$.

10. Conclusion

The indiscernibility relation and similarity relation are useful notions for expressing the relationship between an incomplete system and its completions. Among the completions there is one which reflects the real world described by the incomplete system. Unlike the majority of the existing methods of knowledge discovery, we did not try to find out which completion is the most likely so that to perform the discovery process in it. A new method, we presented, allows to discover the knowledge in the form of optimal certain decision rules that are valid in all completions. The method requires only completing the information vector of an object-generator in the process of computing rules supported by that object. The information vectors of other objects remain unchanged. If all optimal rules supported by the object-generator are of interest then the computations of rules should be performed for all possible information vectors of the object. The computations for different descriptors of the object-generator may be performed in parallel. The method guarantees the discovery of all optimal certain rules supported in any completion of the system.

The new method is an extension of the method presented in [5], where the problem related to generalized rules was considered. Optimal generalized rules can be computed directly from the initial system. No completion of information vectors is performed. In the paper we proved that all optimal definite generalized rules constitute a subset of all optimal certain rules.

Additionally, we showed that all certain rules may be generated when applying the method of replacing examples. Unfortunately, space complexity of the method may prevent its usage. We also showed that removing objects incompletely described may lead to generation of rules that are not certain in the original system. This method does not assure either that the rules generated
from a reduced system will cover the whole set of certain rules that could be induced from the initial system.

The work [15] is a continuation of this paper. In [15], we investigate several interesting properties of incomplete systems and propose new methods of computing other kinds of decision rules.

Acknowledgements

I would like to thank tie reviewers of this paper for their valuable comments and suggestions.

References

III I. Kononenko. I. Bratko. E. Roskar. Experiments, in automatic learning of medical diagnostic rules. Technical Report, Jozef Stetan Institute, Ljubliana. Yugosiavia. I984.
[2] J.R. Quinlan. Induction of decision trees. in: J.W. Shavik. T.G. Dietterich (Eds.), Readings in Machine Learning. Morgan Kautmann. Los Altes. CA. 1990. pp. 57 . 69.
[3] M.R. Chmielewski. J.W. Grzymala-Busse. N.W. Peterson. S Than. The rule induction system LERS A version for personal computers. Found. Comput. Decision Sci. 18(3-4) (1993) 181212.
[4] R. Slowinski, J. Stefanowiki. Rough-set reasoning about uncertain Jata; Fund Inform. 27 (23) 1996) 22924.
[5] M. Kryszkiewict. Rough we approach winumplete information sytems. in: Proceedings of Second Annual Joint Conference on Intormation Sciences: Fures Logic. Neural Computing, Pattern Recognition. Computer Vision, Ewlutionary Computing. Information Theory, Computational Intelligence. Wrightsille Beach. North Carolinat LSA. 28 September 1 October 1995 pp. 194 197. the extended terion of the paper will appar in J. Inform. Sci.
$[6]$ A. Skowron. C. Ratuser. The Discermbitity Matrices and Functions in Intormation Systems. in: R. Slowinski (Ed) Intelligent Decision Support Handocok of Applatatons and Advances of Rough Sets. Theory. Kluwer Academe Publisher. Dordrecter 1992. pp. 331362
[7] Z. Paulak. A Shouron. A rough set approach to decivion rules generation. ISS Research Report 23/93. Warsau (niversity of Technology. (4)3.
[8] A. Skowron. A sinthesis of decion rules Applitations of disernibitay matrix in: Proceedings of the International Conference on Intelhgent Inforbation Systems, Augustow. Poland. 1993, pp. 30 - 46.
[9] A. Skowron. Bookean reasoning for decivion rules generation in J. Komorowski. Z Ras (Eds.), Proceedings of the Seventh International Simpositm ISMISO3. Trondheim Norway. 1993, Lecture Notes in Artifical Inteligence: wol 6x9 Sprmer Berlin. 1943. op 395305
[i0] M. Kryskieuicz. The Algorithms on Knowledge Redaction in Information SVstems. PhD. Thesis. Warsat University of Te chnology. Insitute of Computer Scence. 1994:
[11] A Skowron. Extrating laus from decision tables. Comput Intellgence 11 (2) 1435371388.
$[12$ A Skowron. I. Stepaniuk. Generalized approximation paces in $1 . Y$ Lin. A M Wildberger (Eds.) Soft Computing. Smulation Councils, San Diego. 1005 . pp ix 21.
[13] A Skowron. L. Folkowski S ntheris of decisien sistems from data tables, in: T.Y: Lin. N. Cercone (Eds.. Rough Set and Data Mining. Analysis of of Imprecise Data. Kluwer Academic Publishers Euidrech. 1497, pp. 250 299.
[14] W.J. Lipski. On semantic issues connected with incomptete information database, ACM Trans. Databases Systems $+(1979)$ 262 296.
115 M Kryskicwic. Propertics of incomplete intormation systems in the framework of rough sets, in: L. Polkowshi. A. Skowron (Edv), Rough Sets in Knowledge Dicowery I. PhysieaVerlag. 19\%8. pp. 422450 .

[^0]: ${ }^{1}$ E-mail mkr(ail pwedu.pl
 0020-0255/99/\$19.00 © 1999 Elsevier Science Inc All rights reserved.
 PII:S0020.0255(98)10065:8

