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Abstract

A new method of computing all optimal certain rules from an incomplete information
system is presented and proved. The method does not require changing the size of the
original incomplete system. Additionally. several existing rough set methods of
computing decision rules from incomplete information systems are analyzed and
compared. We show which of these methods are capable of generating all optimal
certain rules or a class of optimal certain rules and which methods may lead to
generation of false rules. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

‘The problem of knowledge discovering from incomplete information sys-
tems is considered. By an'incomplete system we mean a system with missing
data (null values). We do not consider the case of null value meaning’ inap-
pluable value. This problem may be solved by adding. a special symbol de-
noting inapplicable value to the attribute domains. ln the paper we.deal with
the problem of unknown values.’ :

Several solutions to the problem of genemtmg decnsmn tree from - the
training set of examples with unknown values have been proposed in the area
‘of ‘Artificial Intelligence (Al). The simplest among them consist in removing
fexamples with unknown values or replacing unknown leues with the most
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commeon values More complex approaches werg presented in{l 2] A Bayesnan
formalism is used in [1] to determine the probability distribution of the un-
known :value over the possible values from the- domain. This method could
either choose the most likely value or divide the object into fractional. objects,
each with one possnble value weighted according to the probabnhtles deter-
‘mined. It is suggested in [2] to predict the value of an attribute based on the
value of other attributes of the object, and the class information. -

‘The problem of rules generation from incomplete: systems was also inves-
tigated in the context of Rough Sets [3--5]: Modelling uncertainty caused by the
appearance-of unknown values by means of fuzzy sets was discussed in:{4). Two
methods of treatmg unknown values are available in the LERS system [3]. The
first one consists in transforming an incomplete system into a complete system,
where each object incompletely described in the source system is replaced by a
set of possible subobjects in the target system. This method is hardly applied in
practice because -of the large size of a new table. The second method is the Al
simple method mentioned earlier which reduces the size of the original table by
removing objects with unknown values. The methodology proposed in [5] al-
lows to generate generalized rules directly from the original incomplete deci-
sion table.

In the paper, a new method of computing all certain rules from an incom-
plete information system is presented and proved. The method does not require
changing the size of the original system. Additionally, selected rough :set
methods of computing decision rules from incomplete information systems are
analyzed and compared. We show which of these methods are capable of
generating all certain rules or a class of certain rules and which methods may
lead to generation of false rules.

The paper is organized as follows. In Section 2 basic notions reldled to in-
formation systems are presented. Section 3 provides definitions and properties
of an indiscernibility relation, a.similarity relation and set approxnmatlons
Basic notions related to decision tables and decision rules are presented in
Section 4. Section 5: describes generation of certain decision rules from com-
plete decision tables by means of Boolean reasoning: The notion of a certain
rule in an incomplete system is defined and investigated in Section 6. As a
result: of the obtained properties, a_new method of generating all optlmal'
certain rules from an incomplete system is proposed. In Sections 7-9, the ca-
pabilities of the selected rough set methods [3,5} of certain rules generatlon are
investigated.

2; Information systems |

lnformumm system (IS) is a triplet . = (C. AT, f ) wherc Cisa non-empty
finite set of objecm dnd AT is'a non-empty ﬁmte set of atrrlbuws, such that
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S V, for any a € AT, where ¥, A is ca!led domain of an dttnbute a.
Inf (r) = {(a fa(x)) | a € AT} is called an information vector of x. Any attribute
‘domain ¥, may contain special symbol “* o indicate that the value of an
attribute is unknown. Here, we assume that an object x.€ (" possesses only one
‘value for an attribute @, a € AT, in reality. Thus, if the value of an attribute a is
missing then the real value must be one from the set ¥, \ {*}. Any domain
value different from “*” will be called regutar. A system in which values of all
attributes for all objects from ( are regular. (known) is called complete oth-
erwise it is called incomplete.

Let & = (C, AT, f). ¥ = (€', AT, f’) is called an em'nwon of #ifi (! = o,
AT’ = AT and f,(x) # * implies f; (r) fu(x) forany a € AT and x € ¢ . We say
that . is a completion of ¥ iff 4" is a complete information system which is
an extension of #. The set of all extensions of the system % will be denoted by
EXTN(%), whereas the set of all completions of ¥ will be denoted by
COMP(¥’). We will indicate that a notion is considered in some extension of
the system ¢’ by adding the respective upper index denoting that extension. In
the paper, we will also refer to extensions of .’ of a particular kind. " is called
x-extension of & it &' € EXIN(.¥") and for any y € €\ {x}: Inf(y) = Inf'(y)
and for any a € AT: f)(x) is regular. The set of all x-extensions of ¥ w1ll be
denoted by CIEXTN (¥, x).

Example 2.1. Table 1 illustrates an exemplary incomplete information system
. Fig. | presents extensions ¢’ and " of the system &. ¥ is a 2-extension
of ¥, so it differs from . only for object 2 and all attribute values of object 2
are regular in .9”. All completions of ¥ are presented in Fig. 2.

In the sequel, any attribute-value pair (a.t). @ € AT. v € ¥, will be called an
atomic. property. Any atomic property or its conjunction. will be called de-
scnptor Conjunction of atomic properties (a:v), where a € 4 C AT, will he
called A-descriptor. Descriptor that does not possess null values will be called
complete. The set of objects having the atomic property («.r) will be denoted by

Table' ‘
Exemplary incomplete information system /'
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L0 e b d 0O a b cid:
11 1.1 1. 1 1 1 1 1
211 1 2 1 1 11
3 21 11 3 2 1 11
4 1 2 * 1 4 1 2 * 1
5 1 1 1 2 5 1 *. 12
6 2 2 2 2 6.2 2 2 2
71 1 12 71 1 1 2
Sl SII

Fig. 1. 4" € EXTN(/), #" & CLEXTN(:/.2). whete ¥ is the system from Table 1.

Ha,0)]| Ge. li(a.v)]|={x €€ |filx) =t}). Let us note that [|(a,*)|IN
[[(a,v)]] =0, if v # *. The set of objects satisfying any descriptor + will be de-
noted by |7l and will be computed in the usual way. e.g. ||t As|| = |l O l|s]]-

3. Indiscernibility of objects and set approximations
3.1. Indiscernibility of objects |

Let ¥ = (€. AT. f). Each subset of attributes 4 C AT determines a binary

indiscernibility relution IND(A):

IND(A) = {(x.x) € € X € |Va e A.1,(x) = f,(1)}.
The relation IND( A}, A C AT, is an equivalence relation dnd constitutes a
pdrtmon of ¢.

" Let I4(x) denote the set of objects {v € ¢ | (x.y) € IND(4)}. Objects from
I,,(.\') are indiscernible with regard to their description in the system, but they
may have different properties in reality, unless the system is complete. In-a
complete system, objects perceived as mdlscermblc in the system are indis-

cernible also in reality.
‘A similarity relation SIM(A).

SIM(4) = {x.y) et x¢|Vae A, ju(v) = fu{y)or fu(x) =
or f,(v) = *}
treats two objects as similar if they may have the same properties in reality.

Similarity relation is reflexive dl’ld symmetric, but mdy not be transmve soiit is
a tolerance relation.:

By Si(x) we will dgnotc the set of pos%nbly mdlscermble objects
{yvel|(x ;’)ESIM(A)} “Of c.ourse SIM(A) dnd IND(A) ACAT are
equnvalem Flations in a complele system
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0. a b . ¢cd O a b cd - O a b ¢ d
I0 U TR B B | SN U U R U o 111
2 1 1 11 2.1 1 .1 1 2. 11 .1 1
'3 2 1 1 1 3 2.1 1 1 3 .2 111
41,21 1 4 1 2.1 1 4 1.2 2 1
5 11 12 5.1 2 12 5 11 1 2
6 2 2 2 2 62 2 2 2 6 2 2 2 2
7. 1.1 1 2 SO AR SRS B S T F 102
‘ ST B S 53

O a b ¢ d O a b ¢ d O a b ¢ d
1 1.1 1 1 1 1 1 1 1 1 1 1 11
2 1 1 11 2 1 2 1 1 2 1 2 11
3 2 1 1 1 3 2 1 1 1 3 2 1 1 1
4 1 2 21 4 1 2 11 4 1 2 1 1
5 1 2 1 2 5 1 1 1 2 5 1 2.1 2
6 2 2 2 2 6 2 2 2 2 6 2 2 2 2
7 1 1 1 2 7T 1 1 1 2 71 1 1 2

57 55 S°

O a b ¢ d O a b ¢ . d

1 1 1 1 1 1 1 1 1 1

2 1 2 1 1 2 1 2 1 1

3 2 1 1 1 3 2 1 1 1

4 1 2 2 1 4 1 2 2 1

5 1 1 1 2 5 1 2 1 2

-6 2 2 2 2 6 2 .2 2 2

7 1 1 1 2 7T 1 1 1 2

- 87 SS

FlL . Completions ( ()UP< 1 of the system 2/ from Table 1.

Property 3. LetBCAC AT. The Jollowing propertics /wld /or any mjormutnm
systeni Y = ((’ AT f) and its extension /'

Li(x) € Tylx): |

S4{x) € Sp(x):

S L) €8x

S (x) € Sy, ‘ , :
Property 32. Let 4 = (0 AT, /) lu @ wmplc te, m/ummmm system ami 4 C AT.
Thcn Ve Lo
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Property 33. Let ‘f (€. AT, / ) be an mjormutum system and 4 c AT Then
| ()—{ve(’|3‘/ eCOMP(‘/’)vel()} '

‘Proof yel, (x) for some S e COMP(S iff for any a E AT L) = f(x) for
‘eome ¥’ € COMP( S)iffforanya € AT: fuly) = ja(x) or f,(y) = * OF fo(x) = *
iff y E SA (X) . .

Property 3.4. Let f = (C AT, f) be an information system and A C AT. Then

U #w0=5s.

SHECOMP#)

1 .00f. It is stated in Property 3.3 that Sa(x) is the set of all objects each 6f
which is indiscernible with x by attributes A4 in some completion of &. Hence,

Sa0= | . O

T ECOMPL)

Example 3.1. Let us con51der the properties of the system presented in Table 1
and the properties of its completions presented in Fig. 2. Let A {a.b,c}.

Let us consider  object 2: S4(2) ={1,2.4,5.7},14(2) = {2.5}, so
1,(2) C S4(2) (see also Property 3.1).

sH2) = ={1,2,5.7} (see also Property 3.2).
'$2(2) = A(Z) = {1,2.7} (see also Property 3.2).
S;}(2) =1;(2) = {1,2.5,7} (see also Property 3.2)."
$32) =1}(2) = {1,2.7} (see also Property 3.2).
S$3(2) = 15(2) = {2.4} (see also Property 3.2).
$8(2) = I5(2) = {2.4.5} (see also Property 3.2).
-§1(2) =1](2) = {2} (see also Property 3.2).
$3(2) = 15(2) = {2.5} (see also Property 3.2).
U/ c(mm /) = {1,2.4.5,7} = 5,(2) (see also Propeny 3.4). [

3.2. Set upproximations

Let X C ¢ and A4 C AT. First we recall classical rough set definitions of lower
apprownatmn A;xpX and upper appm\mmtmn AnpX of Xina (.omplete 1S:

AN,X— {xel’ [4x) C \’}
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AM,[)X—{\'G((;IA ﬂX#(ﬂ} .
A,;ypX is the set of objects that belong to X with certam!y whllc AN;X is. the set

of objects that possibly belong to X. ‘
We generdllzc these notions for the case of mcomplete IS:

Ay X 1s lower approxtmat:on of X. iff 4, m,X :
‘*—{re(’]S4x)CX} ‘
Asng X 18 upper: appr oxzmauon of X iff Ag,.,,X
={re|S;(x)NX #0}.
AgnyX 1s the set of objects that belong to X with certdmty in each completion of

Y. AguX is the set of objects that possibly belong to X in:completions of S
Obviously. Ay X = ApX and AgyX = AppX in a complete /S.

4. Decision tables and decision rules

Decision table (DT) is an information system ' = (¢, AT U {d}. f), where d
such that d € AT and + ¢ V; is a distinguished attribute called the decision, and
the elements of AT are called conditions. If DT 1s a complete IS then itis called
a complete decision table, otherwise it is called an incomplete decision table.

Let us define the funcuon Dy €= P lq,) A C AT. as follows

d(x) = {fu(v) !1 € S‘,n)}
dy will be called the generalized decision in DT. O,p(x), x € (. determines to
which decision classes the object v may be classiiied to based on the available
information on x. H card(i),7(x)) = | then x car. be classified without ambi-’
guity.

Property 4.lk. Lotx e (. A C AT.
Ceard(Dy(x)) =1 igf S0 < 1‘ syl

Example 4.1. Table 2 describes an mu)mpluu decision mhl; wnldmmg
information about cars. Price, Miléage, Size and Mux-Speed aré the condi-
tional attributes of the system. whereas d is the decision attribute. (In the
sequel. P, M. .S, X will stand for Price, Mileage. Size and MaX-Speed,
respectively.) The - attribute domains are ‘as-follows: Vpio = lhighlow!.
Vaiteags: = Yhighdow}. Vo= {udl.compuact!, V Va-Specd —j :hig‘h,lnu':.: Vi=
{poor.good excellent . Addmondlh the svstem-in Table 2 is extended by th
column contuining lhu \dlues 01 thc. g:.nuahzud du.lsuon 0; r ‘tor all objects in
the system.

" Table 3 presents the wmplcte dumon l‘tblc w h}ch is a complenon of the
system from Tdble 2. '
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Table 2

Incomplete car mble

Car - . Price Mileag=Size MaX-Speed'  d Iy
1 high o low full low - good - tgood!

2 low I full .’ fow good “tgood!.

3 * * compact - low poor fpoor} ¢

4 high . full " high vood tgood., excellent}
S * * full high ‘ umllem {good, excelient}
6 low high tull * good {good. excellent;
Table 3

Complete car table

Car Price Mileage Size MuX-Speed o iy

1 high low tull low good rgood;

2 low low full low good 1good}

3 high high compact fow poor {poor!

4 high low full high good tgood, excelient}
5 high low full high excellent 1good, excellent)
6 fow high full high good tgood}

It is trivial to observe that the value of the generalized decision d,r for an
object in an incomplete decision table /" is a superset of its generalized deci-
ston’s value in the completion of ¥ {see d,r(6) in Tables 2 and 3).

The knowledge hidden in decision tables data may be discovered and ‘ex-
pressed. in the form of decision rules: t — s, where 1 = A(c.v). ¢ € 4 CTAT.
¢ € .\ {x}. and s = V(d.w). w € F;. In the sequel. we will cail 1 and's con-
dition and decision part of a rule, respectively. A rule with a single decision
‘value in the decision part will be called definite. otherwise it will be called non-
definite. We will say that an object x, x € C. supports a rule r — s in- iff x has
both property ¢ and s in & .

E\ample 4.2. Thc mllowmg rules may be induced from rp\xs in Table 2:

(P. luqh) A (M lowY A (S fu

\~ ,ull}

(P.low) A (S full) A 1X . low) — (d. good)
(S.compact) A (X, low)

(P. highy A
(S. fully A

A(X . high) —

— {d. poor)
ALS, full) A (X. high) — (d. goad)\ d. excellent).
(d. good).v (d exe el[ent)

(P.low) A(M . high) A (S. full) —

) ALK low) — (d. good)

(d.good) \/ (d . excellent)

/l object i -
I object 2 |
1 object: 3
-1 object 4
1l object 5
1/ object 6

The first three 'ﬁjles are definite. while‘t‘}l“lclasl three rules are non-definite.
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We can easily observe that the second rule in Example 4.2 is more general
than the first rule and is supported both by object 2 and 1. Hence, rule I, which
is supported only by object 1. may be removed. We may also notice that the
third rule may be- repldced by the shoner rule: (S. compact) —{d. poor)

5. Complete decision tables
* An information syslem Y= (AT U {d}j:.f,) Co‘nsidere’d in Séction‘S is as-

sumed to be a complete decision table.

5.1. Certain decision rules

Any decision rule r — s is called certain in % iff 1 — s is definite- and
{1f C ilsl} in . Any decision rule 1 - s is optimal certain in & iff it is certain in
¥ and no other rule constructed from a proper subset of atomic properties
occurring in ¢ is certain in /.

Property 5.1, Lei x € (. x supports a certain rule in 7 iff Lir(x) C lyy(x) in
S, ‘

Proof. (=) Let s — s be a certain rule supported by v in /. Let T be the set of
attributes occurring in . Since x supports 1 — s in the complete information

system & then I,(r) = i)l and 1, (x) = s, Additionally. since t — s is
certain then [|7] < Is:|. By means of Pmp;m ? 1 we also have: 1;;(x) C Ir(x).
Thus, /47(x) C Irn) ES g dsil = Iy (x) and fimally Zyrix) © 7y (x).

(<=) Tt is.necessiry. Lo nrove lhdl if Ipix) C I,, {x)- then there 15 some cer-
tain rule ¢ — s supporte¢ by x in f/’. Let 1= Ala. f,ix)). a € AT. and

= (d. f4(x)). Then i} = Fip(x) and s = [ 000 Hence, D) € Is] dndt« s
is definite. Thus. 1 — s is a certain ruh. >upp0rtcd by v. O : :
Property 5.2. Lt x & ¢ and 4 C AT,

eard(Oyx)) = b iff Tix) € L)

Proof. Follows immediately from Prbpcrtiés 4.1 and Property 3.2. O
5.2 Compure v of oprimal ‘cortaim rules
Here we will present & method of computing all optimal certain rules sup-

ported by an.arbitrary obiect x € (. Any certain rule supported by x will have a
conjunction of scme atomic: properties .of v in the condition part and the
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property (d /,,(r ) in the decision part. So. x may’ be used as a gcm.r‘uor of
rules. Let us also note that certain rules are supported-only by objects x such
that Lir(x) C l{,,, (x) (i.e. card(dyr(x)) = 1). In'order to determine the condition
part of an opnma! decision rules supported by an ob)ecl X we may employ the
notion of an x-reduct:

LetAC AT andx €€ and I4T(r) C: l{d,(r) (i.e. card(d.r( ) = l) The set 4
is a certain x- reduct inY iff 4is a mmlmdl set such that: ‘ '

) Sl

If A is an x-reduct then the condition part of an optimal certain rule will be a
conjunction of atomic propertics (a. f,{x)). where a € 4,

* In order to compute reducts of DT we will exploit the idea of dmermluhn
Junctions [6]. Their main properties are that they are monotonic Boolean
functions and their prime implicants determine reducts uniquely. Constructing
suitable discernibiiity functions for generation of decision rules from complete
systems has been subject of many papers e.g. [7-13].

Let x(x.y) = {a € AT | (x.¥) € SIM({a})}. Let 3 x(x.») be a Boolean ex-
pression which is equal to 1, if x(x.v) = #. Otherwise. lét Z 2(x.v) be a dis-
junction of variables corresponding to attributes contained in x{x, y).

Let x € ¢ and Lyr(x) C Iigy(x) (e, card(Or(x)) = 1). Ac(x) is a certain x-
discernibility function iff

= H Z a{v.v), where ¥, = ( \ Jppx).
(X0 N

Example 5.1. We will illustrate the method of optimal certain rules generation
for the case of the complete sysiem trom Table 3. Certain rules may be
supported only by objects with single value generalized decisions. Hence, we
will use objects -3 and 6 as rules” generators.

First, let us consider object 1: Itd (1) = {l{d. good)}!
Yo=C \Ty(1) ={3.5}. A l)“L1(|3f\$‘1\15 =
VSX.

Thus, there are two certain 1- rtduct% {M. \} and {$.X}. Therefore ob_pezt 1
supports two optimal certain rules ‘

= {1.2.4 .
(M v $) A ()zMY

(M. dow) N (X, Iow) — (d, goovd).
(S Sfull) A(X . low) — (d.guod).

- Similarly. one can find optimal certain rules supported by objects 2- Jand 6:
1y (2) = |i(d . good)}| = {l 2.4.6}. Hence, Y. = I 1(2) = {3.5}. A (2)
=3 22.3) A Y %(2.5) (PVM\/S) APV X) =P\ Mx v SX. th(:t. there
-are lhree opnmal certain rules supported b) object 2:
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(P.low) — (d,good).
(M, 'lm‘v) A‘(X ‘ hnv) — (d. go()d). N o
(s /um/\(x Iou) “(d.good).

11 (3) = N oor)l = (31, Henee, ¥, = €\ Ly (3) = 11.2,4,5.6). Ao
=323 D) A x3.2) A Y x(3.4) A «(3, AT 2(3.6) = (MVS)A(PVM
VS) A (M V'SV X) /\(MVSVX)/\(PVSVX) (MVS)A(PVSVX) =8V
MP v MX. ‘ o

Hence, 'thére are three optimal certain rules supported by object 3:
(S.compacty — (d. poor).

(P. high) A (M. high) — (d. poor).
(M high)A (X low) — (d. poor).
Iy (6) = 1I( d,good H = {1,2,4,6}. Hence, ¥, = ¢ \I{J}((‘ {’4 S}. A.(6)

Z (6.3) A3« =(PVSVX)AN(PVM)=PVvMSVMX. ‘Hence,
there are three optlmal certain rules supported by object 6:

(P. low) — (d. good), ‘
(M, highy A (S. full) — (d, good).
(M, high) A (X . high) — (d,good).

6. Incomplete decision tables
6.1. Certain decision rules

Following the dpproach to incomplete information systems preserited by
Lipski in [14], we propose the following definition of a certain rule: Any de-
cision rule . — sis called certain in . iff it is certain in every completion of ..
Any decision rule r — s is optimal certain in # ff it is certain in ¥ and no ¢ her
rule constructed from a proper subset of atomic properties ocuumng in'ris
certain’ in’ .. Co

Proposmon 6.1. 1 — s is certain in zf it is wrmm mnerery (umplcnrm u/ ‘/’ in
which 'itl 20 ‘

Pmof By dehnmon of a'certain rule m.d «,omplet; IS aruler—s is certain in
any completion of ¢ in which |lt|] C HsH Hence. it is ‘certain in every
completion of & in wh “h e} = 0. Proposmon 15 an 1m-nedmte consequence of
this fact and the deﬁnmon of'a cendm rule; O :
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Proposnmn 6.2. Le! Desc r( Y) denote the set of T-dvs( nplm s of all Uhj(‘( 1s Irom Y.
Let t— s be a definite decision rule supported in some wmpleuon of #.and T
be. the set of all attributes occurrmg in .1 t—s is certainin S iff

1€ Uyrecom s )D‘“r(( \ JIslh)-

Proof. In order to prove the proposition we will prove the following equivalent
statement: 1 — (d, ) is not certain.in & iff t € \J., cconps Descr (€ || v)]]).
The rule 1 — (d.r) is not certain in ¥ iff there is some Lomplenon 9" of 4 in
which ||f]} € ||(d: v)||" iff there is a’ completion ¥ of  in which some object
'possesses the ‘properties: ¢ and (dw)., w# . i rely, r(m,,,(,,Duc (€ \
(d.v) h g

_Proposition. 6.2 justifies the correctness of a rules genération approach, in
which an initial incomplete system ./ is transformed into a complete ¢ which
contains all possible descriptors of the objects incompletely described in & (see
[3]). Then rules are generated from the complete system .7”. Next propositions
will justify another approach to rules generation. which allows to compute
rules directly from x-extensions of the initial incomplete system.

Proposition 6.3. Let x € (. ./ be an x-extension of & and x € N If e —sis
certain in <% then t — s is certain in .

Proof. It is necessary to prove that i r — s is certain in an x-extension ¥ of ¥
where x € ||r]l° then 7 — s is certain in . Let us consider an arbitrary ¥’ from
COMP(.¢"). From the definition there exists a completion .9 of & which can
differ from ¥’ at most on x. So it is enough to prove that for any v & (1 if
v e it then y < |is||" follows from: if vy & |[)|” then v € |is]". Let us assume
that v € |}t}[". Suppose v ¢ |jsi|". It means that for some v # x such that v € ||r||’

we- have d(x) # d(v). However, Inf’(y) is also an information vector in ‘/’ ‘
which LOﬂtrddICl\ Hel” C hist”. O

Pmposmon 6.4 Let x € ¢ and 4 he an x- extension of Y. An optimal certain
Fule! supported by x in 4 is optimal certain in .

Proof. Let + — s be an oplimul certain rule supported by X in .*. Immediate
conclusion from Proposition 6.3 is that r — s is certain in . Additionally.
since 1 —'s is optimal certain in /* then any rule r — s constructed from a
proper subset  of atomic properties’ occurring in- 7 is not certain in any
completion of ¥~ and hence r— s is not certain in . The above observations
allow. us 1o conclude that 1 — s is an opumal c.ertam rule in .. O

Propertv 6.1. Lot XEC und Y% be an \—e\lwmon 0/ ML X supports a certain rule
in ‘/“ it S‘,, x) Cly(x) in ‘/‘ :
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Proof. Lct t—sbea certam rule %upported by x in . The object X supports.
t—sin.y" 1ﬂ' X supportst — sin every completlon " of S (x) C Ty (x)
(by Properly .1) in each completlon S of 7t it U/'e(oum ) Iir(x) C
lm(. vy iff 84:(x) C [!d}(‘) (by Propeny 4) | . :

6.2. C()mpula‘twn uj upumul certam rules

It i is stated in Proposmon 6.4 lhdt opumdl certain rules supponed by an
object x m any x-extension ¥* of ¥ are optimal certain in .¢". Addmona!ly,
it follows from Propcny 6.1 that the condition Sqrlx) C 1{,,,( ) in ¥¢ (ie.
card{#(x)) = 1} is necessary for an object x to support a certain rule,
Clearly, the set of all optimal certain rules each of which is supported by x
in some completion of ¥ is equal to the set of all optimal certain rules each
of which is cupported by x in some x-extension of #. In this subsection we
show how to compute optimal certain rules. (certain x-reducts) in an .x-ex-
tension 4. First we show how to obtain this goal by examining all com-
pletions of ¥*. Next we prove that the rules may be computed directly
from .#*. ,

Let A CAT. x€ (. " be an x-extension of ./ and §;(x) C I, (x) (Le.
card(¥,;(x)) = 1). The set 4 is a cerrain x-reduct in ¥ iff 4 is a minimal set
such that:

Iy(x) € Ly(x)

in each completion " of #*.
Let x<¢. % be an x-extension of -/ and §9;(x) C /[ (x ( (Le.
card{p(x)y =1 A'(x) Is a certain x-discernibility function iff

Alx) = H HZ {x. \ whcrc Yo= N hgy(x).
- ‘ ’’ (()\IPI OV . ‘
The pnme implicants of A (x) dgtzrmmc x-reducts in & umqueh

Prop(mtlon 6.5. Lot x €. C. 4 he an x-extension of & and §4,(x) T I {J}‘(‘,‘:)y (i.c.
card(i¥(x)) = 1).. Then ‘ : ‘

x) : HZ 2 (x.y). where ¥, =¢ \'I;‘,;k‘(.\‘).

Proof. Let # " be u'complction of ./ such that forany v € ¢ \ {x}: f¢(v) = x
implies £;(v) = f5(x). Let /" # /" be an arbitrary completion of /. One may
easily - notice * that  for ‘edch yeYo oy 1(r ) A (xw) =34 (x.y)
= yﬂx‘(\ ‘) Theretore A‘ H COMPLs »H‘ 2] fo (" ‘) Hre)( Ed
(\’\,—«H‘,‘_‘x‘(\ \) D C
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Example 6.1. We w1ll nllustrate the muhod of opumal cermm rules gcneratnon
from an incomplete system by means of Proposition 6.5. Table 2 presents the
'system ¥ to be considered. Object 5 will be'used as a rule generdtor There are
four possible complete AT-descriptors-of this object: ‘ :
‘l (P, Ion)/\(M lon)/\(S Jul) N{(X chigh).

2. (Polow) A (M. high) A (S full) A (X . high).
3. (P high) A (M. low) A (S, full) A (X, high).
4. (P.high) XN (M. high) A (S, full) A(X, htqh) ‘
where P, M, S, X stand for Price, Mileage. Size and Ma\ Speed. respecnvely

(a) Let ¥¢ € CIEXTN(S.5) and-object S has the descnptor in (I‘ as in the
‘case 1. Table 4 illustratés the extension’ ¥*.

S¢r(5) = {5} and [;;(5) = [[(d.excellent)|| = {5}. so §4,(5) Q Li4y(5) (ie.
icard((')j,-(S)) = l}dﬂd according to Property 6.1 object 5 supports some certain
rule in ¢ Y. = €\ [1;3(5) = {1.2.3.4.6}. Hence, A(5) =Y 2(S. HAY o
(5.2) A Y (5. 3 /\Zl (5.4HAY 2(5.6) = (PVX)A(X)A(SVX)A(P)

A(M) = PMX.

Thus. there is only one certain S-reduct {P. M. X} in ¥, which means that

only one optimal certain rule is supported by object S in /¢, namely:

(P.low) A (M. low) A (X. high) — (d.excellent).

(b) Let ¢ € CIEXTN(S,5) and object 5 has the descrlplor in ¥* as in the
case 2. Table 5 illustrates the extension /.

47(3) = {5.6} and ;44 (5) = |(d.excellent)|| = {5},350 85:(5) € [};4(5) (i.e.
card(4,;(5)) # 1). Therefore, by Property 6.1. object 5 does not support any
certain rule in %%,

Similarly, there are no optimal certain rules supported by object § in the 5-
extensions of Table 2 in which object 3 has the descriptor as in the cases 3 and
4, respectively. In these S-extensions card(J(5)) # 1.

Performing analogous computations for each objut we would receive the
follo\\mg set of ull optimal certain rules in Table 2:

Tauble 3

A S-extension of Table ?

Car Price Mileage Size MaX-Speed o iVir

1 high low {ull low good ©igood)
2 low * full low good tgood)
3 * ) * comp. low poor poor;
4 high * full . high’ © good tgood)
5 low low full high - Excel. tExcel |
b

low -~ high “full PR good C tgood!:
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Table §

. Anothér S-extension of Table 2

Car' . Price . Mileage " Size | Ma¥-Speed - d -9

T highoo dow i fll U low . good | {good!

24 low * SOl dow good .- {poodi.

3 f S , comp. . low. . poor . {poor}’

4 high. % Aull’ high good ' igood)

5 ow- high’ full - high . excel. tgood. excel.}
6 low .- high full * good - good. excel.}
(S.fuily M X low) — (d. good). /l found in some x-exten-

' sions, where x=1.2.6
(S.compact) — {d. poor). //-found in all 3-catensions
{P. high) A (M, high) A (X low) — (d. poor). /f found in some 3-extension
(P.low) ANMM. iow) A (X.high) — (d.excellent). I found in some S-exten-

stons

7. Computing certain rules from original incomplete decision table

In this section we will show that an important class of optimal certain rules
which are supported in all completions of # can be computed directly from the
original incomplete system /. We will prove that definite generalized rules.
which are a special case of generalized rules presented in [3]. constitute such a
class of rules:

7. 1. Generalized rules

~In this subsection we will provide the l‘orm;ll definition. of* generalized rules
(after [5]) and present a method of computing them. Next we will r.\amme
specific. properties. of definite generalized rules. t
Am decision rule ¢ — s is called generalized in 4 of Ty, 't l Coisil. where T
is-the set of all attributes occurring in r. Any decision ‘fule 1 — 518 optimal
gencialized in 4 iff it is generalized in »/ and no other rule constructed from a
proper subset of atomic properties occurring in tor s is generalized in /. The
decision .part- of an_optimal ummhzcd decision-rule 0Lﬂ€l‘d!bd from the in-
formation. vector of x. ¥ € (. is equal to (d.wy) V'{d.ws) v .0V (d, w,), where
{wiowa s oow, b = 04p(x). The reduced set of Londmon dtmbules c¢an be
computed as generalized x-reducts: ‘ ~
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 Let 4 C AT and x € (. The set 4.is a szemlull ed x- re(lml m ‘/ iff A iis a
mxmmdl set >uch thdt v ‘

: dA( )=()JT( ).
Let x€C. A(x) Isa qem'rull ed ~-discernibility function in 4 lﬁ
HZ x.y). - where Y, = ¢\ {y X }d(v) € ()47(-Y)}.

The pnme |mpl|cants o{' A ( ) determme generdhzed x-reducts umquely

Example 7.1. Let us illustrale the method of generation of optima] genelalized
rules directly from an incomplete system. Table 2 presents the system &
under  consideration. Objects | and 5 will be used as exemplary rules

generators.
Object 11 Y, = \ {» E(’ ]d())ed,r(l b=\ {1.2.4,6} = {3.5}. Hence,
A(l)=Ya 13/\2 (S)YN(X) = §X.

Thus, there is only one optimal generalized rule supported by object 1 in .,
namely: ‘
(S. full) A (X . low) — (d. good).

Object 5: ¥, =€\ {y € € |d(v) € d4r(5)} = ¢ \ {1.2.4,5,6} = {3}. Hence,
Ag(S) =3 2(5.3) =(SVX)=SVX. ‘
Thus, there are two optimal generalized rules supported by object 5 in &,
namely:
(S.full) — (d,good) Vv (d, excellent).
(X . high) — (d.good) V (d.excellent).

Altogether, the followmg, set of all optimal generalized decision rules can be
induced from Table 2

{S. ﬁz‘l[ ) A (X low) — (d. good). /I generated by objects: 1,2
(8.compact) — (d. poor). /f generated by object: 3
(8. full) — (d. good) Vv (d.excellent). /I generated by objects: 4,5,6

(X.high) — (d.good) V (d.excellent). Il generated by objects: 4.5

" The first two generaiized rules are definite. Let us nole that the third rule,
which is non-definite. is supported by the objects: 1. 2, 4, 5, 6, but it is gen--
emted only by the objects: 4, 5, 6. The objects 1 dnd > generate more specific;
but definite rule L.

The next Lw'o prqperties reter to definite generalized rules.
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Propérty 7L Ler xel. x. supports-a definite }wwraliﬁed rule in & iff
Sn(x) - l{d;(x) in l/ N R ‘ ‘

Proof. (= ) Let f=s be a deﬁnue gcnemhzed rule supported by X m 9" LetT
be the set of attributes occurring in 7. Smce X' supports ¢ — s in .¥ - then
Ir(x) = ||t} and Sr(x) = Tsn|tl} and 753 (x) = ||s||. Additionally, since r — s'is
generalized then Tsp il € |Is|]. By medns of Property 3.1 we also have:
SA]'( ) C Sr(x) HCHCC SAT( ) - ST(X) 'TSMIH'“ C ”S” = l[,”()() and ﬁnally
Sar(x) € iy (x).

(<) It is necessary to prove that: 1f S,r(v) C I,I, {x) then there is some
definite generalized rule t — s supported by x'in ‘/ Let t= Ala. fu(x)). a €T,
where T = {a € AT fu(x) # +}, and s = (d. f4(x)). Then S,r(x) = ATsnllt]
= 7:5/,””’“ and ”S” = 1((1}(.\’). Hence, Tb/ﬁ”l’” - H ” and 1 — s is deﬁn_ite. Thus,
t = s is a definite generalized rule supported by x.- [

Property 7.2. Let A C AT and x € € and Sy7(x) C Li(x). Then
Alx) = H Z a(x.v), where ¥, = ¢\ [(x).
v ¥y '

Proof. By Property 4.1, S.r(x) C Iy(x) implies card(d47(x)) = 1. Hence,
dyr{x) = {d(x)}. Thus, Y,=C\{ve|de{dx)}}=C\{yec|dy)
‘_d } "‘( \I{,“(A O

7.2. Certain rules and definite generalized rules

In this subsection, we discuss the relationship between certain and definite
generalized rules.

Proposition 7.1. The set of objects each of which supports some oplmml defimie
generalized rule in ' is a subset of objects cach of which supports at Icasl one
upmnul certain rulc in some x- -extension of Y .

Proof. Let .7 be an x-extension of . By Property 6.1, certain rules in ¢ are
supported only by objects x. x € ¢, such that 85, (x) C /i,y(x). On the other
‘hand. by Property 7.1, definite generalized rules are supporlgd only by objects x
such that S,7(x) C /,,;(x). By Property 3.1, 84,(x) € S;r(x). Thus, the set of
‘Ob_]LCts {xe ¢ | Syr(x) C 1y (x)} su‘pporling oplimul definite generalized rules
in " is a subset of objects {x € (| S, (.r) C Iy (x1} supporting optimal certain
rules in Y. _D ‘ " B

Proposntlon 7.2. le set of a/l upumul definite g mneraliz cd rides mpporrvd by an
object. X in 4 is a mbw( of all npnmal certain rulcs supporte d by X.in any x-
extension. of S, : ; ‘
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Proof. Let ¥* bedn x- utu\smn ol . By Properly 7. l,an 0b)u.t that supports
some optimal definite generalized rule in ¢ supports. also some.optimal certain
rulein ¥ . Thus, it is enough to show that the set of generalized v-reducts in .’
is a subset of certain x-reducts in ¥ if Sy7(x) C 14y (v). To this end, we will
consider the respective v-discernibility functions.

Let us consider an object x € - such that Sy7(x) € Jy(x). Thc.n S (v C Id x)
since’ §4,(x) C Syr(x) (by Property 3. Let ¢\ Jgy(x) -{u..'. i.va). The
generahzed x-discernibility function in . has the following form:. S

H‘ Z o, v) = Tafx ) AL A Za(xn,),

O

whercas the certain x-discernibility function in ./ looks as follows:

(x) = H Z 2xy) = At ) A LA Za ()

ve 6 )

We may easily notice that for any v.i=1...n: 2°(x. ) Naxy) = 2(x. ).
Hence,

Al () = Z{x(x. ) Uy p) ARl ) U el \',,))

where (v, v) =2 (\ i)\ a(x.w), i= 1o

The obtained form of A’ (x) allow us to infer that the sct of all prime implicants
of A, (x} is a subset of all priree implicants of Af(x). This means that the set of
all optimal definite generalized rules supported by an object x in' . is a subset
of all optimal certain rules supported by xin v, 1]

8. Computing certain rules by replacing examples

In this approach. an initial incomplete system ¥ is transformed into a
complete systern-.” as follows: any information vector in an incomplete system
4" with ‘unknown values is replaced with a set of all possible information
vectors consistent with the incomplete original information vector. Next, any
method computing optimal certain rules from the complete system may be
applied. e.g. the method described in Section 5. One can find in [3] an algo-
rithmic description ‘of how to generaie certuin rules in' accordance. with the
prcscmed approach without the usc of discernibility functions.

We proved the validity of this dpproach in Proposition 6.2: /" possessus all
information vectors: that-could occur in’any completion of ‘/ so all objects-
generators of certain rules may be used'in a discovery process if rc.qmred -As a
result, all optimal certain rules supported in /' .can be induced from ¥’. The
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drawback of the n.plaung examples melhod isa. posslble exponential growth
of the mformdtmn system.

Example 8.1. According to the presented approach, the incomplete system &
from Table 2, would be trdnsformed into the complete system .%' presented in
Table 6. . '

The fo]lowmg set of all opnmal certain rules can. be mferred from Tdble 6:

(Ssﬁlll)/\ (X. Iow) — (d. good). Ilsupported by ObjectS‘

1.24,2b,64
(S compact) — (d. poor), fisupported by objects:
- 3a,3b.3¢.3d 1
(P.high) A(M, high) N (X low) — (d, poor). Ilsupported by object: 3d-

(P.low) A (M low) A (X high) — (d.excellent). {isupported by object: Sa

9. Computing certain rules by removing cxamples

The method consisis in.removing all the information vectors with unknown
values from the initial system. The rules obtained by this method may not be
certain at all or some certain rules will not be generated from such a redaced
system, which illustrates Example 9.1.

Table 6

Car Price Milvage Size MaX-Specd d s

1 high low tull low zood troud !

2a low low full fow soad reood;

2b low ~ ‘high tull fow good reoad;

RIS B low comp . low . poor Ipoor;

3b low high comp  low . poor; Ipoor)

3 high - low comp Jow poor tpoor!

3d 0 high high: L comp . fow ~ poor L poor!

da high low full ‘ high ' good taood, L\LLl H
4b:  high high sl ‘ hizh good tgood, excel!
Sa low - dow tull - high S eseed rexeeld o
5b low high full high - Cexeel. tgood, excel |
5¢ © high Sowl ol ~ high' Ceeel fgond, excel
5d°- . high high Ctull high, = exe tgood, excel
b Clow . cmgh e full T dow ‘ Ugood - tgood) -

6b fdow ¢ . high fall 7 high- T good tgood. excel.}
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Table7

Car " Price o Mileage: - Size " MaX-Speed - d

It ,hig§1 o low Dofut low o good .

Example‘9l Table 7 shows the result of removing objects with unknown
dttnbute values. from the incomplete system .4’ presented in Table 2 2.
The followmg certain Optlmdl rule can be induced from Table 7:.

— (d. good).

The obtainéd rule is not certain in the original system ./".

10. Conclusion

The indiscernibility relation and similarity relation are useful notions for
expressing the relationship between an incomplete system and its completions.
Among the completions there is one which reflects the real world described by
the incomplete system.. Unlike the majority of the existing methods of know-
ledge discovery. we did not try to find out which completion is the most likely
so that to perform the discovery process in it. A new method, we presented,
allows to discover the knowledge in the form of optimal certain decision rules
that arc valid in all completions. The method requires only completing ihe
information vector of an object-generator in the process of computing rules
supported by that object. The information vectors of other objects remain
unchanged. If all optimal rules supported by the object-generator are of inte-
rest then the. computations of rules should be performed for all possible in-
formation vectors of the object. The computations for different descriptors of
the object-generator may be performed in parallel. The method guarantees the
discovery of all optimal certain rules supported in any Lompletmn of thc syss
tem.

The new method is an extension of the melhod presented in [3}; where the
problem related to generalized rules was considered. Optimal ¢ generalized rules
can be computed directly from the initial system. No completion of informa-
tion vectors is performed. In the paper we proved that all optimal definite
generalized rules constitute a subset of all optimal certain rules.

Additionally, we showed that-all-certain rules may be generated when ap-
plying the method: of replacing U\dmples Unforlundtely ‘space complem\ of
the method may prevent its usaz.,e We also showed that removing objects in-
-completely described may lead to generation of rules thal are not certain in the
original system. This method does not assure either that the rules gmemtcd
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from a reduced system wnll cover the whole sel of certdm rules that cou!d be
induced from the initial system..

The work [15]isa contmuauon of this paper In [15], we investigate several
‘interesting: propertles of .incomplete systems dnd propose new methods of
computmg other kinds ot decision rules. ;
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