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Abstract

All of the prototype reduction schemes (PRS) which have been reported in the literature, process time-invariant data to yield a subset
of prototypes that are useful in nearest-neighbor-like classification. Although these methods have been proven to be powerful, they suffer
from a major disadvantage when they are utilized for applications involving non-stationary data, namely, time varying samples, typical of
video and multimedia applications. In this paper, we suggest two PRS mechanisms which, in turn, are suitable for two distinct models of
non-stationarity. In the first model, the data points obtained at discrete time steps, are individually assumed to be perturbed in the feature
space, because of noise in the measurements or features. As opposed to this, in the second model, we assume that, at discrete time steps,
new data points are available, and that these themselves are generated due to a non-stationarity in the parameters of the feature space. In
both of these cases, rather than process all the data as a whole set using a PRS, we propose that the information gleaned from a previous
PRS computation be enhanced to yield the prototypes for the current data set using an LVQ-3 type “fine tuning”. The results are, to our
knowledge, the first reported PRS results for non-stationary data, and can be summarized as follows: if the system obeys the first model
of non-stationarity, the improved accuracy is as high as 90.98% for artificial data “Non_normal 2”, and as high as 97.62% for the real-life
data set, “Arrhythmia”. As opposed to this, if the system obeys the second model of non-stationarity, the improved accuracy is as high as
76.30% for the artificial data, and as high as 97.40% for this real-life data set. These are, in our opinion, very impressive, considering
that the data sets are truly time-varying.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Overview

Over the past five decade numerous families and avenues
of statistical pattern recognition (PR) systems have been
developed. The general model of computation has been the

� The work of the first author was done while visiting at Carleton
University, Ottawa, Canada. The work of the first author was partially
supported by KOSEF, the Korea Science and Engineering Foundation. The
work of the second author was partially supported by NSERC, the Natural
Sciences and Engineering Research Council of Canada. This research
was also generously supported by the Korea Research Foundation Grant
funded by the Korea Government (MOEHRD-KRF-2005-D00004).
∗ Corresponding author. Tel.: +1 613 520 4333; fax: +1 613 520 4334.

E-mail addresses: kimsw@mju.ac.kr (S.-W. Kim),
oommen@scs.carleton.ca (B.J. Oommen).

0031-3203/$30.00 � 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.07.012

following: The system is provided with a set of data repre-
sented in terms of its features. Using these so-called “train-
ing samples”, the system builds a classifier which is, for
example, of a parametric form, or the non-parametric form.
Subsequently, data to be tested is provided, and the quality
of the classifier is measured by quantifying the accuracy by
which these samples are classified. We emphasize, though,
that traditionally, all classifiers assume that the training sam-
ples and their underlying distribution are stationary.

In this paper, we suggest two time varying prototype re-
duction schemes (PRS) mechanisms which can be utilized
for applications involving non-stationary data. Such data
is typical of video and multimedia applications, in which
the objects to be recognized move in space, or change
with time. Although we have not specifically demonstrated
this (because of the lack of suitable data), we believe that
these methods can also be useful in medical diagnosis and
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bio-metric analysis, in cases where the measurements of
the patients/“clients” change because of the variations in
their conditions themselves, or because of variations in the
equipment taking the measurements.

In particular, we propose two methods to tackle non-
stationarity, which, in turn, are suitable for two distinct mod-
els of non-stationarity. In the first model, we assume that
the data points obtained at discrete time steps, are individ-
ually perturbed in the feature space, because of noise in
the measurements or features. In the second model, how-
ever, we assume that, at discrete time steps, new data points,
which are themselves generated due to a non-stationarity in
the parameters of the feature space, are available. The so-
lution we advocate is the following: In both of these cases,
rather than process all the data as a whole set using a PRS
to yield a “time varying set of prototypes”, we propose that
the information gleaned from a previous PRS computation
be enhanced to yield the prototypes for the current data set,
and this enhancement is accomplished using an LVQ-3 type
“fine tuning”. This philosophy, though simple, is effective
and quite powerful. Indeed, in cases such as the benchmark
“non-normal” data set, we have observed that if the points
are perturbed, the accuracy of a PR system which utilizes a
fixed set of prototypes is quite unacceptable—it yields only
about 50% accuracy. In this case, if the prototypes are con-
tinuously updated as per our strategy, the updated prototypes
yield an accuracy of almost 75%. Thus, we believe that our
methods can be used advantageously for medium and large
non-stationary data sets.

The paper is organized as follows: after providing a brief
introduction to the state-of-the-art PRSs, we briefly cata-
logue the contributions of this paper. In Section 2 we ex-
plain the difficulties involved in adequately modelling non-
stationarity, and then proceed to describe both the mod-
els of non-stationarity that we propose. After proposing
these models, namely, the so-called noisy measurement non-
stationarity, and the noisy parameter non-stationarity in their
general setting, we proceed in Section 3, to describe the
schema for the proposed solutions, namely the process that
will be invoked to update the PRSs for both these models.
Section 4 details the experimental results for artificial and
real-life benchmark data sets, where the specific advantages
of our proposed methods are clearly highlighted. Section 5
concludes the paper.

1.2. State-of-the-art prototype reduction schemes

Let T = {x1, . . . , xN } ∈ Rp be a set of N feature vectors
in p dimensions. We assume that T is a labeled data set, so
that T can be decomposed into, say, c subsets {T1, . . . , Tc}
such that T =⋃c

k=1 Tk, Ti ∩ Tj =�,∀i �= j . Our goal is to
design a classifier with this training data set. Specifically,
we are interested in classifiers of a nearest-neighbour (NN)
or nearest prototype family [1]. Thus, we need one or more
prototypes (vectors in Rp) that will represent each Tk . The

limiting case comprises using all of the input vectors as pro-
totypes, but in many cases, this will impose an unacceptable
computational burden on the classifier.

In non-parametric pattern classification which use the NN
or the k-nearest neighbour (k-NN) rule, each class is de-
scribed using a set of sample prototypes, and the class of
an unknown vector is decided based on the identity of the
closest neighbour(s) which are found among all the proto-
types [1]. To enhance computation, it is advantageous to re-
duce the number of training vectors while simultaneously
insisting that the classifiers that are built on the reduced de-
sign set perform as well, or nearly as well, as the classi-
fiers built on the original data set. Various PRSs, which are
useful in NN-like classification, have been reported in the
literature—two excellent surveys are found in Refs. [2,3].
Bezdek et al. [3,25], who composed the second and more
recent survey of the field, reported that there are “zillions!”
of methods for finding prototypes (see Ref. [3, p. 1459]).

Rather than embark on yet another survey of the field, we
mention here a few representative methods of the “zillions”
that have been reported. One of the first of its kind is the
condensed NN (CNN) rule [4]. The reduced set produced by
the CNN, however, customarily includes “interior” samples,
which can be completely eliminated, without altering the
performance of the resultant classifier. Accordingly, other
methods have been proposed successively, such as the re-
duced NN (RNN) rule [5], the prototypes for NN (PNN)
classifiers [6,26], the selective NN (SNN) rule [7], two mod-
ifications of the CNN [8], the edited NN (ENN) rule [9],
and the non-parametric data reduction method [10,11]. Be-
sides these, in Ref. [12], the vector quantization (VQ) [18]
and the Bootstrap [13] techniques have also been reported as
being extremely effective approaches to data reduction. Re-
cently, support vector machines (SVM) [14,24] have proven
to possess the capability of extracting vectors that support
the boundary between any two classes. Thus, they have
been used satisfactorily to represent the global distribution
structure.

In designing NN classifiers, however, it seems to be in-
tuitively true that prototypes near the separating boundary
between the classes play more important roles than those
which are more interior in the feature space. In creating or
selecting prototypes, vectors near the boundaries between
the classes have to be considered to be more significant, and
the created prototypes need to be moved (or adjusted) to-
wards the classification boundaries so as to yield a higher
performance. Based on this philosophy,1 namely that of se-
lecting and adjusting the reduced prototypes, we recently
proposed a new hybrid approach that involved two distinct

1 The reader will observe that we have not burdened him with un-
necessary details of any of the “zillions” of PRSs. Indeed, they can be
found in the literature. However, we have taken the pains to explain the
latter scheme where we enhance a traditional PRS with an LVQ3-type
fine-tuning phase, because we intend to propose an analogous strategy
for our current problem.
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phases [15,16]. In the first phase, initial prototypes are se-
lected or created by any of the conventional reduction meth-
ods mentioned earlier. After this selection/creation phase,
the technique in Refs. [15,16] suggests a second phase in
which the proposed reduced prototypes are migrated to their
“optimal” positions by adjusting them by invoking an LVQ3-
type learning scheme. The relative advantages of the scheme
in Refs. [15,16] have been demonstrated on both artificial
and real-life data sets.

All the PRS methods reported in Refs. [2,3], (including
the one proposed in Refs. [15,16]) are practical as long as
the size of the data set is not “too large”. The applicability
of these schemes for large-sized data sets is limited because
they all suffer from a major disadvantage—they incur an
excessive computational burden encountered by processing
all the data points. It should be noted, however, that points in
the interior of the Voronoi space2 of each class are usually
processed for no reason—typically, they do not play any
significant role in NN-like classification methods. Indeed,
it is not unfair to state that processing the points in the
“interior” of the Voronoi space becomes crucial only for
“smaller” instantiations of the problem.

Since prototypes near the boundary play more important
roles than the interior ones for designing NN classifiers, the
points near the boundary are more important in selecting
the prototypes. In all the previously reported PRS, however,
points in the interior of the Voronoi space are processed for,
apparently, no reason. Consequently, most reported PRS suf-
fer from an excessive computational burden encountered by
processing all the data, which becomes very prominent in
“large” data sets. To overcome this disadvantage, a recursive
PRS mechanism was proposed in Ref. [17]. In Ref. [17], the
data set is sub-divided recursively into smaller subsets to
filter out the “useless” internal points. Subsequently, a con-
ventional PRS processes the smaller subsets of data points
that effectively sample the entire space to yield subsets of
prototypes—one set of prototypes for each subset. The pro-
totypes, which result from each subset, are then coalesced,
and processed again by the PRS to yield more refined pro-
totypes. In this manner, prototypes which are in the inte-
rior of the Voronoi boundaries, and are thus ineffective in
the classification, are eliminated at the subsequent invoca-
tions of the PRS. A direct consequence of eliminating the
“redundant” samples in the PRS computations, is that the
processing time of the PRS is significantly reduced.

This overview of the state-of-the-art of PRSs should be
sufficient to help us proceed in formulating our solution to
the problem at hand.

2 Typically, the Voronoi hyperplane between two classes is an equi-
bisector of the space, partitioning the points of each class on either side.
Classification is achieved by assigning a class index to a sample being
tested, and in our context, this is done by computing the location of the
tested sample in the Voronoi space, for example, by determining the class
of its NN using any well-established metric.

1.3. Contributions of the paper

The main contribution of this paper is we have proposed
two models by which non-stationarity of data can be mod-
eled. The second contribution is that in each of these cases,
we have presented a technique by which the prototypes can
be computed at any time instant by processing the informa-
tion in the prototypes available at the previous time instant,
and augmenting it with the currently available data. Thus,
we show that there is a distinct advantage in taking the non-
stationarity into consideration. Finally, we have shown that
these results lead to superior PR systems where the data is
truly non-stationary.

The results presented here are of a preliminary sort, as
there is not much benchmark data currently available to de-
scribe problems of this sort. But we believe that our methods
have potential in real-life problems which deal with multi-
media applications, and in domains that reckon with medical
and bio-metric data. Although the contribution is modest,
to the best of our knowledge, there is currently no reported
time varying PRS suitable for handling non-stationarity.

2. Models of non-stationarity

In this section we explain the two different models of
non-stationarity that we propose.

Let us suppose that at time “t” the system is presented
with a data set Si(t), which represents the samples of class
�i as measured at “t”. The jth sample in this set is xi,j (t).
We propose the following two models for capturing non-
stationarity.

2.1. Noisy measurement non-stationarity

In this model of non-stationarity we assume that the sam-
ple xi,j is obtained by a noisy perturbation on the sample at
time “t”. This perturbation can be perceived as the inclusion
of some additional noise3 �1(t + 1), and thus we write

xi,j (t + 1)= xi,j (t)+ �1(t + 1), (1)

Si(t + 1)=
⋃

xi,j (t + 1). (2)

Typically, each data point xi,j (t + 1) is in the neighbour-
hood of xi,j (t) as shown in Fig. 1. We present an example
for the two-dimensional data set referred to as “random”,
which is generated randomly with a uniform distribution,
but with irregular decision boundaries [17]. In this case, the
points are generated uniformly, and the assignment of the
points to the respective classes is achieved by artificially
assigning them to the region they fall into, as per the man-
ually created “irregular decision boundary”. The set of just

3 �1(·) and �2(·) refer to the noise generation random variables
associated with Models 1 and 2, respectively.
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Fig. 1. The set of data points generated with the “noisy measurement
model” of non-stationarity, where the xi,j (t), i = 1, 2, j = 1, . . . , 10,
samples are represented by “∗” and “·”, and the xi,j (t + 1),
i = 1, 2, j = 1, . . . , 10, sample vectors are represented by “⊗” and “�”,
respectively. Note that the discriminant function also changes with time,
but that the set of points bear the semblance to their prior versions.

10 sample vectors is generated for the samples of the Class
“1” (which are represented by “∗” in the picture) and the
same number of 10 sample vectors for points of Class “2”
(which are represented by “·” in the picture).

To demonstrate the properties of the mechanism, after
generating the xi,j (t), i = 1, 2, j = 1, . . . , 10, samples, we
again generate “time-varying” points, xi,j (t+1), i=1, 2, j=
1, . . . , 10, using the model of non-stationarity, which are
represented by “⊗” and “�”, respectively. Observe that in
this example, the discriminant function also changes with
time, but is essentially a perturbed variation of the discrim-
inant function at the previous time instant.

2.2. Noisy parameter non-stationarity

There is a more fundamental model of non-stationarity,
in which the data at time “t + 1” is not just generated from
perturbing the data at time “t”. Rather, in this second model,
the entire set at time “t+1” is obtained, as it were, by being
generated by a random sample generator, whose parameters
are perturbed versions of the parameters from time “t”.

To show how this model works, let us suppose that at
time “t” the system is presented with a data set Si(t), which
represents the samples of class �i as measured at “t”. Again,
the jth sample in this set is xi,j (t). In this model of non-
stationarity, we assume that the entire sample set Si(t+1) is
obtained by a noisy perturbation on the sample set Si(t) at
time “t”. This perturbation can be perceived as the inclusion
of some additional noise, �2(t + 1) (which is typically a
vector) on the parameters of the distribution of Si(t). Thus
we write

Parameters[Si(t + 1)] = Parameters[Si(t)] + �2(t + 1).

(3)

Fig. 2. The set of data points generated with the “noisy parameter model”
of non-stationarity, where the xi,j (t), i= 1, 2, j = 1, . . . , 10, samples are
represented by “∗” and “·”, and the xi,j (t + 1), i = 1, 2, j = 1, . . . , 10,
sample vectors are represented by “⊗” and “�”, respectively. Note that
the discriminant function also changes with time, but that the set of points
bear no semblance to their prior versions.

We again present an example for the two-dimensional data
set referred to as “random”, which is generated randomly
with a uniform distribution, but with irregular decision
boundaries. Typically, in this case, the data point xi,j (t + 1)

need not be in the neighbourhood of xi,j (t) as shown in Fig.
2, although the parameters (the mean and the covariance) at
time “t + 1” are perturbed versions of the same parameters
at time “t”.

3. Schema for the proposed solutions

As mentioned earlier, in this paper we deal with the non-
parametric model of PR. Thus, we seek to attain to the clas-
sification by a NN-like decision rule. In this setting, the most
naive method to handle non-stationarity is to not consider
any variation at all.4 In this case, the prototypes5 obtained
from Si(0) are used to achieve the classification at all future
time instants. Thus, if Pi(0) is the set of prototypes repre-
senting class �i , the classification is achieved by a NN-like
decision rule involving Pi(0), for all i, and for all t.

A more sophisticated method to handle non-stationarity
would be to update Pi(t) from the samples of the classes cur-
rently available. Thus, when the new set of data Si(t + 1) is
available, the system would invoke a PRS afresh for the new
data, and effectively treat the problem as a brand new pattern

4 Pattern recognition systems which use traditional PRS methods
would, typically, resort to such a philosophy.

5 Throughout this section, we assume that the user has access to
any of the previously mentioned PRSs. Thus, s/he may chose to use
the CNN, the PNN, the HYB or any “pet” PRS scheme from the ones
mentioned earlier to yield his/her current prototypes. Our intention is to
enhance the prototypes obtained by invoking this PRS, by incorporating
the information in S(t + 1).
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classification problem. Thus, if Pi(t) is the set of prototypes
representing class �i , at time t, at time t+1 the classification
is achieved by a NN-like decision rule involving Pi(t + 1),
for all i, where the latter is obtained by performing a PRS
on

⋃
Si(t+1). We believe that this is an expensive strategy.

Furthermore, we believe that any “intelligent” system must
be capable of utilizing the information in Pi(t) in its effort
to compute Pi(t+1). This is what we attempt to accomplish
here by invoking an LVQ3-type [19–23] scheme.

In LVQ3, two code-book vectors mi and mj , which are
the two NN to x, are simultaneously updated, where x and
mj belong to the same class, and x and mi belong to different
classes. Moreover, x must fall into a zone of values called
the “window”, which is defined around the mid-plane of mi

and mj . Assume that di and dj are the Euclidean distances
of x from mi and mj , respectively. Then x is defined to fall in
a window of relative width w if min(di/dj, dj/di) > ((1−
w)/(1+ w)).

The updating rules for mi and mj ensure that the code-
book vectors continue to approximate the respective class
distributions and simultaneously enhance the quality of the
classification boundary. These rules are given in Ref. [15]
(see Eqs. (5) and (6) on p. 1087 of Ref. [15]), and are not
included here to avoid repetition. In these equations, t is the
discretized (synchronized) time index, and �(t) and �(t) are
called the learning rate and relative learning rate, respec-
tively. This is explained presently.

The accuracy achievable in any classification task to
which the LVQ3 is applied, and the time needed for learn-
ing, depend on the following factors listed below:

• An approximately-optimal number of code-book vectors
assigned to each class and their initial values.
• The initialization of the code-book vectors.
• Setting the parameters, namely the learning rate, the rel-

ative learning rate, and the number of iteration steps.

These concepts are essentially common for all LVQ3-
based PRS strategies. The rules used for obtaining these are
explained in detail in Ref. [15] (see Ref. [15, p. 1088]) and
are omitted here in the interest of brevity.

3.1. Updating PRS for the noisy measurement
non-stationarity

For the noisy measurement non-stationarity, we propose
that the new prototypes at time t + 1 be obtained by fine-
tuning the prototypes {Pi(t + 1)} by invoking an LVQ-3
type enhancement on {Pi(t)}. This fine-tuning is achieved
by moving the prototypes in the feature space without in-
voking a PRS on Si(t+1). Thus, the set Si(t+1) is directly
presented to the existing prototypes, Pi(t), and they, in turn,
are migrated so as to optimize the recognition accuracy of
the testing samples. Fig. 3 shows the key idea of the pro-
posed mechanism for this model, and the formal algorithm
follows.

Fig. 3. The processing diagram of the proposed time-variant PRS method.
Here, the S(1), S(2), . . . , S(T ) are the subsets of time varying sam-
ples, which are generated as mentioned previously from the data sets,
S(0), S(1), . . . , S(T −1), respectively, and the P(1), P (2), . . . , P (T ) are
the prototype vectors obtained from invoking the adjusting process. The
adjusting is performed as P(t+1)← P(t)

⊗
S(t+1), (t=0, 1, . . . , T−1),

which means that the prototype subset P(t) was adjusted with the
time-variant data set measured at time t+1, S(t+1), using an LVQ3-type
algorithm after selecting initial prototypes, P(0), from a given data set,
S(0), by using a conventional PRS method.

3.1.1. Determining the relevant LVQ3 parameters
The algorithm6 that we propose consists of two steps.

We first select or create initial prototypes by any one of the
conventional reduction methods described earlier. After this
selection/creation phase, we invoke a phase in which the
optimal positions are learned with an LVQ3-type scheme.
To achieve this, we assume that for every class, i and for the
time t+1, we are given the new observations Si(t+1), which,
in turn, can be partitioned into two subsets, the training set,
Si,T (t + 1), and validation set, Si,V (t + 1) at time t + 1.
Our aim is to update the prototypes Pi(t + 1), utilizing the
information in Pi(t), and the set Si(t + 1).

We first partition the training set, Si,T (t+1), into two sub-
sets, called the placement set, Si,P (t+1), and the optimizing
set, Si,O(t+1), where, Si,T (t+1)=Si,P (t+1)∪Si,O(t+1).
The intention is that the placement set is used to position
the condensed prototypes using the LVQ3-type algorithm,
and the parameters of the LVQ3-type algorithm are, in turn,
optimized by testing the classification efficiency of the cur-
rent placement on the optimizing set, Si,O(t + 1). Thus, the
training set plays a triple role: (a) first of all, it is used to
obtain the initial condensed vectors; (b) secondly, one por-
tion of this set is used by the LVQ3-type algorithm to mi-
grate the condensed vectors; (c) finally, the other portion of
the training set serves the purpose of “pseudo-testing”, so as
to obtain the best parameters for the LVQ3-type algorithm.
Using these sets7 the procedure is formalized as below for
each class.

6 The reader will observe that the actual LVQ3 algorithms are quite
similar to the ones described in Ref. [15]. However, the specific sets,
namely the placement and the optimizing sets are quite different, and so
we believe that it is necessary to specify what they are (in this non-
stationary setting) so that other researchers can effectively use our new
methods.

7 Specific distinct indices j and i are used just for ease of notation.
The training sets are first specified in terms of the index j, but then the
placement and optimizing sets are used for every class i.
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1. For every class, j, set the initial prototype set Pj,Test(t+1)

to be the prototypes obtained at time t, using any one of
the PRS methods described earlier, and the entire training
sets, Si,T (t + 1).

2. Set PTest(t + 1)=⋃
Pj,Test(t + 1), which is the set of

the training samples of all the classes.
3. Using PTest(t+1) as the set of condensed prototype vec-

tors, do the following using the placement sets, Si,P (t +
1), and the optimizing sets, Si,O(t+1) for all the classes:

(a) perform LVQ3 using the points in the placement set,
Si,P (t+1). The parameters of the LVQ3 are spanned
by considering increasing values of w from 0.0 to
0.5, in steps of �w. The sets Pj,Test(t + 1) (for all
j) and PTest(t +1) are updated in the process. Select
the best value w0 after evaluating the accuracy of
the classification rule on Si,O(t + 1), where the NN-
classification is achieved by the adjusted PTest(t+1);

(b) perform LVQ3 using the points in the placement set,
Si,P (t+1). The parameters of the LVQ3 are spanned
by considering increasing values of � from 0.0 to
0.5, in steps of ��. The sets Pj,Test(t + 1) (for all
j) and PTest(t + 1) are updated in the process. Se-
lect the best value �0 after evaluating the accuracy of
the classification rule on Si,O(t + 1), where the NN-
classification is achieved by the adjusted PTest(t+1);

(c) repeat the above steps with the current w0 and �0, till
the best values w∗ and �∗ are obtained.

4. Determine the best prototype set PFinal(t+1) by invok-
ing the LVQ3 process � times with the data in Si,P (t+1),
and where the parameters are w∗ and �∗, and where the
“pseudo-testing” is achieved by using the optimizing set,
Si,O(t + 1).

The actual classification accuracy is obtained by testing
the classifier using the final prototype set, PFinal(t + 1),
and the original testing (validation) data points, Si,V (t + 1).

From Fig. 3, we can see that the prototype vectors of
the various time varying samples are obtained from ad-
justing the previous version instead of extracting them
from the current time varying samples. That is, the
S(1), S(2), . . . , S(T ) are the subsets of time varying sam-
ples, which are generated as mentioned previously from the
data sets, S(0), S(1), . . . , S(T − 1), respectively, and the
P(1), P (2), . . . , P (T ) are the prototype vectors obtained
from invoking the adjusting process. The adjusting is per-
formed as P(t+1)← P(t)

⊗
S(t+1), (t=0, 1, . . . , T −1),

which means that the prototype subset P(t) was adjusted
with the time-variant data set measured at time t + 1,
S(t + 1), using an LVQ3-type algorithm after selecting ini-
tial prototypes, P(0), from a given data set, S(0), by using
a conventional PRS method.

In Fig. 3, the adjusting processes are performed as in Fig.
4, where the “◦” and “×” are prototype vectors of class i
and class j, respectively. The prototypes adjusted by using
an LVQ3-type algorithm are represented by “�” and “⊗”,

Fig. 4. The key idea of the adjusting mechanism. Here, the “◦” and “×”
are prototype vectors of class i and class j, respectively. Then, the adjusted
prototypes using an LVQ3-type algorithm are represented by “�” and
“⊗”, respectively. The time varying samples which are in the interior
of the Voronoi spaces and thus ineffective in the classification, (they are
represented with X at the both classes in the figure), were eliminated
from yielding more refined prototypes.

respectively. In the processing, the interior vectors of the
Voronoi spaces will be relatively ineffective in the classifi-
cation, (they are represented by the large region described
with “X” in the regions associated with both classes in the
figure), and will thus be eliminated from yielding more re-
fined prototypes.

3.2. Updating PRS for the noisy parameter non-stationarity

For updating PRS for the noisy parameter non-stationarity,
we have two methods as follows:

1. Using the same PRS method applied to the noisy mea-
surement non-stationarity, which was described in Fig. 3.

2. Using a new PRS method in which the prototypes are
obtained from adjusting the previous prototypes, P(t),
with the current ones, P(t + 1), not with S(t + 1).

In the second method itemized above, the new prototypes
at time t+1 are obtained by two steps: first, we obtain crude
values of {Pi(t+1)} for every class i, and then we fine-tune
these crude prototypes {Pi(t + 1)} by invoking an LVQ-3
type enhancement on {Pi(t)}. This fine-tuning is done by
moving the prototypes at time t in the feature space by using
the information found in the crude values, Pi(t + 1) and
not the entire set Si(t + 1). Thus, the crude set Pi(t + 1)

is directly presented to the existing prototypes, Pi(t), and
they, in turn, are migrated so as to optimize the recognition
accuracy of the testing samples.

The key idea of the proposed mechanism for this model
(Model 2), and the formal algorithm are quite parallel to
the one given above for Model 1. Rather than duplicate the
various steps we highlight the primary difference:

• At every step of the algorithm, the fine-tuning is achieved
by invoking an LVQ3 scheme, and moving the prototypes
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at time t in the feature space by using the information
found in the crude values, Pi(t + 1), rather than invoking
the LVQ3 scheme, and moving the prototypes at time t
(in the feature space) by using the information found in
the entire set Si(t + 1).

As in the case of Model 1, the actual classification accu-
racy is obtained by testing the classifier using the final pro-
totype set, PFinal(t+1), and the original testing (validation)
data points, Si,V (t + 1).

4. Experimental results

4.1. Experimental data

The time-varying PRS has been tested fairly extensively,
and compared with many conventional PRS. This was done
by performing experiments on a number of “medium-sized”
data sets, both real and artificial, as summarized in Table 1.
The time-varying data sets consist of four subsets which have
been generated randomly with two kinds of non-stationary
data models, Models 1 and 2.

The data set named “Non_normal”, which has been also
employed in Refs. [11–13] as a benchmark experimental
data set, first of all, was generated from a mixture of four
8-dimensional Gaussian distributions as follows:

1. p1(x)= 1
2N(�11, I8)+ 1

2N(�12, I8) and
2. p2(x)= 1

2N(�21, I8)+ 1
2N(�22, I8),

where �11 = [0, 0, . . . , 0], �12 = [6.58, 0, . . . , 0], �21 =
[3.29, 0, . . . , 0] and �22 = [9.87, 0, . . . , 0]. In these expres-
sions, I8 is the eight-dimensional identity matrix.

The data sets “Non_normal 2” and “Non_normal 3” were
generated randomly with the normal distribution. However,
the data sets “Arrhythmia” and “Adult4”, which are real
benchmark data sets, are cited from the UCI Machine Learn-
ing Repository [27].

The “Arrhythmia” data set contains 279 attributes, 206
of which are real-valued and the rest are nominal. In our
experiments, the nominal features were replaced by zeros.

Table 1
The artificial and real-life benchmark data sets using which the four time-
varying data sets, S(t), t=1, . . . , 4, are generated randomly with the two
kinds of non-stationary data models. For every class, i and the time t, the
vectors are divided into two subsets of equal size, Si,T (t) and Si,V (t),
and used for training and validation, alternatively

Data set Data set Pattern no. of No. of No. of
types names the given data set, features classes

S(0)

Artificial Non_normal 2 1000 (500; 500) 8 2
Non_normal 3 10000 (5000; 5000) 8 2

Real-life Arrhythmia 452 (226; 226) 279 16
Adult4 8336 (4168; 4168) 14 2

The aim of the pattern recognition exercise was to distin-
guish between the presence or absence of cardiac arrhyth-
mia, and to classify the feature into one of the 16 groups. In
our case, in the interest of uniformity, we merely attempted
to classify the total instances into two categories, namely,
“normal” and “abnormal”.

The “Adult4” data set was extracted from a census bureau
database [27]. The aim of the PR task here is to separate
people by incomes into two groups; in the first group the
salary is more than 50K dollars, and in the second group
the salary is less than or equal to 50K dollars. Each sam-
ple vector has 14 attributes. Some of the attributes, such as
the age, hours-per-week, etc., are continuous numerical val-
ues. The others, such as education, race, etc., are nominal
symbols. In this case, the total number of sample vectors is
33,330. Due to time considerations, we randomly selected
8336 samples—approximately 25% of the set.

Before we can test the algorithms, we are faced with a
fundamental problem, namely that of obtaining data sets
which can be used for testing. As far as we know, such time-
varying data sets are not available (even the standard bench-
mark data sets merely specify time-invariant data). Thus,
we have opted to modify the existing artificial and real-life
benchmark data sets so that they indeed demonstrate time-
varying phenomena. Observe that to achieve this we have to
make some assumptions, namely those which specify how
the non-stationarity is present. Due to the lack of any better
mechanism,8 we have chosen to artificially generate them
from their non-stationary counterparts using the two models
explained in Section 2.

Thus, the above artificial and real-life benchmark data sets
are used to generate their four time-varying data sets, S(t),
t=1, . . . , 4, using the two kinds of non-stationary data mod-
els as follows. In the noisy measurement non-stationarity
(which is referred to Model ‘1’ in the experimental results
of next sections), their four time-varying data sets are gen-
erated as follows: At first, we calculate the variance, Var,
of a given data set, S(0), of Table 1. Then, we randomly
generate its first time-varying data set, S(1) as: S(1) ←
S(0)+Var ∗ (1+ r and); Here, the function rand is to gen-
erate an array of random numbers whose elements are nor-
mally distributed with mean 0 and variance 1. Finally, we
repeat the above procedures to generate time-varying data
sets S(t + 1) from S(t), t = 1, . . . , 3. The time-varying data
sets of “Model 1” for the other data sets of Table 1, are also
generated with the same process.

In the noisy parameter non-stationarity (which is referred
to as Model “2” in the experimental results), the four time-
varying data sets are generated as follows: at first, for ev-
ery class i, we calculate the mean and standard deviation,
�i and �i , of a given data set, S(0), of Table 1. Then, we
randomly generate its first time-varying data set, S(1) as:
�i ← �i ∗ (1 + rand); �i ← �i ∗ (1 + rand); S(1) ←

8 We are open to input from the community as to how we can, in the
absence of real-life data, obtain more “real-life-like” data.
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Normal(�i , �i ), where, the Normal is a function to gener-
ate normal (Gaussian) random numbers with the mean �i

and the standard deviation �i . Finally, we repeat the above
procedures to generate time-varying data sets S(t + 1) from
S(t), t = 1, . . . , 3. The time-varying data sets of “Model 2”
for the other data sets of Table 1, are also generated with
the same process mentioned above.

We now highlight some of the real-time properties of the
data sets. In the case of Model 1, it turns out that the varia-
tions of the generated data points are not so significant. They
are generally speaking, in the neighborhood of the original
points. The cardinality of the sets is also the same—for each
original point we can generate a new point using this model.
As opposed to this, in the case of Model 2, as explained
earlier, the variations of the generated data points can be
quite significant. The new points generated need not be in
the neighborhood of the original points because the non-
stationary variation occurs at the “parameter” level. Further-
more, although the cardinality of the generated set can be
different, in the interest of uniformity, we have kept it to be
the same. Thus, for each original point we have generated a
new non-stationary point at the next time instant.

In the above data sets, all of the vectors were normalized
using their standard deviations. Also, for every class i, the
data set for the class was randomly split into two subsets,
Si,T (t) and Si,V (t) of equal size. One of them was used for
choosing initial code-book vectors and training the classi-
fiers as explained earlier, and the other subset was used in
the validation (or testing) of the classifiers. The roles of these
sets were later interchanged.

In this case, we employed just three PRSs, namely the
CNN,9 PNN and HYB10 so as to evaluate the strengths
and weaknesses of the current algorithms.

4.1.1. Experimental results: the LVQ3 parameters
In this set of experiments, the P(t +1) is obtained by ad-

justing P(t) using an LVQ3-type algorithm with S(t + 1),
where the LVQ3 parameters such as w, �, � and � play an
important role in the classification task. So, the optimal or
near-optimal parameters of w∗, �∗, �∗ and �∗ should be se-
lected with SP (t) and evaluated with SO(t). However, in this
experiment, we set SO(t) with SP (t) for simplicity, which
is a simple so-called, a re-substitution evaluation method.

9 It appears from the literature that the CNN method by Hart is not
the best competitor for prototype selection in terms of both accuracy and
effectiveness. We have chosen this method over the methods surveyed in
Refs. [2,3] because of its relative simplicity and ease of implementation.

10 Here, we employed SVM as a pre-processing PRS of the HYB
method. As is well known, the SVM does reduce the set of prototypes,
but not for the NN method. This means that the set of prototypes, which
are also the support vectors obtained through the SVM method could be
absolutely useless with 1-NN. All the other methods considered in this
paper are supposed to select a reference set suitable for the 1-NN method.
Thus, from this perspective, SVM belongs to a completely different group!
Thus, although it is, in one sense, inappropriate for testing it as a basic
PRS method, it has advantages if it is used recursively. This is the rationale
for including it in our test suite.

As mentioned earlier, in the algorithm mentioned previ-
ously, the relevant optimal parameters were determined by
repeating the “pseudo-testing” increasing values of w from
0.0 to 1.0 in steps of �w, � from 0.0 to 0.5 in steps of ��, �
from 0.0 to 0.5 in steps of ��, � from 100 to 1000 in steps
of ��, till the best values are obtained. However, this pro-
cess is a time-consumption task. So, in this experiment, we
heuristically selected the best values of the parameters by
adjusting the �w, ��, �� and setting �= 100.

The LVQ3 parameters employed for the proposed PRS al-
gorithm for the four data sets, namely, “Non_n2”, “Non_n3”,
“Arrhy” and “Adult4”, are shown in Table 2, and are in-
cluded here to enable repeatability.

4.2. Experimental results: the classification accuracy

We report below the classification accuracy rates of the
proposed PRS algorithm for some “medium-sized” time
varying data sets. The experimental results of the CNN, PNN
and HYB methods for the “Non_normal 2”, “Non_normal
3”, “Arrhythmia” and “Adult4” data sets are shown in
Tables 3, 4, 5 and 6, respectively. In these tables, the
abbreviations Ex1, Ex2 and Ex3 are evaluation methods
for the classification accuracy employed in this exper-
imentation. In Ex1, the prototypes P(0) of the source
data set S(0), are constantly used as the prototypes of
the four “non-stationary” data sets, S(t), t = 1, . . . , 4.
Then, in Ex2, the prototypes P(t) at time t are extracted
directly from the corresponding data set S(t) using a
conventional PRS algorithm. Finally, Ex3 is obtained us-
ing the “time-varying” PRS algorithms proposed in this
paper.

First of all, consider the results obtained for the “artificial”
data. Tables 3 and 4 show the experimental results of the
conventional PRSs and the proposed PRSs for the time-
varying artificial data sets, namely, “Non_normal 2” (in
short, “Non_n2”) and “Non_normal 3” (in short, “Non_n3”),
respectively. In Table 3, the first column, ‘1’ and ‘2’, is the
results for the “noisy measurement model” and the “noisy
parameter model”, respectively. Also, the values written in
the first row for each PRS algorithm, that is, P(t), are the
numbers of prototype vectors extracted from the data sets of
ST (t) and SV (t), t = 0, . . . , 4, respectively.

Consider the CNN method for the “1” model of the
“Non_n2” data set. The training and the testing sets and
their four non-stationary subsets were processed individ-
ually as a separate set using the CNN method. First of
all, the training 500 samples and the testing 500 sam-
ples, namely, ST (0) and SV (0), were reduced into 64 and
66, respectively. Also the first non-stationary data sets,
ST (1) and SV (1), were truncated into 64 and 83, respec-
tively. By the same way, the prototypes of the other non-
stationary subsets, namely, ST (t) and SV (t), t = 2, 3, 4,
are 73, 107 (t = 2), 105, 112 (t = 3) and 103, 118 (t = 4),
respectively.
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Table 2
The LVQ3 parameters employed for the proposed PRS algorithm for the “Non_normal 2” (in short “Non_n2”), “Non_normal 3” (in short “Non_n3”),
“Arrhythmia” (in short “Arrhy”) and “Adult4” data sets

# of models Data sets PRS methods Values of LVQ3 parameters

wT , wV �T , �V �T , �V �T , �V

1 Non_n2 CNN 0.9, 0.9 0.10, 0.15 0.40, 0.20 100, 100
PNN 0.9, 0.8 0.10, 0.10 0.35, 0.50 100, 100
HYB 0.9, 0.8 0.10, 0.10 0.50, 0.45 100, 100

Non_n3 CNN 0.9, 0.9 0.05, 0.05 0.05, 0.05 100, 100
PNN 0.9, 0.9 0.10, 0.10 0.50, 0.35 100, 100
HYB 1.0, 1.0 0.10, 0.15 0.20, 0.10 100, 100

Arrhy CNN 0.1, 0.1 0.05, 0.05 0.05, 0.05 100, 100
PNN 0.1, 0.1 0.05, 0.05 0.05, 0.05 100, 100
HYB 0.1, 0.1 0.05, 0.05 0.05, 0.05 100, 100

Adult4 CNN 0.8, 0.9 0.05, 0.35 0.05, 0.05 100, 100
PNN 0.8, 0.9 0.05, 0.10 0.10, 0.10 100, 100
HYB 1.0, 1.0 0.15, 0.05 0.05, 0.10 100, 100

2 Non_n2 CNN 0.9, 0.9 0.15, 0.10 0.05, 0.35 100, 100

PNN 0.5, 0.9 0.05, 0.05 0.45, 0.45 100, 100
HYB 0.9, 0.9 0.50, 0.50 0.50, 0.50 100, 100

Non_n3 CNN 0.9, 0.9 0.05, 0.05 0.15, 0.25 100, 100
PNN 0.9, 0.9 0.10, 0.10 0.50, 0.50 100, 100
HYB 1.0, 1.0 0.05, 0.15 0.45, 0.30 100, 100

Arrhy CNN 0.1, 0.1 0.05, 0.05 0.05, 0.05 100, 100
PNN 0.1, 0.1 0.05, 0.05 0.05, 0.05 100, 100
HYB 0.1, 0.1 0.05, 0.05 0.05, 0.05 100, 100

Adult4 CNN 0.9, 0.9 0.10, 0.15 0.15, 0.10 100, 100
PNN 1.0, 0.9 0.10, 0.15 0.15, 0.15 100, 100
HYB 0.8, 0.8 0.20, 0.20 0.15, 0.05 100, 100

Here, wT , wV , �T , �V , �T , �V and �T , �V are the window widths, the relative learning rates, the learning rates and the number of iterations of training
and validation data sets, respectively. Each value has been selected with a heuristic method in which �w, ��, �� have been adjusted heuristically after
fixing the � as 100.

The resulting classification accuracies, Acc’s, have been
evaluated with the three methods: Ex1, Ex2 and Ex3. In
Ex1, the prototypes of the training and the testing samples,
PT (0) and PV (0), are used as the prototypes of all of the
non-stationary data sets, SV (t) and ST (t), t=0, . . . , 4. First
of all, the classification accuracy rates of PT (0) and PV (0)

to SV (0) and ST (0) are 92.60% and 91.20%, respectively.
Also, the classification accuracy rates of PT (1) (=PT (0))
and PV (1) (=PV (0)) to SV (1) and ST (1) are 90.20% and
90.20%, respectively. By the same way, the other accura-
cies of PT (t) (=PT (0)) and PV (t) (=PV (0)), t = 2, 3, 4,
to SV (t) and ST (t), t = 2, 3, 4, are 86.00, 84.20% (t = 2),
82.80, 78.20% (t = 3) and 77.00, 74.20% (t = 4), respec-
tively.

In Ex2, the prototypes of each training and testing data
set, namely, PT (t) and PV (t), t = 0, . . . , 4, are extracted
directly from the corresponding non-stationary data sets,
ST (t) and SV (t), t = 0, . . . , 4. After that, the classifica-
tion accuracies of the PT (t) and PV (t) are evaluated by
SV (t) and ST (t), respectively. From Table 3, the classifica-
tion accuracies of PT (t) and PV (t) to SV (t) and ST (t) are
92.60, 91.20% (t=0), 91.60, 90.20% (t=1), 90.00, 89.40%
(t = 2), 89.00, 88.80% (t = 3) and 88.40, 88.80% (t = 4),
respectively.

In Ex3,11 the prototypes of the non-stationary data sets
are generated by adjusting existing prototype vectors us-
ing an LVQ3-type algorithm. As explained previously, in-
stead of extracting individually from the corresponding non-
stationary data sets, the prototypes of each training and
testing data set, namely, PT (t) and PV (t), t = 1, . . . , 4,
are generated by adjusting the PT (t − 1) and PV (t − 1),
t = 1, . . . , 4, with the ST (t) and SV (t), t = 1, . . . , 4, using
the LVQ3-type algorithm. Then, the classification accuracies
of the PT (t), PV (t), t = 1, . . . , 4, are evaluated by SV (t),
ST (t), t = 1, . . . , 4, respectively. From Table 3, the Acc’s
of PT (t) and PV (t) to SV (t) and ST (t) are 93.00, 93.00%
(t = 1), 92.40, 90.40% (t = 2), 90.40, 90.60% (t = 3) and
89.00, 89.00% (t = 4), respectively.

Finally, the averaged classification accuracies, Acc, of the
Ex1, Ex2 and Ex3, which have been calculated from the
eight Acc’s of the corresponding non-stationary data sets,
are 82.85, 89.53 and 90.98%, respectively.

To highlight the advantage, we also considered the results
for “real-life” data sets, namely, “Arrhythmia” and “Adult4”
as shown in Tables 5 and 6. From the results of the tables,

11 This method is the one advocated in this paper.
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Table 3
The classification accuracy rates (%) of the time-varying PRSs for the artificial data set, “Non_normal 2”

# of model PRS Evalu. method Acc of original data Acc of non-stationary data sets Acc

ST (1), SV (1) ST (2), SV (2) ST (3), SV (3) ST (4), SV (4)

1 CNN P(t) 64, 66 64, 83 73, 107 105, 112 103, 118
Ex1 92.60, 91.20 90.20, 90.20 86.00, 84.20 82.80, 78.20 77.00, 74.20 82.85
Ex2 92.60, 91.20 91.60, 90.20 90.00, 89.40 89.00, 88.80 88.40, 88.80 89.53
Ex3 92.60, 91.20 93.00, 93.00 92.40, 90.40 90.40, 90.60 89.00, 89.00 90.98

PNN P(t) 53, 55 55, 68 64, 98 87, 104 99, 103
Ex1 91.20, 91.20 89.80, 88.40 86.00, 83.40 83.20, 77.60 76.60, 74.20 82.40
Ex2 93.60, 91.20 90.20, 91.00 88.80, 89.00 88.60, 87.80 85.80, 88.40 88.70
Ex3 91.20, 91.20 93.60, 94.00 91.60, 92.80 89.40, 90.40 88.00, 89.40 91.15

HYB P(t) 254, 256 258, 266 260, 270 270, 272 272, 278
Ex1 93.00, 91.40 89.40, 90.40 85.40, 85.40 82.20, 78.40 76.60, 74.80 82.83
Ex2 93.00, 91.40 91.60, 91.20 71.80, 89.60 66.00, 89.40 88.60, 76.40 83.08
Ex3 93.00, 91.40 90.00, 90.80 88.00, 89.60 86.00, 83.60 81.80, 81.00 86.35

2 CNN P(t) 64, 66 169, 150 236, 217 246, 216 237, 241
Ex1 92.60, 91.20 72.00, 70.00 60.60, 57.00 52.80, 53.60 53.80, 53.20 59.13
Ex2 92.60, 91.20 82.80, 80.20 71.60, 73.20 70.60, 69.00 67.40, 65.60 72.55
Ex3 92.60, 91.20 81.60, 84.80 74.20, 78.80 72.60, 75.60 70.80, 72.00 76.30

PNN P(t) 53, 55 153, 140 224, 200 233, 208 228, 229
Ex1 91.20, 91.20 73.00, 70.20 61.40, 57.80 52.80, 53.80 53.60, 53.20 59.48
Ex2 91.20, 91.20 81.00, 78.20 71.40, 72.20 70.20, 68.00 65.80, 64.40 71.40
Ex3 91.20, 91.20 45.20, 82.60 75.20, 63.00 78.80, 70.80 74.40, 50.00 67.50

HYB P(t) 254, 256 250, 238 282, 262 278, 249 295, 264
Ex1 93.00, 91.40 73.00, 70.60 60.60, 57.00 52.80, 53.60 53.60, 53.20 59.30
Ex2 93.00, 91.40 73.00, 60.60 33.20, 58.80 43.60, 35.40 70.20, 55.00 53.73
Ex3 93.00, 91.40 75.00, 73.80 61.00, 58.60 53.00, 53.80 54.00, 53.80 60.38

The evaluations had been performed with the “non-stationary” data sets generated by the “Model 1” and “Model 2”. Here, the two Acc values of original
data set refer to the results when the source training and testing sets, ST (0) and SV (0), are then interchanged. Also, the Acc of non-stationary data sets
are the classification accuracies (%) for the corresponding data sets, ST (t) and SV (t), t = 1, . . . , 4, respectively. The results reported in the final column,
Acc, are the average Acc rates (%). Finally, the two “integer” numerics of the P(t) row of each PRS, are the numbers of prototype vectors extracted
from the data sets of ST (t) and SV (t), t = 0, . . . , 4, respectively.

we can see a comparison of the results obtained with the
Ex1, Ex2 and Ex3 evaluation methods for the CNN, the PNN
and the HYB methods.

Consider the CNN method for the “Arrhythmia” data
set in Table 5. First of all, for the “1” model, if the non-
stationary data sets were evaluated with the Ex1, the re-
sulting averaged classification accuracy, Acc, is 78.76%.
Then, in Ex2, the Acc is 91.81%. However, in Ex3, the
Acc is 97.62%. Again, in the cases of the PNN and HYB,
we can see the increasing accuracies such as 78.82%,
95.63%, 98.40% and 87.83%, 96.85%, 97.24%, respec-
tively. For the “2” model, the same characteristics can be
observed. The details are omitted here in the interest of
compactness.

For the PNN and HYB methods, the same accuracy
characteristics can be observed for both models “1” and
“2” in all the tables. From the above considerations, we
can see a comparison of the results obtained with the Ex1,
Ex2 and Ex3 methods. The comparison demonstrates that
the prototype vectors of the non-stationary data sets can be
extracted efficiently by employing the proposed philosophy.
Indeed, such accuracy results are also typical of all the data
sets used.

To give a fair perspective of the advantage gained by our
method, it is pertinent to point out that there are many per-
formance aberrations which we are unable to explain. For
example, in Table 4, there are a few places where Ex2 per-
forms better than the proposed method, Ex3. It should be
emphasized that these cases are not the norm, but rather the
exceptions, and probably occur due to the fact that the PRS
invoked on the current data set (without invoking the char-
acteristics of the data sets for their previous time instants) is
adequate when it concerns the accuracy, although the time
involved is much more. Similarly, in Tables 3 and 4, in some
entries, a sudden decline of the accuracy can be observed.
For example, in Table 3, when the PNN is used for Model
2, the accuracy abruptly falls to 45.20% from 91.20%, and
in Table 4, when the HYB is used for Model 2, the accuracy
again abruptly falls to 25.64% from 93.32%. We believe that
these are a consequence of the specific data-related proper-
ties of the prototypes selected, and are thus not the norm. It
should however, be mentioned that the PRS that seems to be
the most “troublesome” for artificial data sets is the PNN.12

12 We are grateful to the anonymous Referee who pointed out these
issues to us.
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Table 4
The classification accuracy rates (%) of the time-varying PRSs for the artificial data set, “Non_normal 3”

# of model PRS Evalu. method Acc of original data Acc of non-stationary data sets Acc

ST (1), SV (1) ST (2), SV (2) ST (3), SV (3) ST (4), SV (4)

1 CNN P(t) 503, 477 5000, 5000 5000, 5000 5000, 5000 5000, 5000
Ex1 91.74, 91.88 89.44, 90.84 85.82, 87.22 80.12, 81.10 75.26, 76.66 83.31
Ex2 91.74, 91.88 90.48, 90.80 89.20, 89.44 86.90, 87.02 85.40, 85.72 88.12
Ex3 91.74, 91.88 89.78, 90.80 87.46, 88.68 85.54, 85.96 85.26, 84.28 87.22

PNN P(t) 4891, 3356 603, 3542 768, 900 885, 1019 2692, 1174
Ex1 92.10, 92.04 89.86, 91.00 86.08, 87.32 80.34, 81.00 75.60, 76.60 83.48
Ex2 92.10, 92.04 90.14, 89.86 88.54, 87.66 85.76, 85.46 84.96, 83.92 87.04
Ex3 92.10, 92.04 90.44, 91.42 87.40, 88.56 84.68, 84.88 80.86, 80.72 86.12

HYB P(t) 1194, 1218 1290, 1330 1374, 1450 1472, 1554 1592, 1666
Ex1 92.74, 93.32 90.92, 91.74 87.36, 87.74 81.28, 81.62 75.64, 76.04 84.04
Ex2 92.74, 93.32 55.28, 91.34 87.48, 54.92 87.86, 88.00 53.74, 22.00 67.58
Ex3 92.74, 93.32 91.80, 92.02 89.76, 89.54 86.94, 86.24 86.74, 81.56 88.08

2 CNN P(t) 503, 477 5000, 5000 5000, 5000 5000, 5000 5000, 5000
Ex1 91.74, 91.88 73.30, 73.42 60.08, 59.18 54.96, 54.38 52.50, 52.76 60.07
Ex2 91.74, 91.88 81.46, 81.64 75.54, 76.20 72.02, 71.40 70.14, 69.58 74.75
Ex3 91.74, 91.88 82.48, 84.48 81.82, 81.24 78.34, 78.94 78.68, 76.00 80.25

PNN P(t) 4891, 3356 1347, 4739 1870, 1780 2135, 2069 2316, 2139
Ex1 92.10, 92.04 73.90, 73.62 60.30, 59.54 55.10, 54.38 52.54, 52.82 60.28
Ex2 92.10, 92.04 80.26, 81.10 72.96, 74.40 70.94, 69.32 67.78, 67.84 73.08
Ex3 92.10, 92.04 76.94, 82.26 62.14, 73.72 55.56, 61.48 53.00, 55.54 65.08

HYB P(t) 1194, 1218 1686, 1736 2102, 2068 2286, 2227 2476, 2331
Ex1 92.74, 93.32 72.68, 73.38 58.92, 59.04 53.34, 54.40 51.32, 52.76 59.48
Ex2 53.22, 58.02 92.74, 93.32 81.48, 25.64 28.98, 71.18 55.74, 56.02 63.14
Ex3 92.74, 93.32 84.14, 78.38 81.88, 65.96 52.98, 66.46 51.76, 63.70 68.16

The evaluations had been performed with the “non-stationary” data sets generated by the “Model 1” and “Model 2”. The rest of the nomenclature is as
described in the caption for Table 3.

Table 5
The classification accuracy rates (%) of the time-varying PRSs for the real-life data set, “Arrhythmia”

# of model PRS Evalu. method Acc of original data Acc of non-stationary data sets Acc

ST (1), SV (1) ST (2), SV (2) ST (3), SV (3) ST (4), SV (4)

1 CNN P(t) 31, 31 34, 33 27, 31 40, 44 40, 42
Ex1 95.58, 97.79 87.61, 95.58 78.32, 93.36 67.70, 78.32 61.95, 67.26 78.76
Ex2 95.58, 97.79 93.81, 92.04 91.59, 95.13 89.82, 92.92 88.50, 90.71 91.81
Ex3 95.58, 97.79 98.67, 99.12 98.23, 97.79 96.90, 96.02 97.79, 96.46 97.62

PNN P(t) 3, 8 4, 8 6, 7 9, 6 4, 12
Ex1 98.67, 96.02 96.90, 97.79 90.71, 85.40 71.24, 70.80 57.08, 60.62 78.82
Ex2 98.67, 96.02 97.79, 95.13 98.67, 95.13 95.13, 92.92 97.35, 92.92 95.63
Ex3 98.67, 96.02 99.12, 98.23 99.56, 97.35 99.56, 96.90 100.0, 96.46 98.40

HYB P(t) 190, 180 188, 175 190, 176 188, 176 189, 179
Ex1 99.12, 99.12 96.90, 98.23 92.04, 95.58 84.51, 89.82 72.57, 73.01 87.83
Ex2 99.12, 99.12 97.79, 97.79 97.79, 96.90 97.35, 97.79 95.58, 93.81 96.85
Ex3 99.12, 99.12 98.23, 99.56 96.90, 97.79 96.90, 97.35 94.25, 96.90 97.24

2 CNN P(t) 31, 31 31, 33 34, 37 55, 25 37, 31
Ex1 95.58, 97.79 80.53, 80.53 64.16, 65.49 57.97, 62.83 58.85, 57.08 65.93
Ex2 95.58, 97.79 95.13, 93.36 92.04, 84.96 87.61, 84.96 92.48, 81.42 89.00
Ex3 95.58, 97.79 99.56, 98.67 99.12, 97.79 98.23, 97.35 96.46, 92.04 97.40

PNN P(t) 3, 8 16, 9 3, 15 18, 11 25, 6
Ex1 98.67, 96.02 78.76, 73.45 57.52, 57.08 54.43, 56.64 54.43, 54.43 60.84
Ex2 98.67, 96.02 92.92, 92.92 98.23, 89.38 90.27, 92.92 92.04, 86.28 91.87
Ex3 98.67, 96.02 98.67, 96.46 99.12, 94.69 96.46, 94.25 95.13, 93.36 96.02

HYB P(t) 190, 180 146, 130 113, 104 124, 112 154, 159
Ex1 99.12, 99.12 88.50, 82.30 64.60, 63.27 56.20, 54.87 56.20, 54.87 65.10
Ex2 99.12, 99.12 96.02, 97.79 99.56, 90.27 99.12, 97.35 92.48, 91.59 95.52
Ex3 99.12, 99.12 99.15, 98.23 98.67, 96.02 98.23, 95.13 96.46, 93.81 96.96

The evaluations had been performed with the “non-stationary” data sets generated by the “Model 1” and “Model 2”. The rest of the nomenclature is as
described in the caption for Table 3.
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Table 6
The classification accuracy rates (%) of the time-varying PRSs for the artificial data set, “Adult4”

# of model PRS Evalu. method Acc of original data Acc of non-stationary data sets Acc

ST (1), SV (1) ST (2), SV (2) ST (3), SV (3) ST (4), SV (4)

1 CNN P(t) 743, 737 772, 766 837, 818 831, 797 841, 850
Ex1 91.10, 91.55 91.48, 91.65 93.16, 91.94 93.57, 92.06 94.22, 92.27 92.54
Ex2 91.10, 91.55 90.19, 88.65 89.25, 89.11 89.23, 88.55 88.48, 89.08 89.07
Ex3 91.10, 91.55 92.35, 91.19 93.50, 92.25 93.45, 92.95 93.78, 92.78 92.78

PNN P(t) 660, 659 591, 592 606, 586 633, 605 592, 601
Ex1 88.72, 89.97 89.78, 90.09 91.39, 90.35 93.04, 91.12 93.47, 92.01 91.41
Ex2 88.72, 89.97 86.99, 85.43 86.99, 86.97 85.67, 85.22 85.60, 85.84 86.09
Ex3 88.72, 89.97 94.62, 92.87 94.82, 93.38 94.62, 93.64 93.45, 93.52 93.87

HYB P(t) 497, 470 484, 473 487, 472 488, 462 481, 485
Ex1 95.10, 93.55 95.34, 94.31 95.32, 94.74 95.03, 94.53 94.77, 94.53 94.82
Ex2 95.10, 93.55 93.31, 92.20 92.63, 92.01 92.08, 91.41 91.55, 91.46 92.08
Ex3 95.10, 93.55 95.27, 93.98 94.86, 94.02 94.58, 93.74 94.62, 93.57 94.33

2 CNN P(t) 743, 737 592, 536 581, 655 645, 615 638, 665
Ex1 91.10, 91.55 93.23, 92.01 94.55, 90.69 94.91, 93.57 94.88, 90.52 93.05
Ex2 91.10, 91.55 89.92, 88.34 88.75, 87.62 88.67, 88.31 87.43, 87.45 88.31
Ex3 91.10, 91.55 93.09, 93.98 94.43, 93.62 94.53, 93.98 94.62, 94.43 94.09

PNN P(t) 660, 659 592, 536 581, 655 645, 615 638, 665
Ex1 88.72, 89.97 92.85, 88.00 94.50, 76.03 94.82, 71.71 94.94, 72.59 85.68
Ex2 88.72, 89.97 86.73, 84.67 84.83, 83.15 84.62, 83.54 84.21, 83.18 84.37
Ex3 88.72, 89.97 94.62, 93.43 94.82, 93.95 94.62, 94.41 93.45, 94.46 94.22

HYB P(t) 497, 470 483, 465 465, 473 501, 492 590, 573
Ex1 95.10, 93.55 87.71, 75.43 92.66, 46.63 93.88, 33.26 94.32, 26.88 68.85
Ex2 95.10, 93.55 90.40, 88.65 89.51, 88.99 90.07, 88.99 86.97, 86.75 88.79
Ex3 95.10, 93.55 93.57, 93.59 94.26, 94.53 94.60, 94.24 94.67, 94.17 94.20

The evaluations had been performed with the “non-stationary” data sets generated by the “Model 1” and “Model 2”. The rest of the nomenclature is as
described in the caption for Table 3.

4.3. Experimental results: the time complexity

We report below the time complexity of the proposed PRS
algorithm for the “medium-sized” time varying data sets.

In Ex1, the prototype set of the “original” data set is used
for all the four “non-stationary” data sets. So, no additional
time is required for extracting the prototype vectors. On the
other hand, in the Ex2 evaluation method, each prototype set
has been extracted from the corresponding non-stationary
data set through a conventional PRS method. In Ex3, the
prototypes of the “current” non-stationary data set, S(t+1),
were selected from the “previous” data set, namely, P(t),
by adjusting the P(t) with the S(t+1) using an LVQ3-type
algorithm. Therefore, the processing CPU-time of the Ex3
method is merely the time required for adjusting the proto-
types using the LVQ3. However, in the adjusting process,
the additional times involve those required for selecting op-
timal or near optimal values for the parameters such as the
window length, w, the learning rate, �, the relative learning
rate, �, and the number of iteration steps, �, are required.

The processing CPU-times of the PNN and HYB13 for
the “Non_n2”, “Non_n3”, “Arrhy” and “Adult4” data sets
are shown in Tables 7 and 8, respectively.

13 The time for using the CNN as the kernel is excessive and so is
not included here.

In the cases of the PNN and HYB methods, (unlike for
the CNN), the situation is different as shown in Tables 7 and
8. From the results of the tables, we can see a comparison of
the results obtained with the Ex2 and Ex3 for the “artificial”
and “real-life” data sets.

In Table 7, consider the PNN method for the four data sets,
namely, “Non_n2”, “Non_n3”, “Arrhy” and “Adult4”. First
of all, for “1” model, the averaged CPU-times for the Ex2
and Ex3 are 0.30, 0.01, 315.69, 4.79, 1.05, 0.02 and 394.58,
1.09 min, respectively. Then, for ‘2’ model, the averaged
CPU-times for the Ex2 and Ex3 are 0.35, 0.01, 428.54, 4.72,
1.01, 0.02 and 184.23, 1.10 min, respectively. For both “1”
and “2” models in Table 8, the same characteristics can be
observed from the results of the four data sets. The details
are omitted here in the interest of compactness.

From these considerations, the reader should observe that
the proposed philosophy of Ex3 needs less time than that of
Ex2 in the cases of the PNN and HYB methods.

5. Conclusions

All of the prototype reduction schemes (PRS), which have
been reported in the literature, process the time unvarying
stationary data to yield a subset of prototypes that are useful
in nearest-neighbor-like classification. In this paper we have
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Table 7
The processing CPU-time (minutes) of the PNN method for the “Non_normal 2” (in short “Non_n2”), “Non_normal 3” (in short “Non_n3”), “Arrhythmia”
(in short “Arrhy”) and “Adult4” data sets

# of model Data set Evalu. methods T of non-stationary data sets T

ST (1), SV (1) ST (2), SV (2) ST (3), SV (3) ST (4), SV (4)

1 Non_n2 Ex2 0.27, 0.29 0.30, 0.31 0.30, 0.30 0.31, 0.30 0.30
Ex3 0.01, 0.01 0.01, 0.01 0.01, 0.01 0.01, 0.01 0.01

Non_n3 Ex2 195.16, 507.20 200.22, 243.95 204.50, 252.75 645.27, 276.43 315.69
Ex3 6.30, 3.31 6.30, 3.30 6.26, 3.30 6.24, 3.29 4.79

Arrhy Ex2 1.03, 1.05 1.03, 1.05 1.04, 1.08 1.08, 1.06 1.05
Ex3 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.02

Adult4 Ex2 186.68, 1890.65 184.48, 176.82 167.32, 164.42 186.76, 199.47 394.58
Ex3 1.08, 1.11 1.08, 1.11 1.07, 1.11 1.07, 1.11 1.09

2 Non_n2 Ex2 0.31, 0.31 0.30, 0.39 0.39, 0.30 0.37, 0.40 0.35
Ex3 0.01, 0.01 0.01, 0.01 0.01, 0.01 0.01, 0.01 0.01

Non_n3 Ex2 220.87, 582.53 284.98, 308.84 608.84, 466.62 457.35, 498.29 428.54
Ex3 6.25, 3.28 6.20, 3.26 6.07, 3.26 6.17, 3.26 4.72

Arrhy Ex2 0.98, 1.01 1.03, 1.00 1.00, 1.02 0.98, 1.03 1.01
Ex3 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.01, 0.02 0.02

Adult4 Ex2 162.34, 183.65 187.90, 187.98 193.97, 178.70 190.68, 188.65 184.23
Ex3 1.08, 1.12 1.08, 1.11 1.08, 1.11 1.07, 1.11 1.10

The evaluations were obtained with the “non-stationary” data sets generated by “Model 1” and “Model 2”. Here, the T of non-stationary data sets are the
processing CPU-time for the corresponding data sets, ST (t) and SV (t), t=1, . . . , 4, respectively. Also, the two T values of each data set refer to the results
when the source training and testing sets, ST (0) and SV (0), are interchanged. The results written in the final column, T , are the average processing times.

Table 8
The processing CPU-time (seconds) of the HYB method for the “Non_normal 2” (in short “Non_n2”), “Non_normal 3” (in short “Non_n3”), “Arrhythmia”
(in short “Arrhy”) and “Adult4” data sets

# of model Data set Evalu. methods T of non-stationary data sets T

ST (1), SV (1) ST (2), SV (2) ST (3), SV (3) ST (4), SV (4)

1 Non_n2 Ex2 2.16, 2.21 5.85, 2.24 2.29, 2.26 2.27, 2.51 2.72
Ex3 1.98, 2.00 1.95, 2.00 1.98, 2.05 1.98, 2.03 2.00

Non_n3 Ex2 74.00, 85.14 85.52, 84.55 220.00, 91.54 98.10, 123.17 107.75
Ex3 74.48, 76.02 74.39, 75.95 74.38, 75.92 74.36, 76.08 75.07

Arrhy Ex2 17.86, 16.69 18.04, 16.76 17.83, 16.69 17.94, 17.11 17.37
Ex3 17.14, 16.59 17.17, 16.33 17.23, 16.36 17.23, 16.38 16.80

Adult4 Ex2 49.74, 48.86 151.23, 48.84 50.16, 47.66 49.48, 50.99 62.12
Ex3 48.55, 45.92 48.48, 45.97 48.59, 45.97 48.52, 46.17 47.27

2 Non_n2 Ex2 2.05, 1.95 2.22, 2.22 2.36, 2.10 2.43, 2.35 2.21
Ex3 1.97, 2.00 2.03, 2.08 1.98, 2.00 2.00, 2.05 2.01

Non_n3 Ex2 75.65, 109.53 78.94, 232.25 142.52, 136.31 157.68, 154.16 135.88
Ex3 69.58, 75.98 69.48, 76.38 69.42, 76.11 69.48, 76.17 72.83

Arrhy Ex2 14.04, 12.60 10.99, 10.25 12.01, 10.93 14.73, 15.61 12.65
Ex3 17.13, 16.22 17.16, 16.19 17.11, 16.20 17.13, 16.20 16.67

Adult4 Ex2 53.10, 48.53 49.39, 49.96 53.43, 51.40 61.72, 59.57 53.39
Ex3 48.48, 45.94 48.52, 46.02 48.50, 45.97 48.59, 45.95 47.25

The rest of the nomenclature is as described in the caption for Table 7.

proposed a mechanism applicable for the non-stationary data
sets. In the proposed time varying PRS method, the proto-
types of the non-stationary data versions of a given data set,
can be obtained by adjusting the previous prototypes with
the current non-stationary data set using an LVQ3-type al-
gorithm.

The proposed method was tested on both artificial and
real-life benchmark time varying data sets, and compared

with a few representative conventional methods. The
experimental results for small and medium-sized non-
stationary data sets demonstrate that the proposed
algorithm can improve the reduction rate of the con-
ventional PRSs such as the CNN, PNN and HYB
methods, and that their classification accuracies are
comparable, although they require almost the same or less
CPU-times.
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