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Discovering Knowledge from
Medical Databases Using
Evolutionary Algorithms

Learning Rules and Causal Structures for Capturing
Patterns and Causality Relationships

he increasing use of computers results

in an explosion of information, making
data mining an impaortant research Lopic.
Data can be best used if the knowledge
hidden can be uncovered. Thus, there is a
nced for a way Lo autematically discover
knowledge from data. Research in this
areq can be useful for many real-world
problems. With computerization in hospi-
tals, a huge amount of data has been col-
lected. Tt is beneficial il these data can be
analyzed automatically.

Data mining, sometimes referred to as
knowledge discovery in databases
(KD, can be defined as the nontrivial
process of identifying valid, novel, poten-
tially useful, and ultimately understand-
able patterns in data |3]. KDD is an
interactive and ilerative process com-
prised of several steps. Data mining can
be considered as one of the steps in the
KDD process. It is the core of the KDD
process, and thus the two terms are often
used interchangeuably.

The whole process of KDD consists of

five steps. First, a selection i3 made to ex-
tract a relevant or a tacget data set from the
database. Then, preprocessing is per-
formed to remove noise and {o handlc
missing data fields. Transformafion is
performed to reduce the number of vari-
ables under congideration, A suitable data
mining algorithm is employed on the pre-
pared data. Finally the result of the data
mining is interpreted and evaluated. Tf the
discovered knowledge is not satisfactory,
these five steps will be iterated. The dis-
covered knowledge is then applied in de-
cision making.

[n this article, we will introduce our
approaches for discovering knowledge
from two specific medical databases.
Two different represcntations of knowl-
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edge, namely rules and causal structures,
are learned. Rules capture interesting
patterns and regularities in the database.
Causal structures represented by
Bayesian networks capture the causality
relationships among the atiributes. We
cmploy evolutionary algorithms for
these discovery tasks.

Evolutionary Algorithm Primer

Evelutionary algorithms simulate nat-
ural evolution to perform function optimi-
zation and machine learning. A potential
solution to the problem is encoded as an
individual, An evolutionary algorithm
maintains a group of individuals, cailed
the population, to explore the search
space. A fitness function cvaluates the
performance of each individual to mea-
sure how close it is to the solution. The
search space is explored by cvolving new
individuals. The algorithm is based on the
Darwinian principle of evolution through
natural selection; the fitter individual has
a higher chance of survival and tends to
pass on its favorable traits to its olfspring.
A “good” parent is assumed to be able to
produce “good” or even better offspring.
Thus, individuals with higher fitness
scotes have higher chances of producing
offspring. New individuals are gencrated
by applying eperarors thatalter the under-
lying structure of these existing individu-
als. The process is repeated uvntil the
solution is found or the maximum number
of iterations is reached. Evolutionary al-
gorithms include genctic algorithms
(GAs) |7, 9], genetic programming [10,
11], evolutionary programming [4, 5], and
evolution strategy [17, 19].

Advanced evolutionary algorithms arc
used for knowledge discovery tasks, In
particular, generic genetic programming
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is employed as a rule-learning algorithm.
Our approach for discovering causality
relationships is based on evolutionary
programming, which learns Bayesian net-
worl structures. To handle continuous at-
tributes, we employ a GA to find a good
discretization policy.

The Learning Tasks
Medical Databases
Our [earning targets are two medical
databases [rom the Orthopacdic Depurt-
ment of the Prince of Wales Hospital of
Hong Kong. The first, the fracture data-
hase, consists of records of children with

r Table 1. Attributes in the Fracture Database

Name Type Explanation

Sex Nominal Sex

Age Numeric Age (between ( to 16 years old)

Admday Date Admission date (between year 1984 to 1996)

Stay Numeric Length of staying in hospital (in days)

Diagnosis Nominal Diagnosis of fracture based on the fracture location

Operation | Nominal Operation

Surgeon Nominal Surgeon (null if no operation)

side Nominal Side of fracture {"Left,” “Right,” “Both,” or “Missing”)
Table 2. Attributes in the Scoliosis Database

Name Explanation

Sex Sex

Age Age

Lax Jaint Laxity (integer between 0 and 3)

1stCurveTl Whether 1st curve started at vertebra T1

lstMCGreater | Whether the degree of 1st Major Curve is greater than the 2nd Major
Curve

L4Tilt Whether vertebra L4 is tilted

1stMCDeg Degres of 1st Major Curve

2ndtMCDeg Degree of 2nd Major Curve

1stMCApex Apex of 1st Major Curve

2ndMCApex Apex of 2nd Major Curve

Degl Degree of 1st Curve

beg2 Degree of 2nd Curve

Deg3 Degree of 3rd Curve

Degd Degree of 4th Curve

Class Scoliosis Classification (K-I, K-1I, K-ll, K-IV, K-V, TL or L)

Mens Period of Menstruation

TSI Trunk Shift (in ¢m), which measures the displacement of the curve

TSTDir Trunk Shift Direction (null, left or right)

RI Risser Sign (integer between 0 and 5), which measures the maturity of
the patient

Treatment Treatment (observation, surgery, or bracing)
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limb fractures admitted to the hospital in
the pertod 1984-1996. These data can pro-
vide information for the analysis of child
fracture patterns. This database has 6500
records and eight attributes, which are
listed in Table 1,

The second database contains clinical
records of scoliosis patients. A scoliosis
patient has one or several curves in the
spine. Curves with severe deformations
are identified as major curves. The data-
basc stores measurcments on the patients,
such as the number of curves, the cutve lo-
cations, degrees, and directions, Tt also re-
cords the age of the patient. the class of
scoliosis, and the treatment. The databasc
has about 500 records, with the attributes
shown in Table 2.

Rule Learning

We investigate the task of discovering
rules from these two databases. We make
use of a rule representation that is casily
understandable. A rule is a sentence ol the
torm il antecedents, then consequent.”
The antecedends specity certain character-
istics of attributes. In general, the anteced-
enl part is a conjunction of descriptions
about attributes, while the conscquent is a
descriptor for & single attribute. Rule
learning is the process ol inducing rules
[rom a set of training examples.

The accuracy or the confidence of a
rule is the probability that the consequent
occurs under the condition that the ante-
cedents occur. If the accuracy is 100%,
the rule is an exact rule. [f the accuracy is
near 1009, the rule is a strong tute. If the
accuracy is not high but is already much
targer than the average probability of the
consequent, then the rule is a weak rule,
A data mining approach should not dis-
cover only exact or strong rules, because
weak rules may also provide useful
knowledge.

Bayesian Network Learning

A Bayesian network (2, 8] is a differ-
ent model used to represent probabilistic
knowledge ol data. Tt is a formal knowl-
cdge representation supported by the
well-developed Bayesian probability the-
ory. It captures the conditional probabili-
ties between variables (i.e., allributes in
the database) and [ocuses on causality re-
lationships among variables. In many
real-life situations, the data cannot be de-
scribed completely by a few rules. Build-
ing a complete model for such a databasc
is difficult and usually results in a compli-
cated model, A Bayesian network canbe
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complement to roles and, due to its graph-
ical representation, is easily understand-
able. It has a well-developed mathematical
mode! and can be used to perform reason-
ing under uncertainty.

Formally, a Baycsian network is a di-
rected acyclic graph (DAG). Each node
represents an atiribute, and cach edge rep-
resents a dependency between two nodes,
An edge from node A to node B can repre-
sent a causalily conveying the [act that the
value of # depends on the value of A, The
value of each variable is discrete. Fach
node is associated with a set of parameters.
Let N, denote a node and [T, denote the
set of parents of ¥,. The paralhetcrs of N;
are conditional probability distributions
in the form of P(N,|TT,, ), with one distri-
bution for cach possiblé instance of Tl .

The main task of lecarning in a
Baycsian network is to automatically find
directed edges between the nodes, such
that the network can best describe the cau-
salities. Onee the network structure is
constructed, the conditional probabilitics
are caleulated based on the data.

Rule Learning Using Generic
Genetic Programming

We employ an advanced evolutionary
algorithm called generic genelic program-
ming (GGP) to discover rules from a data-
basc. GGP [20, 22, 23] is an extension ol
genctic programming, which uses a gram-
mar to contrel the structures being
scarched. A grammar is provided by the
user as a template for rules. A sct of rules
is derived by using this grammar to form
the initial population. Then, the main loop
ol GGP is entered. In cach generation, in-
dividuals are sclected stochastically to
evolve offspring by the three genctic op-
crators: crossover, mutation, and drop-
ping condition. In each gencration, the
number of new individuals evolved
equals the population size, Thus, the total
number of individuals in the population is
doubled. All individuals participate in the
token competition and the replacement
step to climinate similar rules and in-
crease diversity. One-half of the individu-
als with the higher fitness scores alter
token competition are retained and passed
to the next generation, The whole process
iterates untii the maximum number of
generations has been reached.

Grammar
The initial set of rules is created based
on a grammar. The grammar of GGP gov-
erns the structures 1o be evolved, serving as
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a template for the rules. The initial popula-
tion is created by randomly “filling” in this
template. GGP will then search for the best
set of rules without violating the grammar,

The grammar specifics that a rule is of
the Form “il grtecedents then conse-
gquent.” 1L specifies which attributes can
appear in the antceedent part and which
attributes can appear in the consequent
parl. It also specilies the descriptors of
cach attribute. The rule formats in various
problems can be different. Thus, for cach
problem, a specific grammar is wrillen so
that the format of the rules can best fit the
domain.

The use of grammar provides a powcer-
ful knowledge representation and allows
great flexibility of the rule format. Rules
with the uscr-desired structure can be
lcarned, because the user can speeily the
required rule format using the grammar.

Genetic Operators

In rule learning using GGP, the scarch
space is explored by generating new rules
using three genelic operators. The genetic
operators change the attribute deseriptors
in order 1o search for better rules.

Crossovet produces one child from two
pareats, one designated as the primary par-
entand the other as the secondary parent. A
pact of the primary parent is selected and
replaced by a compatibie part from the sec-
ondary parent. The otfspring produced
must be valid according to the grammar,

Mutation is an asexuval operation. A part
in the parental rule 18 selected and replaced
by arandomly generated part. The oftspring
has to be valid gecording to the grammar
thus, a selected part can only mutate to an-
other part with a compatible structure.

The dropping condition [ 16] is a genetic
operator for rule learming, to avoid sub-
sumed rules. The rules evolved in GGP
may be oo restrictive and include redun-
dant constraints, The dropping condition is
used to gencralize rules. A rule can be gen-
eralized if onc descriptor in the antecedent
part is dropped. The dropping condition
randomly selects one altribute descriptor
and then turns it into “any.” Thal particular
attribute is then no longer considered in the
rule. For example, Lthe parent:

if atttrl=0 and attr2 between 100
150 and attr3+50, then attra=T.

may change (0

ifattrl=0 and attr2 between 100
150 andl any, then attrd=T,

IEEE ENGINEERING IN MEDICINE AND BIOLOGY

Evaluation of Rules

An evaluation function based on the
support-confidence framework [1] 13 de-
veloped as the fitmess function in our
rule-learning approach. Suppeort mcasures
the coverage of u rule. Confidence facior
(/) is the confidence of the consequent to
be true under the condition that the ante-
cedents are also true. For a rule “if A then
B” and with a training set of N cases, sup-
portis| A& Bj= N and the conlidence fac-
tor is | A& Bl Al

When evaluating the confidence of a
rule, we need to consider the average
probability of consequent (prob). The
value proh is cqual to| B/ N . We define ¢f
part as:

of _ part = ¢f % log(- Ci—} .
prob )

The log function measures the order of
magnitude ol the ratio ¢ffpreb. A high
value of ¢f_part requires simultaneously a
high value of ¢fand a high value of the ra-
tio ¢fiprob,

Support is another measure to be con-
sidered, [f supportis below a user-defined
minimum threshold (min_support), the
confidence factor ol the rule is based on a
small number of training examples, and
we just ignore the conlidence factor.

Our fitmess function is defined to be:

if support < min_support then
raw_fitness = support

else
raw_ fitness = wl X support
+ w2 xef_part (2)

where the weights w, and w, arc user de-
fined and used to control the balance be-
tween the confidence and the support in
learhing. These twa values have been set
to one and eight, respectively, so that the
confidence of the rule plays a more impor-
tant role in the evaluation function.

Token Competition

The token competition |15] technique
is employed in our rule-learning approach
to search for a ser of rules instcad of just
one rule. The coneept is as follows. In the
natural environment, once an organism has
found a good place for living, it will try to
exploit this niche and prevent interlopers
[rom sharing the resources. The weaker in-
terlopers individuals are hence forced to
explore and find their own niches. In this
way, the diversily of the population is in-
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creased, so that healthy organisms are
maintained in ditferent niches.

Based on this mechanism, we assume
that each record in the training set can pro-
vide a resource, called a token. If a rule can
match a record, it sets a flag to indicate the
token is seized. Other weaker rules, then,
cannot get the token. The priority of receiv-
ing tokens is determined by the strength of
the rules. A rule with a high score on
raw_fitness [Eq. (2)] can exploit the niche
by seizing as many tokens as it can. The
other rules cntering the same niche will
have their strength decreased, because they
cannot compete with the stronger rule, The
fitness score of cach individual is modified
based on the tokens it can scize. The modi-
fied fitness is defined as:

modified _ fitness = raw_ finess x
count [ ideal (3

where raw_fitnesy is the fitness score ob-
tained from the evaluation function, count
is the number of tokens that the rule actu-
ally seized, and idea! is the total number
of tokens that it can scize, which is equal
to the number of records that the rule
matches.

Learning Bayesian Networks
from Discrete Variables

Besides [earning rules from data, we
have developed an approach to learn
Bayesian network structures from dis-
crete variables. The approach is based on
evolutionary programming (EP) and the
minimum description length (MDL) prin-
ciple. The MDL principle has been ap-
plied to Bayesian network learning in our
previous work |13]. The principle [18]
states that the best model of a collection of
data is the one that minimizes the sum of
the encoding lengths of the data and the
model itself. The MDL metric is defined
in [12, 13] to measure the rotal description
length, DL, of a network structure, G. The
total description length of a network is the
sum of description lengths of each node,
This length of each node is defined based
on two components, the network descrip-
tion length and the data description
length. The former is the description
length for encading the network structure,
which measures the simplicity of the net-
work. The latter is the description length
for encoding the data, which measures the
accuracy of the network. For instance,
consider two network structures, &, and
G,. Suppose G| has the structure, N, — N,
N, and G, has the structure, N) — N, —
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N,. Suppose further that the data in the
data set exhibit the following two depend-
ency relationships: (1) the nodes N, and
N, are independent; and (2} the node N,
depends on both N, and ¥,. The total de-
scription length of the structure G, will be
tess than that of the structure G,, since G,
fits more closety to the data.

To search for a good network struc-
ture, we developed an approach called
MDLEP | #4, 21], which uses evolution-
ary programming o optimize the MDL
metric 1o learn the hest Bayesian network
structure. A Bayesian netwaork is a DAG,
A sct of DAGs is randomly created to
make up the initial population. Each DAG
s evaluated by the MDL metric, Then,
cach DAG produces a child by perform-
ing a number of mutatiens. The child is
also evaluated by using the MDL metric.
The next generation of population is se-
lected by tournaments among the parents
and children. One-half of DAGs with the
highest tournament scores are retained for
the next generation. The process is re-
peated until the maximum number of gen-
erations is reached, The network with the
lowest MDL score is output as the resull.

Oftspring in EP arc produced by using
a number of mutations. The probabilities
of using 1, 2,3, 4, 5, or 6 mutations are set
100.2,0.2,0.2,02, 0.1, and 0.1, respec-
tively, Thesce parameter values arc sc-
lected to ensure that minor modifications
of the offspring occur more trequently
than do substantial variations. The muta-
tion operators modify the edges of a DAG.
If a cyclic graph is formed after the muta-
tion, edges in the cycles are removed (o
keep it acyclic. The approach uscs four
mutation operators, which arc designed (o
modily DAGs, with the same probabili-
tics of being used:

I. Simple mutation randomly adds an
edge belween two nodes, or randomly de-
letes an existing edge from the parent.

2. Reversion mutation randomly se-
lects an existing cdge and reverses its di-
rection,

3. Move mutation randomly sclects an
existing edge. It moves the parent of the
edge to another node, or moves the child
of the edge to another node,

4. Knowledge-guided mutation is
similar to simple mutation, but the MDL
scores of the edges guide the selection of
the edge to be added or removed. The
MDL metric of all possible edges in the
network is computed before the learning
algorithm starts. This mutation operator
stochastically adds an edge with a small
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MDL metric to the parcntal network, or it
deletes an existing edge with a large
MDL metric.

Discretizing Continvous Variables
while Learning Bayesian Networks
A Baycsian network can only repre-
sent discrete variables. One approach to
handle databases with continuous vari-
ables is to discretize them first. The con-
tinuous vartables arc usually discretized
by thresholds specitied by a human, How-
ever, different discretization policies will
produce different network structures.
Causality will be lost if the discretization
is not suitable. Thus, il is desirable to
search for the best discretization policy
before Bayesian networks are induced.
A discretization sequence, A, defines o
funetion that maps a continuous variable
1o a discrete variable. Each discretization
scquence contains a list of threshold val-
ucs. The variable will be discretized ac-
cording to the range specified by the
thresholds. A discrefizarion policy, A =
{A; : X; is continuous}, is a collection of
discretization sequences for cach continu-
ous variable. This policy defines a new set
of variables, U* = {X;;,...,Xi}, where
X; = (X if X, is continuous and

X, = X, otherwise,

MDL for Discretization Policy

Friedman and Goldszmidt [6] exiend
the MDL score to cvaluate the
discretization policy while learning
Bayesian network structures, The original
training data, D, is discretized into a new
data set, D*, A Bayesian network struc-
ture, G, for the discretized variables, (7%,
is learned from 2%, The new definition of
the MDL score includes the description
length of the network as well as descrip-
lien length of the discretization policy.
This MDL. score is composed of three
parts, The first part is the description
length of the network under the
discretized data, ay defined above. The
second part is the length for encoding the
particular discretization policy, A, overall
of the possible discretization policies. The
third part is the encoding length for recon-
strueting U from U*,

Friedman and Goldszmidt have also
described a greedy approach for learning
discretization policy and Bayesian net-
works. Thes approach learns the
discretization policy and network struc-
tures alternatively. [t starts with an initial
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discretization policy and learns Bayesian
networks from the discretized data set by
using the MDL metric. Based on the
learncd structure, a discretization policy
is lcarned by using the MDL metric. In
learning the discretization policy, only
one variable is rediscretized at a time.
The discretization sequence of this vari-
able is reset to empty (L.e., no threshold
values) first. The greedy approach
scarches for the “split” thal gives the
largest decreasc in the MDL metric, The
process is repeated until there is no im-
provement.

However, the greedy search algorithm
can be easily trapped in a local optima.
This approach also greatly depends on the
initial settings. il the initial guess of
discretization policy or network steucture
is not good, the result can be poor,

Learning Discretization Policy
Using Genetic Algorithms

A GA is applied to oplimize the new
MDL metric, and thus the best nciwork
structure as well as the best discretization
- policy canbe learned. It is less likely that the
atgorithim will be trapped in a local optima,
because there is a population of individuals
Lo explore the search space in parallel.

Our approach uses the iterative ap-
proach, as suggested in (67, It star(s with
an initial discretization policy. MDLEP is
then used {o learn the best network strue-
turc. Based on this structure, a GA is used
to fcarn the best discretization policy. The
process is iterated until the maximum
number of itcrations is-reached.

The GA starts with an initial randomly
gencrated population. Bach individual in
the population is evaluated by the new
MDI. score defined in [6]. The good indi-
viduals are sclected to produce offspring
using the genetic operators, The off-
spring, in turn, produce the next genera-
tion until the maximum nomber of
generations is reached.

Individual Representation

A discretization policy consisis of
discretization sequences [or the conlinu-
ons variables, and each discretization se-
quence consists of threshold values for
discretization, We can limit the thresholds
o midpoints between suceessive valucs
that appear in the training data. Each indi-
vidual should represent a possible
discrctization policy and should hence
cncode these threshold values.

We have used one bit string Lo repre-
sent one cliscrelization sequence. The
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number of bits in each string equals the
number of midpoints values of the vari-
able (i.e., if variable { has s, different val-
aes in the training data, the length of its bit
string is §; —1). A “1” in the bit means the
corresponding mid-point is included as a
threshold in the discrelization sequence.
Forexample, in Fig. |, the midpoints after
the second, sixth, and ninth values are in-
cluded in the discretization sequence of
variable ¢,

To provide a more uscful dis- cretization
and simplify the computation, the user can
fimit the maximum number of thresholds
appearing in the discretization sequence.
Hence, the maximum number of “17s in
the bit string is limited. An individual
stores the concatenation of the bit strings
of cach continuous variable, as shown in
Tig. 2.

Genetic Operators

Four genetic operators arc used, Other
than the basic operators of reproduction,
crossover, and mutation, another operator
named “shift” is applied (o evolve better
discretization policics:

« Reproduction: The standard repro-
duction 15 used. The parent is se-
lected and copiced into the new
generalion.

» Crossover: The standard crossover
cun also be used. Two parents are se-
lected. One random point in the bit
string of the parents is selected as the
crossover point. The bit string is cut
into two parts at this point. The front
parts of the two parents are ex-
changed 1o evolve two children.
Mutation: A multiple-point mutation
is used. L'or cach variable, a bit is se-
fccted for mutation. There is a 50%
chance that this bit is mutated. If mu-
tation oceurs, the bit is toggled.
Shift: Shiftis a special kind of muta-
tion. This operator changes the
threshold value in the discretization
sequence to the next or previous

midpoint value. One parent is se-
lected for the shift operator. For
cach variable, a bit with a “1” is se-
lected. There is a 50% chance that
this bit is shifted. IF a shift occurs,
the bit is set 1o “0™ and its neighbor
bit (either left or right, with equal
probability) is set to *1.” Thus, the
operator performs a local search for
better threshold valucs,

Learning Results
Fracture Database

Results of Bayesian Network Learning
The relationships among the attributes are
analyzed by learning a Bayestan network.
We have used a population size of 50 for
both MDLEP and GA. The discovered
network structure is shown in Fig, 3, The
discretization policy is shown in Table 3.
Day, Month, Weekday and Year refer to
different parts of the admission date. Age
is divided into 0-4, 5-9, [0-12, and [3-16.
The day and month are discretized into
just one range, which means that they are
not involved in any relationship in the
Bayesian network. Year and stay are di-
vided into threc ranges.

From the nelwork structure con-
structed, the following interesting rela-
lionships are observed:

» The value of Diagnosis effects the
values of Operation and Stay. Dilfer-
ent fractures are treated with differ-
ent operations and require different
time for recovery.

The value of Diagnosis cffects the
value ol Age. Seme fractures more
frequently occur in particular age
sroups.

The value of Age alfects the value of
Sex. Itis abserved that the young pa-
ticnis are more likely o be female,
and older patients are more likely to
be male.

The value of Operation and Stay
alTects the value of Year. It is ob-

-

The bit string of variable a: |0‘ 1 |0|O| O| 1 ]iLOI 1|

1. A bit string represents a discretization sequence,

o[1joJo]o[1]e]o]1

1] o[ o[ 1]o] 1]o]0

variable a

I

variable b

2. The bit string in an individual.
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Diagnosis

Operation

3. The discovered nctwork structure for the fracture database.

Table 3.' Discretization Policy of the Fracture Database

Age: [0-4] [5-9] [10-12] [13-16]

Day: [1-31]

Month: [1-12]

Year: [1984-1987][1988-1991][1992-1936)

Stay: [0-3] [4-12] [13-1081]

served from the database that the
length of stay in hospital is longer in
the vears 1983, 1980, and 1994, and
open-reduction occurs more fre-
quently for carlier years,

Rexults of Rule Learning
Based on the learned Bayesian network, we
observe a causality model between diagno-
sis, operation, and stay. We wish 1o fearn
knowledge about these attributes. First, scx,
age, and admission date arc the possible
causes of diagnosis. Second, these threc at-
tributes and diagnoses arc the possible
causes of operation and surgeon, Third,
length of stay has all other attributes as pos-
sible causes. A grammar is written as atem-
plate for these three kinds of rules, This
grammar is presented in Appendix 1. We
have used a population size of 300 to run for
30 generations in the rule-lcarning step, The
discovered rules are listed in Appendix 2.
The learning process can uncover
knowledge about the age effect on fracture,
the refationship between diagnosis and op-
eration, and the effect of diagnosis and op-
eration on length of staying in the hospital.
The results have been evaluated by
medical experts. Previous analysis ol

30

fracture patterns only gave an overall in-
jury pattern. Qur system automatically
uncovered relationships among different
attribute values. The rules revealed some
interesting patterns and rules that were not
known before, The sysiem can provide a
good monitor of change of pattern if the
data mining process is continucd fongitu-
dinally over the years, It also provides the
information for sctting up a knowl-
edge-based instruction system to help
doctors in training.

Scoliosis Database

Results of Bayesian Network Learning
In this database, the atiribuies Age,
1lstMCDeg, 2ndMCDeyg, Degl Lo
Degd, and Mens are conlinuous vari-
ables. For the attributes measuring de-
grees, the value 0 is a special value, as it
mcans the curve docs not exist, For Mens,
the values —9 and 99 have special mean-
ings, which indicate no menstruation.
These values are specially handled such
that they are always discretized from
other values,

The learning of network structures and
discretization policies are alternated for 20
iterations, For the learning of network
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siructures vsing MDLEP, we have used a
populationof 50 to run for 100 generations.
In cach iteration of the learning of
discretization policics using GAs, the pop-
ulation size is S0 and thé number of genera-

tions is 10. The discovered Bayesian

network structure learned from this data set
is shown in Fig, 4, The discrelization pol-
icy is shown in Table 4. The age is divided
into 0-12 (child), 13-16 (adolescence),
17-21, and over 22. The degrees and Mens
are divided into different ranges.

The discovered Bayesian nctwork
shows same physical rclationships among
atiributes. For example, the network
shows that 1stMCDeg and 2ndMCDeg
are related with Deg2. The two major
curves are defined as those with the larg-
est degrees among the four curves, and
most likely Deg?2 is involved. Degl and
Deg2 can imply Deg4 and Deg3, because
if' the degree of first or scecond curves are
small, the degrees of the remaining curves
are either zero or smatl, The network also
reveals some obvious patterns; Age af-
fects Mens and RI (the maturity), and the
value of Mens aifects Sex. In addition,
the following relationships are observed:

« The value of Operation affects the
value of 1stMCDeg. If Operation
is equal to obscrvation, the valve
1stMCDeg is smaller. If Opera-
tion equals to surgery, the value of
1stMCDeq is large.

The valuc of Deg3 affects the value
of 1stCuxveTl. If Deg3l is large,
the spine has three or more curves,
and most likely the first curve starts
at the first vertebra T1.

The valuc of Deg3 affects the value
of TSIDir. If Deg3 issmall, most of
the time the direction of trunk shift is
nuli

The value of Treatment atfects the
value of 1stMCDeg. If treatment is
bracing, most likely the degree of the
first major curve is small, In contrast,
if operation is needed, the degree of
the firstmajor curve is usually large,

Results of Rule Learning
Medical experls are interested in inducing
knowledge .about classification of
scoliosis. Scoliosis can be classified as
Kings, thoracolumbar (TL), and lumbar
(L), while Kings can be further subdi-
vided into K-1, 1L, 11, IV, and V., This do-
main knowledge has becn incorporated
into the design of the rule grammar.

The population size used in the
rule-learning step is 100 and the maxi-
mum number of generations is 50. For
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each class of scoliosis, a number of rules
are obtained. The discovered rules are
listed in Appendix 3,

The rules discovered are generally
consistent with the knowledge of medical
experts. However, there is an unexpected
rule for the classilication of King-I1. Un-
der the conditions specified in the ante-
cedients, our sysiem found a rule with a
confidence factor of 52% that the classifi-
cation is King-II. Howcver, the domain
expert suggests the class should be
King-V! After an analysis of the database,
we found that serious data errors existed
in the current databasce and that some re-
cords contained an incorrect scoliosis
classification. The rules for TL and L also
showed something dillerent in compari-
son with the rules suggested by the clini-
cians. According to our rules, the
classification always depends on the loca-
tion of the first major cuirve, while accord-
ing to the domain expert, the classifica-
tion always depends on the larger major
curve. After discussion with the domain
experl, it was agreed that the existing rules
were not defined clearly encugh and that
our rules were more aceurale than theirs,
Thus, our rules provided hints to the clini-
cians to reformulate their concepts.

The largest effect on the clinicians from
the data mining analysis of the scoliosis da-
tabase is the tact that many rules set out in
the clinical practice are not clearly defined.
The usual clinical interpretation depends
on subjective experience. Our data mining
effort revealed quitc a nuember ol mis-
matches in the classification on the type of
Kings curves. Alter a careful review by the
senior srgeon, it appears that the database
enfrics by junior surgeons may not be accu-
rate and that the data mining rules discov-
cred are in fact more accurate! The
classification rules must, therefore, be
quantificd. These rules can help in the
training of doctors and act as an intelligent
means to validate and evaluate the accu-
racy of the clinical database.

Conclusion

We have presented our approach for
knowledge discovery from two specific
medical databases, First, rules are learned
to represent the interesting patlerns of the
data. Second, Bayesian networks are in-
duced to act as causality relationship
models among the attributes. The
Bayesian network learning process is di-
vided into two phases. In the first phase, a
discretization policy is learned to
discretize the continuous variables, and
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4, The discovered network structure for the scoliosis database,

Table 4. Discretization Policy of the Scoliosis Database

Age: [0-12] [13-18] [17-21] [22-41]

1stMCDeg: [5-13] [14-29] [30-35] [36-52] [53-112)

2ndMcDeg: [0-0] [5-23] [24-36] [37-65]

Degl: [3-11] [12-35] [36-52] [54-112]

Dag?2: [0-0] [2-26} [27-36] [37-52] [63-93]

Deg3: [0-01(3-21] [22-60]

Degd: [0-0][13-34]

Mens: [-9 - -8] [0-4] [5-30] [99-99]

]

then Bayesian network structurcs are
induced in the second phase. We employ
advanced evolutionary algorithms such as
gencric genclic programming, evolution-
ary programming, and genefic algorithms
10 conduct the learning tasks.

From the fracturc databasc, we discoy-
ered knowledge about the patterns of
child fractures. From the scolinsis data-
base, we discovered knowledge about the
classification of scoliosis. We also found
unexpeeted rules that led to discavery of
crrors in the database. These results dem-
onstrate that the knowledge discovery
process can find interesting knowledge
about the data, which can provide novel
clinical knowledge as well ag suggest re-
finements ol the existing knowledge.
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Appendix 1. The Grammar for the Fracture Database

This grammar is not completely listed, The grammar lor the other attribute descriptors is similar to the part of the grammar

in lines 11-19,
1. Rule — Rulel | Rule? | Rule3
2. Rule! — if Antes!, then Consg/
. Rule? — il Antes T and Antes2, then Consg2

LV I N S

Antes! - Sex! and Agel and Admday!
6. Anfes2 — Diagnosis]

7. Antes3 = Operation] and Surgeon!

8. Consgl — Diagnosis_descriptor

9. Consg2 —» Operation_descriptor | Surgeon_descriptor

10. Consg3 —> Stay_descriptor

(1. Sex/ — any | Sex_descriptor

12, Sex_descriptor — sex = sex_consl

13, Admidayt —> any | Admday_descriptor

- Ruled — if AntesT and Antes2 and Antes3, then Consg2

14. Admday_descriptor — adinday_day between day_const day_const

15. Admdeay_deseriptor = admday_month between month_const month_const

16, Adnduy_descriptor — admday_ycar between year_const year_const

17. Admday_descriptor — admday_weekday between weekday const weekday _const

(8. Diagnosis! — any | Diagnosis_descripior

19. Diagnosis_descriptor — diagnosis is diagnosis_cons(

Appendix 2. The Best Rule Set Learned from the Fracture Database

Type I Rules: About Diagnosis
. Humerus
il age is between 2 and 3, then diagnosis is Humerus.
Fitness: 3.48
Conlidence: 39.75%; Supporl: 8.42%:; Probability of conse-
quent: 23.43%

2. Radius

if sex is M, and age is between |1 and 13, then diagnosis is
Radius.

Fitness: 3.04 Conlidence: 51.43%; Support: 10.01%:; Proba-
bility of consequent: 36.10%

Type II Rules: Ahout Operation/Surgeon
1. Radius versus CR+POP
il age is between O and 7, and admission year between 1988
and 1993, and diagnosis is Radius, then operation is
CR+POP.
Fitness: 8.56
Confidence: 50.61%:; Support; 3.19%; Probability of conse-
quent: 17.72%

2. Tibia versus No Operation

ifage is between T and 7, and diagnosis is Tibia, then opera-
tion is Null (i.e. no operation).

Fitness: 7.86

Confidence: 74.05%; Support: 3.78%: Probability of conse-
quent: 38.11%

3. Ulna versus CR+1POT

ifageis between | and £2, and admission ycar between 1989
and 1992, and diagnosis is Ulna, then operation is CR+POP.

Fitness: 7.19

Conflidence: 47.37%:; Support: 3.50%; Probability of conse-
quent: 17.72%

if diagnosis is Ulna, then operation is CR+POP. Fitness:
4,23 Confidence: 36.17%:; Support: 7.404%; Probabitity of
conseyuent: 17.72%

4. Radius versus CR+K-Wire

if admission year is between 1992 and 1994, and diagnosis is
Radius, then operation is CR+K-Wire. ‘
Fitness: 4.10

Conlidence: 34.03%; Support: 3.83%: Probability of conse-
quent: 16.23%

5. Humerus versus CR+K-Wire

tl diagnosis is [umerus, thea operation is CR+K-Wire.
Fitness: 2.52

Confidence: 27.96%; Support: 6.06%; Probability of conse-
quent: 16.23%

6. Ulna versus OR

if age is between [ | and 15, and diagnosis is Ulna, then oper-
ation is OR. Fitness: 3.24 Confidence: 33.20%; Support:
3.25%; Probability of consequent; 18.26%

7. Age versus OR
it sex is M, and age is between [3 and 17, and admission year
between 1985 and 1989, then operation is OR.
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Fitness: 2.57
Confidence: 30.53%; Support: 3.22%; Probability of consc-
quent: 18.26%

8. Age versus No Operation

if age is between 0 and 7, then operation is Null (i.e. no oper-
ation).

Finess: 1.08

Conlidence: 43.33%; Support: 16.22%; Probability of con-
sequent: 38.11%

Type TII Rules: About Stay
I. Femur versus Stay
if admission ycar between 1985 and 1996, and diagnosis is
Femur, then stay is between 8 and 2000 days. (i.e. stay 8 days
or more, since 2000 is the maximum value of stay)
Fitness: 21.99
Confidence: 70.87%:; Support: 3.14%; Probability of consc-
quent: 10.24%
it diagnosis is Femur, then stay is between 5 and 2000 days.
(i.e. stay 5 days or more)
Fitness: 18.70
Confidence: 80.99%; Support: 3.30%; Probability of conse-
quent: 19.22%

2., Tibia versus Stay

il age between 5 and 12, and diagnosis is Tibia, then stay is
between 3 and 2000. (i.c. stay 3 days or more)

Fitness: 8.93

Confidence: 78.92%;, Support: 5.05%; Probability of conse-
queni: 39.15%

3. OR versus Stay

ifage between 2 and [4, and diagnosis is Humerus, and oper-
ation is OR, then stay is between 3 and 25 days.

Fitness; 8,80

Confidence: 75.57%; Support: 3.52%; Probability ot conse-
quent: 36.51%

if admission is between 1985 and 1987, and operationis OR,
then stay is between 3 and 10 days.

Fitness: 6.99

Confidence: 63.52%; Support: 3.47%; Probability of conse-
quent: 33.85%

if operation is OR, then stay is between 3 and 25 days.
Fitness: 6.13

Confidence: 64.90%; Support: 12.22%; Probability of con-
sequent: 36.51%

4. No operalion versus Stay

if age is between 10 and 14, and admission year is between
1987 and 1996, and diagnosis is Radivs, and operation is
Null, then stay is between 0 and | day.

Fitness: 9.55

Confidence: 77.00%; Support: 3.09%; Probabilily of conse-
quent: 35.65%

if operation is Null, then slay is between 0 and | day.
Fitness: 3.38

Confidence: 52.06%; Support: [9.62%; Probability of con-
sequent: 35.65%

5. Radius versus Stay

if uge between 6 and 12, and admission year is between 1989
and (992, and diagnosis is Radius, and opcration is
CR+POP, then stay is between | and 2 days.

Fitness: 0.01

Confidence: 81.11%; Support: 3.22%; Probability of conse-
quent: 51.29% il diagnosis is Radius, and operation is
CR+POP, then stay is between [ and 2 days.

Fitness: 5.49

Confidence: 78.57%; Support: 10.229%; Probability of con-
sequent: 51.29%

ilageisbetween O and 8, and diagnosis is Radius, then stay is
between 0 and 3 days.

Fitness: 2.89

Confidence: 86.929:; Support: 10.19%; Probability of con-
sequent: 71.304%

0. Humerus versus Stay

if dingnosis is Humerus, and operation is CR+K-WIRE, then
stay is between 2 and 5 days.

Fitness: 3.90

Conlidence: 67.30%; Support: 4.56%; Probability of conse-
quent: 47.16%

7. Year versus Stay

il admission year is between 1985 and 1987, then stay is be-
tween 3 und 10 days.

Fitness: 2.58

Confidence: 46.98%; Support: 8.65%; Probability of conse-
quent: 33.85%

Appendix 3. The Best Rule Set Learned from the Scoliosis Database

Rules for Classification
King-1
L. if 1stMCGreater=N and 1stMCApex=TI1-T8 and
2ndMCApex=L3-L4, then King-1.
Fitness: 20.20
Confidence: 100%; Support: 0.86%:; Probability of conse-
quent: 28.33%

2.4 1stMCGreater=N and 1stMCDeg=21-80 and
IstMCApex =T1-T12 and 2ndMCApex=L2-L3, then
King-1.

Fitness: 19.06

Confidence: 96.67%; Support; 6.22%; Prabability of conse-
quent; 28.33%

3. iF 1stMCGreater=N and [4Tili=Y and IstMCApex
=T1-T10 and 2ndMCApex=1.2-L5, then King-L.
Litness: 18.92
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Confidence: 96.15%; Support: 10.73%; Probability of con-
scquent: 28.33%

King-1I

1. if 1stCurveT1=N and IstMCGreater=Y

and 1stMCDeg=16-45 and 2ndMCDeg=28-54 and
IsStMCApex =T4-Tll and 2ndMCApex=L2-L3, then
King-1L

Fitness: 16.63

Confidence: 100.00%; Suppott: 1.07%; Probability of con-
sequent: 35.41%

2.0l 1stMCGreater=Y and T4TH=Y and 1siMCDeg=22-77
and 2ndMCDeg=19-54 and stMCApex=TI-TI| and
2ndMCApex=L2-L2, then King-11.

Filness: 12.85

Confidence: 87.88%; Supporl: 6.22%; Probability of conse-
quent: 35.41%

3.if 1stMCGreater=Y and L4ATilt=Y and
1stMCApex=T6-T10 and 2ndMCApex=L2-L5, then

King-TI.

Fitness: 10.52

Confidence: 79.76%; Support: 14.38%; Probability of con-

sequent: 35.41%

4. il IstMajorCurveGreater=Y and 2ndMCDeg=8-95 and
IstMCApex=T3-T11 and ZndMCApex= T4-T10, then
King-11.

Fitness: 3.32

Confidence: 52.17%; Support: 7.73%; Probability of conse-
quent: 35.41%

King-1l1

1. it IstCurveT =N and L4Tilt=N and 1stMCApex=T1-T9
and 2ndMCApex=Nuli, then King-HI.

Filncss: 5.87

Confidence: 25.87%; Support: 0.86%; Probability of conse-
quent: 7.94%

2, il L4Tilt=N and stMCApex=T2-T6 and
2ndMCApex=T2-T11, then King 11,

Fitness: 4.86

Conlidence: 25.71%; Support; 1.93%; Probability of conse-
quent; 7.94%

King-1V

1 if IstCurveT1=Y and IstMCGreater=Y and L4Tili=Y
and |stMCApex=L5-T10 and 2ndMCApex=T9-L5, then
King-1V.

Fitness: 11,10

Conlidence: 29.41%; Support: 1.07%; Probability of conse-
quent: 2.79%

2. il IsIMCGreater=Y and LATilt=Y and
[StMCApex=T10-L5 and 2ndMCApex=15-1.4, then

King-1V.

Fitness: 6.02

Confidence: 19.35%; Support: 1.29%:; Probability ol consc-

quent: 2.79%

King-V

I if IstMCGreater=Y and L4Tilt=Y and
LstMCApex=T2-T5 and 2ndMCApex=T9-T11, then

King-V.

Fitness: 22.75

Confidence: 62.50%; Support: 1.07%; Probability of conse-

quent: 6.44%

2. if 1stMCGreater=N and 2ndMCDeg=37-70 and
IstMCApex=T4-T7 and 2ndMCApex=T2-T11, then

King-V.

Fitness: 19.94

Conlidence: 57.14%:; Support: 0.86%:; Probabilily of conse-

quent: 6.44%

3. it IstCurveTI=Y and 1stMCGreater=Y and 14Tiit=Y
and IstMCDeg=3-35 and IstMCApex=T2-T6 and
2ndMCApex=T7-T9, then King-V.

Fitness: 16.42

Confidence: 50.00%; Support: (.86%:; Probability of conse-
quent: 6,44%

{1

1. if IstMCGreater=Y and [stMCApex=T1I1-T12 and
2ndMC Apex=Null, then TL.

Fitness: 19.49

Conlfidence: 41, 18%; Support: 1.50%; Probability of consc-
quent: 2.15%

L

1. if IstMCGreater=Y and 1.4Tilt=N and
EstMCApex=1.2-L5 and 2ndMCApex=Null, then L.
Fitness: 26.32

Confidence: 62.50%; Support: 1.07%; Probability of conse-

quent: 4.51%

2,140 1stCurveT =N and LATil=N and 20dMCDeg=Null
and [stMCApex=L1-L.3 and 2ndMCApex=Null, then L.
Fitness: 21,59

Confidence: 54.17%; Supporl: 2.79%; Probability of consc-
quent: 4.51%

3000 IstCurveT1=N and [stMCApcx=L2-L5 and
2ndMCApex=Null, then L,

Fitness: 16.84

Confidence: 45.45%; Support: 2.15%; Probability of conse-
quent: 4.51%

uly/August 2060

|EEE ENGINEERING IN MEDICINE AND BIOIOGY

35



