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he increasing use o l  coinputera results T. i n  iui explosion or infrmiialion, making 
data mining an iinporlanl research lopic. 
Data can bc hest uscd if the knowledge 
hiddcii CBII hc uncovered. Thus, Lherc i s  a 
ncctl for a way to in1rom;itically discuver 
knowledge from data. Rese 
iirra ciin be uscful lor inany real-world 
problems. With coinpoteriaalion i n  hospi- 
tills, a huge amount of dala has bccii col- 
Iccled. I t  i s  heneiicial i f  thesc tlala can bc 
aii;ilyzed automatically. 

&ita mining, soinetiincs rclerl-ed to 21s 
knowledgc discovery i o  dillabases 
(KDI)), can be defined as the inontriviiil 
process nS ideiitit'ying valid, novel, poten- 
tially uselill, and ultiniatcly tinderstand- 
able pnttcrns i n  tliila 131. KDD i s  an 
intcsiictivc and iterative process con- 
prised nS several SLCIJS. Dnta mining can 
hc considcred as iinc o f  tlie steps i n  thc 
KDD process. It i s  the core o l  ihe KUD 
proccss, and thus l l ie two tcrins are often 
used interchangeably. 

The wholc process of KDD consists 01 
l ive stcps. First, a selection i s  inade to cx- 
tlact a rclcvani or ii target data set l m n  the 
database. Thcn, preprocessing i s  per- 
Conned to reinovc noise and Lo Jiaiidlc 
missing data fields. Translorination i s  
performed to reduce the number of vari- 
ahles under consideratioil. A suilahlc &ita 
iii ining algorithm i s  employed on thc prc- 
parcd data. Finally the result of the tlala 
iuining is  intcrpreted and evaliiatctl. I l l he  
discovcred kiiowlcdge i s  no1 salisfactory. 
these live slcps wi l l  bc itcrated. The dis- 
covered knowledgc i s  then applied in dc- 
cision inaking. 

In this article, we w i l l  introduce out 
approaches For discovcring knuwlcdgf 
from two specific incdical databases 
Two dilt'ercnt represcntalions of knowl- 
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edge, ninncly rules and causal slructurcs, 
are Icarned. Kulcs capture interesting 
patterns and regularities in lhc database. 
C a u s a l  s t ructures reprcsented b y  
Uaycsian networks capture tlie causality 
relationships among the atlributcs. Wc 
employ cvolui io i iary algorithins for 
these discovery tasks. 

Evolutionary Algorithm Primer 
Evolulionary algorilhins siinulale oat- 

ural evolution to perfixin t'unc~ion optinii- 
zatioii and iniichinc learning. A potential 
solution to the problem i s  encoded as an 
i i idividual. An cvolutionary algorithm 
iniiintaills a group of individuals, called 
the popirlniioii, Lo explorc the search 
slxicc. A fitness ,fuixtion cvaluales thc 
pcrlormancc UT each individuiil to meti- 
sure how closc it i s  to the solution. The 
search space i s  explored by cvolving new 
individuals. Thc algorithm i s  based on the 
Darwinian principle of evol tition through 
natural scleclion; the litter individual has 
a higher chance o l  survival and lends lo  
pass on i l s  lavorablc iraits to its ollspring. 
A "good" parent i s  assumed to be able to 
produce "good" or even hcttcr d'lspring. 
Thus, individuals wi th highcl- fitness 
scores have higher chances ol producing 
offspring. New individuals are generated 
hy applying opemrurv lhal alter the undcr- 
lying structure of these existing individu- 
i~ls. The process i s  rcpealed until the 
solulion i s  Sound or thc iniixiinuin nunrber 
of iterations i s  rcached. Evolutionary al- 
gorithms include gcnctic algorithms 
(GAS) 17, 91, gciictic programming 110, 
I I 1, evolutionary programming 14,s I, inid 
evoliitioii svaregy [17, 191. 

Adviniccd evolotionary algorithms asc 
uscd lnr knowledge discovery tasks. In 
particular, generic genetic programming 
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i s  cmploycd iis a rule-learning algorithm. The Leorning Tosks 
Our appsoacch for discovering causality Medical Databases 
relationships i s  hased on evolutionary Our learning largcts two medicZll 
programming. which Ie~iSIis Baycsian net- &Itabases rrotll [he Orthopaedic Dep:~~[. 
work striicturcs. To  handle colitiiiiloiis nl- lnent of !lie Prince of Wales Hospital of 
tributes, we employ a GA lo find a good Hong Koog. The rirst, the fraclt~re dale- 
discrcliz;ition policy. h a c ,  consists of records of children with 

Table 1. Attributes In the Fracture Database 

Name Type Explanation 

sex Nominal Sex 

A g e  Numeric Age (between 0 to 16 years old) 

Admday Date Admission date (between year 1984 to 1996) 

s tay Numeric Length of staying in hospital (in days) 

Diagnosis Nominal Diagnosis of fracture based on the fracture location 

Opera~ion Nominal Operation 

Surgeon Nominal Surgeon (nuii if no operation) 

Side Nominal Side of fracture ("Left," "Right," "Both," or ''Missing") 

________ ~~ 

- 

Table 2. Attributes in the Scoliosis Database 

Name Explanation 

SfX Sex 

Age 

Lax Joint Laxity (integer between 0 and 3) 

l . s t C u r v e ~ 1  Whether 1st curve started ai vertebra T I  

1stMCGreater Whether the degree of 1st Major Curve is greater than the 2nd Major 
Curve 

Whether vertebra L4 is tilted 

Degree of 1st Major Curve 

Degree of 2nd Major Curve 

Apex of 1st Major Curve 

Apex of 2nd Major Curve 

Age 

L4Tilt 

lstMCDeg 

2 n d ~ ~ C ~ e g  

Istrampex 

2ndMC~pex 

Degl Degree of 1st Curve 

Deg2 Degree of 2nd Curve 

Deg3 Degree of 3rd Curve 

De94 Degree of 4th Curve 

Class 

Mens Period of Menstruation 

T S I  

TSIDir 

RI 

~~ 

~- 
Scoliosis Classification (K.i, K-4 K-Ill, K-IV, K-V, TL or L) 

Trunk Shift (in cm), which measures the dispiacement of the curve 

Trunk Shift Direction (null, left or right) 

Risser Sign (integer between 0 and 5), which measures the maturity of 
the patient 

Treatment (observation. surgery or bracing) T r e a t m e n t  

l imb li-iicturcs atlmiltctl to the hospikil in  
the pcsiod 1964- 1996. These data can pm- 
vide in~ormaliun for the analysis of child 
f i x l u re  paltcrns. This dahlxisc lias 6500 
records and eighl attributes, which arc 
listed in  Table I, 

The sccnnd clalnbasc contains cliniciil 
records of scoliosis paticnls. A scoliosis 
patient has one or scveral curves in the 
spino. Curves with scvcrc deformations 
are idenlilicil as major curves. l h c  data- 

such i ls Llic nuinherof'curvcs, thecurve lo- 
catioiis, degrees, and directions. It also re- 
cords t l ie age 01' the palienl. IRc class of  
scoliosis, and the trxtmcii t .  The dalahasc 
has dJoll l 500 rccorda, wil l i  llic attributes 
shown in  Table 2. 

b , ,  'isc stores iiieasurcments on the palicnts, 

Rule Learning 
We invcsligate llic task of discovering 

rdcs rrom tlicse two databases. We inake 
use of a rule rcprcsenhtion lhal  i s  easily 
unilcrst;indable. A rule is  a scntence oi'lhe 

oiilecmleiits, then ionsrqumt." 
Thc iintecedenls spccify certain charackr- 
islics oliittributes. 111 gcncl-al, l l ic aiitcced- 
cnt par1 i s  a coiijunclion ot descriptions 
ahoul altl-ibutes, while Lhc consequent i s  a 
descriptor I" ii single artribule. Rulc 
lexning i s  llic process 01 inducing rules 
I'roin a set of training exiiiiiples. 

The accuracy nr the confidcncc of ii 

rule i s  tlie probability I I I B L   he conscqucn~ 
occurs uiidcr the cniitlition that the ante- 
cedenls occur. IC tlie accurncy i s  100%, 
the rule i s  an exacl rulc. If the accuracy i s  
near I 00%>, llic rulc i s  a slrong rule. I f t h c  
accurecy i s  iiot high bul i s  alrcady iniicii 
larger than l l ic  a v c ~ i g e  probability o l t h c  
co~iscq~~ent ,  then tlic rule is  a weilk rule. 
A data mining approach should not dis- 
covcronly exact 11r strong rilles, because 
wcak rules inay also provide useful 
knowledge. 

Uayesian Network Learning 
A Baycsian network 12, 61 i s  a differ- 

ent niodcl used to reprcscnl probabilistic 
knowledge 01 dala. I t  i s  a formal knowl- 
cdgc rcprcseiitirtion suppnrtcd by the 
well-devclupcd Bayesiaii prohabi l i ly thc- 
ory, It captures the cimditiiiinnl probabili- 
ties bclwccn variahles (i.e., allribuics in  
Ihc database) and locuscs on causality re- 
lalionships among variables. In many 
real-l i l t siluiilioiis, the data cannol be [IC- 
scribcd coinpletely by ;I Icw rules. Build- 
ing a complete inodel for such a clatabesc 
isdii ' f icul~ and iisu;illy results in acompli- 
cated model. A Baycsian nclworkciir hea 
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complement 10 rules and, due lo i t s  grapli- 
ical rcpresentalion, i s  easily understand- 
able. I t  h a s  a well-dcvelopcd tn~itlieiiiiiticiil 
mode1 and  cai i  be used to perlorin mason- 
ing under uncertainly. 

Fnrmally, a Bayesian iietwork i s  a di- 
rected acyclic greph (DAG). Eich node 
represents an aurihutc, and each edge rcp- 
reseiils II dependcncy hctweeii two nodes. 
An edge friim node A to node U can rcprc- 
scnt a causxlily convcyitig thc I k t  that the 
valiic o l  / I  depends on the v:iIuc of A.  The 
valuc o l  each variable is  discrctc. Rich 
node i s  associaled with asctofparairictcrs. 
Let N j  dcnole a nodc and l l N ,  denote tlie 
set o l  parents olN, . ’ lhe piratnetcrs o l N j  
arc conditional prohibil i ty clislribulioiis 
in the fiirm ofP(N,lrI,, ), wi lh one distri- 
hution for each possible instiitice olIl,, 

The imain lask o l  learn ing i n  a 
Baycsim nelwork i s  lo ;iutomalically find 
directed edges bclwcen the nudes, such 
tlial the nctwork can bcsl describe the cilii- 
salilies. Oncc the nctwork structure i s  
ciiiistritcted, tlie coiitlilional prohibilil ics 
are calculaled hascd on Ihc h t a .  

Rule Learning Using Generic 
Genetic Programming 

We employ aii advanced cvir1utioit;iry 
algorilhm callcd generic genetic prograin- 
ining (GGP) todiscovcrrules froinadat;t- 
hitsc. GGP 120, 22,231 i s  :in extension 01 
gcnclic progl-amming, which iises a gram- 
inar to control the struclurcs being 
scarched. A graintnar is  provided by [lie 
user a s  a template fiir rules. A scl olri i lcs 
i s  derived hy using this grammar to form 
thc inilial population. Tlicti, the tiiaiti I m p  
01 GGP i s  entered. In ciaclr gcnoraliiiii, i i i- 
dividuals are sclcclcd stochxtically LO 
cvolve offspring hy l l ic three genetic op- 
criitors: crossovcr, mutation, and drop- 
ping conditiun. I n  each geiicratioii, the 
number  o l  i icw indiv iduals evolved 
equals thc popolntion size. Thus, the lolid 
tiumbcroritidividuals in the population i s  
doubled. All individuals parlicipatc iii the 
lokcn coinpctilion and the replaccincnl 
step to cliininele similar rdcs aircl iti- 
crciisc diversity. One-hall of the individu- 
a ls  with tlic higher fitness scores alter 
loken compelition arc rctaincd and passcd 
to lhc next gencr;ilion. The whole pro 
iterates until tlic triaxiinuiii number o l  
generations hiis been re;ichcd. 

Grammar 
Tlic initial se1 of rulcs i s  created based 

on a griimniar. ‘Ihc g r m “  d G G P  gov- 
erns the structures to becvolved, serving as 

a lctnplalc fiir [he ritlcs. The initial populii- 
l ion is  crcalcd hy I.andoiiily “filling” in lhis 
tcniplatc. GGP wil l  tlicii search for [lie hest 
set of rulcs withoul violating the grainmar. 

‘The grammar specifics lhat a rule i s  o l  
tlic lorin “ir rrnimederifs tlicn ronse- 
qoerit.” I1 specifics which atlributcs ciin 
appear in tlie niitcccdenl part and which 
nttribules c m  appear iii llie coiiscqiienl 
part. It also specifies the dcscriplors of 
ciicli ;ittrihule. ‘lhc rule formals in various 
problems ciin be dilleretit. Thus, for c;ich 
problem, a spccific grammar i s  wrilleii so 
that tlie foriii:il o l t l i c  rules can best l i t  the 
dumiiii. 

Tlic ~ise olgliiiinnar provides a powcr- 
lu l  knowledgc rcprcsentalion aitil ~ I l u w s  
grcal llexihility of l l ic rule forinal. Rules 
wi lh the iiscr-desired slruclurc caii he 
Icarned, bccmse the uscr can spcciry tlic 
rcquired rule lirrinat using tlie grattiniw 

Genetic Operatnrs 
1 i i  rule learning using GCP, Lhc search 

sp”cc i s  explored hy generating new rules 
using three genetic operators. ‘l‘hc gcnelic 
upcrirmrs chxnge the allrihulc dcscl-iplors 
in order LO search lor hcttcr rules. 

Crossovcr produces one child from two 
pxcnts, one clcsigiintcd as lhe primary par- 
cirl and the other iis the secondary parcnt. A 
part ol tlie primary pnrenl i s  selcctcd and 
replaced by ;icotnpatihlc port from the sec- 
ondary p~ircnl. Thc offspring produced 
must he valid ecconliiig to  the grainmar. 

Mulalioii i s  iin asexual opefiilioti. A paii 
in  the paretit:il rule i s  sclcclcd and rcplaced 
by a randomly gcneratcd pin. The oflspring 
has lo he malid according to the gratntixil: 
thus, ii selected part can unly tnutiitc to an- 
other part with a coinptitible stroclure. 

Tl ied~~ippi i~gcondi l ion [ Ihl isagenetic 
operator lor rulc Icarning, to w o i d  sub- 
sumed rdcs. The rules cvolvctl in GGI’ 
may be too restrictive and include rcdun- 
daiil cotislrainls. The clroppi tig cunditioti i s  
used to gencwlizc rules. A rule can bc gcii- 
eralized if one descriptor iii llic antecedent 
part i s  drnppcd. The dropping coiidition 
rendoinly sclccts uiic attrihutc descriptor 
ancl tlicii lurtis i t  inlo “any.” That particul;ir 
;ittribule is  then iio longcrcoiisidcrcd in the 
rule. Fur exaiiiplc, the parcnt: 

i(_ attrS.=O and attr2 bclween 100 
150 mil a t t r 3 f 5 0 .  then a t t r i l = T .  

tnay ch;ingc lo: 

i l a t t r l = o  mil attril hctween 100 
150 and r i r iy ,  lheii a t t r 4 = T .  

Evaluation of Rules 
An cvaliiatiiin funclion hased on the 

suppurl~cotifidcncc lramework L I I i s  de- 
veloped as the fitness funclion i n  OIII 

rule-lcarning npproach. Suppori mcasures 
the coveragc 111’ ii rule. Ojr!/idrr,reti icior 
(6) i s  the confidcncc o l the conscqiicnllo 
bc [rue uiidcr the coiidition that the antc- 
cetlcnls are also truc. For a rulc “if A tlieii 
B”and withalraining setufNcases, sup- 
portisJA& ljl= N aiid thccoiifideiiccfac- 
lor is  I A& /ll/ Al. 

When evaluating lhc conlidencc ol a 
rule, we need to consider the average 
prii lxihil i ly of consequent (proh). l‘hc 
valueproh i s  equal 101 / I / /  N .  We define cj: 
/ J < l l ’ /  :IS: 

Thc log fiinclion iiieasiircs [lie order of 
m:igniliidc 1 i l  the ratio c:jfiirob, A high 
valuc of if’x~ri requires siinultencously ii 
high value ofq/and a high v;ilucoCthe ra- 
tio q7puh 

Sirpport i s  another measure to be coli- 
sidered. 1f.wpprt i s  below a user-defined 
minimum Ihreshiild (rizin_syq,ort), the 
confidence f:tclorol~he rule i s  based on a 
small  iiuinbcr iil training examples, and 
we j u s t  ignore tlic conlideiicc fietor. 

Our limcss function i s  dcfinzd LO be: 

ifsiippnrt < rniri-,~iippiirt theri 

C1.W 

I ’ O M ’ ~ ~ ~ f ~ ~ ~ S S  = .Sll/J/Jllrl 

raw_,titire.ss = wl x ,v i ipprt  

+ 102 x port (2) 

where thc weights IO, aiid CO> arc user dc- 
fincd and iiscd lo conlrol tlic llalaiicc be- 
lwecii tlie confidcnce and tlic support in  
Icarniiig. ’l‘hcsc two values have bccn set 
to one aiid eight, respectively, so that the 
conlidenccollherulcplays a tnorc impor- 
l“ rule in the cvalualion functioii. 

Token Cnnipetition 
The lokcn competition 1151 tcchniquc 

is  cinpluyed in our rule-lc;irniiig approach 
to search fur  a sei 01‘ rules iiistCatl of just  
one rule. The conccpl i s  a s  fiilluws. In  the 
natural etiviroiiinent, oncc an orginism has 
loiind ii good placc for living, il wil l  try lo 
exploit th is niche aiid prcven~ iiitcrlopers 
lroin sharing the resources. l’hc weakcr in- 
lerlopera individuals w e  hcncc fiirccd to 
explorc atid find their own niches. In this 
way, the iliversily of the population is  in- 
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creased, so that hcalthy organisms are 
inaiiitaiiied i n  diit'erenl niches. 

Based nn this mechanism, we assume 
that each record in the training set can pro- 
vide a resource, called a token. If a rule can 
malch a record, it sets a flag to indicate tlie 
token is seized. Other weaker TuIcs, then, 
cannot get the token.Thepriority ufreceiv- 
ing tokens is determined by (lie strength of 
the rules. A rule with a high scnre nn 
mwJhess [Eq. (2)l can cxpluit tlie niche 
by seising as many tokens as it can. The 
other rules ciitcriiig the same niche will 
have their strength decreased, because they 
camiotcompcte wilh the stronger rulc. l'hc 
fitness score of cach individual is modilied 
based on the tokens il can scizc. l h e  inodi- 
fied fitness is defined as: 

mud(f iedf i tness  = rniv- fitness x 
count liderrl (3) 

whcre mn~fitnes.r is Llic fitness score oh- 
lained from the evaluation function, coiint 
is the number uf tokens that the rule actu- 
ally seized, and ideul is the total numher 
of tokens Lliat it can seize, which is equal 
to the number of records that the rule 
matches. 

NI. Suppose further that lhe data in the 
tlatiisct exhibit tlie following twodepend- 
ency relalionships: (I) tlie nodes N, and 
N , .  ' d e  independenl: and (2) the node N, 
depends on both N ,  and N2 The total de- 
scription length of the structure C ,  will be 
less than that nftlie structure G2, since G ,  
fits inorc closely to the data. 

To search for a good network struc- 
ture, we dcvclo]~ed ;in approach called 
MDLEI' 114, 21 1, which uses evolulion- 
ary prugrarnming lo  optimize tlic MDL 
melric lo  learn tlic hest Bayesian network 
structure. A Bayesian iietwork is a DAG. 
A set of DAGS is randomly crealed Lo 
inake up the initial population. Each DAG 
is evaluated by the MDL metric. Then, 
each DAG produces a child by perform- 
ing a number of mutations. The child is 
also evalifiited by using the MDL metric. 
The next generation 01 population is se- 
lected by tuuriiaincnts among the parents 
and children. One-half nf DAGS with thc 
highest toiiriiament scores are retained l'or 
tlie next generation. The process is re- 
pcatcd unlil tlie maximum numberol'gen- 
eralions is rc;iched. The nelwork with the 
lowest MDL score is output as tlie result. 

Offspring in BP arc produced by using 

MDL metric to Llie parental network, or it 
deletes an existing edge with a largc 
MDL metric. 

Distretizing Continuous Variables 
while learning Bayesian Networks 

A Bayesian network can only reprc- 
sent discrete variables. One approach to 
handlc ilatabases with coiitiiiuous V X -  
ables is 111 iliscrctize thcm first. The coli- 
tiiiuoiis variables arc usually discretized 
by thrcsholds spec ikd  by ;I human. How- 

etimlion policies will 
produce different network structures. 
Causality wil l  he lost if t i c  discretization 
is not sui(;iblc. l hus ,  
smirch for the best di 
before Bayesian ictworks are induced. 

A discraiziition sequrmcr, h, defines ;I 
Ihnclioii tllat maps a continuous variahle 
lo a discrctc variable. Each discretization 
sequence coiilaiiis ii list of Lhreshuld val- 
ues. The variable will be discretized ac- 
cording to the range specified by the 
thresholds. A discretiirrtioii /io/icy, A = 
(h, : X, is cn~i~inuous) ,  is 21 collection of 
discrctisation seqiieiiccs for each coiilinw 
n u s  variable. This policy dcfiiics a new set 

Learning Bayesian Networks a number of mutations. The probabilities 
of using I ,  2 ,3 ,4 ,5 ,  or 6 inutations are sct 
to 0.2, 0.2, 0.2, 0.2, 0. I, and 0.1, respec- 

of variables,  U = (X;, , . . ,X;,],  where 
x: = ,t>., ( x i )  i f  x i  i s  c o n t ~ n u o u s  alld 
~~, 

from Discrete Variables 
Residcs learning rules from dale, we tively. ~l~~~~ pamlneler ilrcc' X, = X i  OthcrwiSe. 

have d c v c b e d  811 aPProac11 to learn 
Bayesian network structures from <lis- of the offspring occlIr frequently MDL for Discretization Policy 
Crete variables. The approach is based on 

lected to eiisurc illat minor modifications 

tliali do substantial variatiolls. Thc Illllta- Friedman and Goldsrmidt 161 extend 
evolutionary prograiiiming (El') and the 
ininimum description length (MDL) prin- 
ciple. The MDL principle has bccn ap- 
plied lo Raycsian network learning in our 
previous work I I3 I .  The principle I I R I 
slates thatthe best model ofacollcctionof 
data is the one that niinimim the s u m  of 
the encoding lengths of tlie data and tlic 
model itself. The MDL metric is defined 
in [ 12, 131 to ineasure Llic total clescriptinn 
length, DL, ofa network structurc, G. The 
total description length ora network is the 
sum of description lengths of each node. 
This length of each nu& is defined hased 
on two components, the nciwork rlescrip 
tion length and the data dcscripiion 
leirjith. The former is the description 
length for encoding the network structure, 
which ineasurcs the simplicity nf the net- 
work. The latter is the description length 
for encoding the data, which measures the 
accuracy of the network. For instance, 
consider two iietwork structures, GI and 
G2. Suppose G ,  has the striiclurc, N, + N, 
t N2, ancl C, has thc structure, N, + N3 + 

tioii operators modify the edges of a DAG. 
If a cyclic graph is formed after [lie mutt- 
tion, edges in [lie cycle. 
keep it acyclic. The approach uses four 
inititation operalors, which arc designed to 
inodil'y DAGS, with the same probabili- 
tics of being used: 

I. Simple mutation randomly adds an 
edge between two nodes, or randomly ilc- 
lctcs an exisling edge from the parent. 

2. Reversion inulalion randomly se- 
lects an existing edge and reverses its di- 
rection. 

3. Move mutation randomly selects an 
existing edge. It iiiuvcs the parenl o l  the 
edge to another node, or moves the child 
of the edge to another node. 

4. Knowlcdgc-guided nulat ion is 
similar to simple mulation, hut the MDL 
scores of the cdgcs guide the selection of 
the cdgc to be added or rcmovcd. The 
MDL metric of all possible edges i n  the 
network is coinpuled helorc the learning 
algorithm starts. This mulation operator 
stochaslically adds ;in edge with a small 

~. 
lhc  M D L  s c o r e  t o  cv; i luale  tlie 
discretization policy while learning 
Bayesian inetwork structures. 'The original 
training data, U,  is discrctiscil into a iicw 
data set, U'l:. A Bayesian network struc- 
lure, C,  for the discrctizcd variables, U ! ,  
is leariicd lrom I F ,  The new dclinition of 
tlic MDL score i~icludes tlic description 
length of the network as well as descrip- 
Lion length of the discretization policy. 
This MDL scow is composed of three 
parts. The firs1 part is tlic description 
l eng th  of t h e  n e l w o r k  u n d e r  t h e  
discretized data, i i s  defined ahove. The 
sccund part is the length for cncodiiig the 
particular discretization policy, A, over a l l  
of the possihlediscrctizetion policies. The 
third part is the encoding length for recon- 
structing U from U : ~ .  

Friedman and Goldsnnidt havc also 
described a greedy approach for learning 
discretization policy and Bayesian net- 
w o r k s .  T h i s  a p p r o a c h  learns  l h c  
discretimion policy and network struc- 
tures alternatively. It starts with a n  initial 
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discretization policy and learns Bayesian 
networks from ihe discreiizcd daia set by 
using the MDL metric. Rased on the 
learned structure, a discrelieation policy 
i s  Icarned by using the MDL metric. In 
learning the discretization policy, only 
one variable i s  rediscretizcd a1 n tiinc. 
The d i ~ e r ~ l i ~ a t i u ~ i  sequence of this vari- 
able i s  reset to empty (i.e., ino thrcsliold 
va lues )  t'irsi. The greedy approach 
smirches for ilre "spl i t "  thal gives the 
largcst decreiisc in the MDI. metric. 'l'hc 
process i s  rcpcaled unii l lherc i s  iio ini-  
provemcnl. 

However, the greedy search algorilhni 
can he easily trapped in a local optima 
This approech alsogrcally dcpends on the 
init ial settings. IS rhc init ial gucss o f  
discretization policy or iictwork sirticlure 
i s  no1 good, the result ciin he puiir, 

Learning Discretization Policy 
Using Genetic Algorithms 

A FA i s  qiplied to vptiini7e the new 
MDL inietric, end thus the hest nctwork 

well as the besf discretization 
policycmbc leamed. Ilk less likclylhattlic 
algorilhin wi l l  hc trapped in a loci11 optima, 
because thcrc is a populaiioii vf ini1ividu;ils 
io explore the search space iii parallel. 

Our approach iiscs Ihe i temivc alp- 
proach, as suggested in [Sl. I t  starls with 
an initial discretization policy. MIJLEP i s  
then uscd to learn llic best nctwork s~ruc- 
turc. Based on this structure, a CA i s  iised 
to lmirn the hest discreiieiitivii policy. 'The 
process i s  iterated iiniil the inilxiii i i i in 
number of itcriilioiis i s  rci~clied. 

The F A  siarts with an initiiil randoinly 
gencwted population. Each individual in 
the populetioii i s  cvaluatcd by tlie iicw 
MDI. score dcfinctl in 161. The good iiitli- 
viduals arc sclccted io produce offspring 
using tlic genetic vpcrators. 'Ihc off- 
spring, in iurti, ploduce tlic i icx~ genera- 
t ion uni i l  the inaxiiiiiiiii number o S  
gcnerations i s  reached. 

Individiial Representation 
A cliscrelization policy coiisists u l  

discretieation sequeiiccs lor tlic coiitiiiii- 
The bit string of variable a :  

iiomber o f  biis iii each string equals the 
number ol inidpoinls values of the v u -  
able (i.e., if variable i has ,Y, different viil- 
Lies in iheirniningdatn, thclengtliofils hi1 
string i s  s i  -1). A "I" in the hi1 incans the 
correspondiiig mid-pint is included as ii 
thrcsliold in the discretimiion seiliieiicc. 
For example, in Fig. I, tlic midpoints after 
the second, sixth, and ninlh values are iii-  
cluded in Ihe discretization sequeiicc 01 
viiriahle (I. 

Tu Iprovidc a more uscful dis- crcticalion 
and simplify tlic coinpiitation, the user can 
limit the inaxiiiiuin nuinher OS ihresholds 
appearing in the discretizalion sequcnce. 
Hence, the iniaxiinum nuinher if "1"s in 
tlic bit string i s  liiniled. An individual 
smres the concatcnalioii of the hit strings 
of each contiiiiious variable, a s  shown iii 
7:. * 

0 1 1 0 0 0 1 1 0 0 1 

midpoint VHIUC. One parent i s  se- 
lcctcd lor the shirl operator. For 
each variablc, a bi t  wi th a " I "  i s  se- 
Icclcd. There i s  a 50% chnncc that 
th i s  bit i s  shifted. IS a shift uccurs, 
tlie hit i s  set io "0" ancl its neighbor 
hi1 (either IeSi or righi, with eqiial 
prohability) is  set to "I ." Thus, the 
opcraior perforins a local s c ~ r c h  Sor 
better threshold valucs. 

that appear iii thc training data. Each indi- 

discrclimlioii pvlicy and should hcncc 
encode iliesc ihreahold milues. 

v idual  should reprcsccnl a ~ p o s s i h l e  

learning Results 
Fracture Database 

Result,? os l3oyesian Network L~nrn ing 
The relationships amrmg ihe attributes arc 
enalyzcd hy learning a Btiyesian nctwork. 
We havc used a population size o i  S(1 for 
both MDLEP and GA. The discovered 
inetwurk structure i s  showii in Pie. 3. l'hc 

0 ~ 1 / 0 / 0 ~ 0 ~ 1 ~ 0 ~ 0 ~ 1  I110101 1 1 0 /  1 / 0 1 0  ' ' .  
... variable a variable b I 

oils variables, a n d  each discrclimion sc- 
quencc consisls oC threslnold values for 
discretimiion. Wc can liinii the ihresholds 

1. A hit string represents a discretization seqoence. 

io inidvoinls hetwccn siicccssive vnlucs a 

wc liave iiscct oiic hii string to reprc- I 1 
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Diagnosis 

Operation Stay 

Year 

3. The discovered network structure for the fracture dataliase. 

Table 3. Discretizatlon Policy of the Fracture Database 

A g e :  [0-41 [5-91 [IO-121 [13-161 

Day:  [I-311 

Month: [I-IZ] 

year: [1984-1987][198@-19911[1992-1996] 

Stay: [0-31 [4-121 [13-10811 

scrvcd I rom the database that tlic 
length or slay in hospital i s  longer in 
the years 1985, 1986, and 1994, and 
open-reduction occurs more frc- 
quently for carlicr years. 

R e s ~ 1 f . s  of Rtde Lenrriing 
don the learned Bayesian network, wc 
ve a causality modcl between diagno- 

sis, upenition, and slay. We wish to learn 
knowledge about these attributes. First, sex, 
agc, and admission dale arc tlic possible 
causes of diagnosis. Second, these thrcc at- 
trihutcs ;iod diagnoses arc the possible 
caiises o l  operation ;ind surgeon Tnird, 
length or stay l i i is  iill other attributes as pos- 
sible causes. A gl.animar i s  written as a ten-  
plate for thesc llircc kinds of rules. This 
graminar i s  presented in Appendix 1. We 
have iiscd a population s i x  01'300 to itin for 
SO generations in the rule-learning stcp. The 
discovered rulcs are listed in Appendix 2. 

eration, and the cffcct o f  diagnosis and u p  
erationonlengrliofslayiiig inthehospital. 

The results have beeti evaluated by 
medical experts. Previous aiialysis of 

rraclurc patterns only gave an overdl i i i -  
jury pattern. Our system automatically 
uncovcrcd relationships among diffcrcnt 
attribute values. The rulcs rcvcded some 
interesting patterns iiiid rules that wcrc not 
known bcforc. The system clin pmvidc a 
good nroniti)r of  change of pallern if thc 
data mining process i s  contiiiiicil longitti- 
dinally over the years. It also provides the 
in format ion for x t t i n g  u p  a knowl-  
edgc-based instruction system to help 
doctors in training. 

Scoliosis Database 
Rcsu1t.s oftlnyesinii Nc,lwork Lerrniing 
In th is  database, the attributes Age, 
IstMCDeg, 2ndMCDeg. D e g l  to 
Deg4, ;lnd Mens arc colltinllous wlri- 
ablcs. For the altributcs iiicmuring de- 
grccs, tlic value 0 i s  t i  spccial value, as i t  
incalls the curve docs not exist. For Mens, 
Llic valucs -9 and 99 have special mean- 
ings, which intliciitc no inenstruatinn. 
Thcsc viilues are apeciiilly hmdlcd siicli 
that they arc always discrctized Srom 
other values. 

The learning of nctwork strtictiires and 
discretimtiun policies arc alternated lor 20 
iltratioiis. For the learning ol  network 

svuclums usiiig MDLEP, we havc used ti 
populationoS50 to run Sor I OOgcncrations. 
In ciicli i terat ion o f  the learning of 
discrcliaation policics using GAS, the pop- 
iiliition size i s  5Oand tlie numherorgcncra- 
tioiis i s  IO. The discovered Bayesian 
network structure learned Sroin this data set 
is  showii in Fig. 4. The discrdizalion pol- 
icy i s  shown in Table 4. The age i s  dividcd 
into 0.12 (child), 13-16 (adolesccncc), 
17-2 1, and over 22. 'She dcgrccs and Mens 
are divided into different ninges. 

The discovered Bayesian network 
shows some physical rclationships among 
attributes. For example, the network 
shows that lstMCDea and 2ndMCDeg 
arc related with DegZ. The two inajor 
curves are defined i is  those with the larg- 
est degrees among the four curves, mi 
most l ikely Degl i s  involved. D e g l  and 
Deg2 can imply Deg4 and Deg3, hccausc 
i T  thc dcgrce of first or sccond curves are 
sinall, thcdcgrccs ofthe remaining curves 
arc either zero or small. The inetwork also 
r c v ~ a l s  some obvious piitterns; Age aC 
feels Mens and RI (the malurily), and the 
value of Mens affects Sex. I n  addition, 
the lol lowing relalionships arc observed: . The value or Operation affects the 

viilue of 1stMCDeg. If Operation 
i s  equal to obscrvatioii, the value 
1stMCDeg i s  SmdIcr. If Opera- 
tion equals to surgery, the value of 
lstMCUeg i s  large. . The value of Deg3 aflects the valuc 
o f  lstCurveT1. If ~ e g 3  i s  large, 
thc spine has three or iiinrc curvcs, 
and most likely tlie I'irst curvc starts 
a1 the first vertehra TI. . The valuc of Deg3 td'l'ccts the valuc 
OfTSIDir. I f D e g 3  i s  small, inostof 
lhc time the direction or trunk shirt i s  
111111 . The valueof Treatment ;iffccts the 
value o l  IstMCDeg. If trcc;itment is 
bracing, iiiost likely the dcgrce of the 
first inajorcurvc i s  snlall. In contrast, 
if operation is  needed, tlic degree of 
the f irst major curve i s  usually large. 

/<e.sult,s off'Kule Lnrminji 
Medical experts arc intcrcstcd i n  iiiducing 
k n u w l c d g e  about  c lassi l ' ical ion of 
scoliosis. Scoliosis can he classified as 
Kings, thor;lcolunrbar (TL), and lunihar 
(L), while Kings can bc further subdi- 
vided into K-I, 11, 111, IV, and V. This do- 
main knowledge has hecn incorporated 
into the design of the vule grammar. 

T h c  populat ion size used i n  the 
rule-learniiig step i s  100 and the inaxi- 
mum number of generations is  50. For 
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each class of scoliosis, a number of rules 
are ohlained. The discovered rules are 
listed iii Appendix 3. 

l'he rules discovered are gcnci.ally 
consislent with the knowledge 01 medical 
experts. However, lherc i s  an unexpected 
rule for [lie classilication 01 King-11. Un- 
der the conditions specified i n  the iiiite- 

cedcnls, our system found a rule with a 
conlidelice faclor of 52% that the classifi- 
calion i s  King-11. Iluwcver, the doinain 
expert suggests [he c lass should he 
King-V! After an analysis olthc database, 
wc found lhat serious data errors cxislcd 
in [he currcnl tlalaliiisc ;ind lhat some re- 
cords contained an incorrcc~ scoliosis 
classification. The rtilcs for TL and L also 
showed sume~liing dilcerent i n  compari- 
son with thc rules suggested by the c l i n -  
cians. Accord ing to our rules, the 

ication always depends on the loca- 
l ion ofthefirst mujorcuriv,whilc accord- 
irip 10 the dorrinin experf, /lie clci,s,sfic~i- 
tion always rlepend,~ 011 r l ip  larger itiujor 
curve. After discussion with the doiliain 
cxpcrl, il was agreed lhat the enisling rulcs 
were inot defined clcarly enough and that 
our rdes were inore acculale l l ia i i  theirs. 
Thus, our rules provided hints lo the c l i n -  
cians lo reformulale their concepts. 

The largeslcllcct on the clinicians lrmn 
the ~lalainiiiinganalysis i i f lhc scoliosis da- 
tabase is  the fict t l ial  n ~ a ~ ~ y  rules set out in 
[lie clinical practice are nut clearly dcfincd. 
The iisual clinical iotcrpretation depends 
on suhjectivc experience. Our data inining 
effort revealed quitc ii number u l  niis- 
matches ill thc classification on the type o l  
Kings curves. Aflcr acareful review by thc 
senior surgeon, i t  appears tlial [he databasc 
entries lbyjuiiiorsurgeons inay 1101 heaccu- 
rille and that the data inining rules discov- 
crcd are i n  fact more accuriitc! The 
clnssificntion rules must, thcrclorc, be 
quantificd. These rules can lielp iii [lie 
training o f  doctors ;md XI as ail intelligent 
means ti1 validate and evaluate Ihc iiccLi- 
racy of the clinical dat;ibase. 

Conclusion 
We havc presented our approach lor 

knowledge discovcry from iwo specific 
medical tlmlxases. First, rules are Icarned 
to represent the inleresting pallerns of thc 
ilala. Second, Bayesian nclwnrks are i l l- 
duced to act :IS causality relationship 
i i iodc ls  among l h c  al l r ibutcs.  T h e  
liaycsian nelwork Iceming process i s  tli- 
vided into two phases. 111 thc [irsl phase, ii 
discrc t izat inn po l i cy  i s  learned 10 
discrelize [lie continuous variables, and 
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4. The discovered network structure for the scoliosis database. 

Table 4. Discretization Policy of the Scoliosis Database 

A g e :  [0-121 [13-16] [17-21] [22-411 

1stMCDeg: [5-131 [i4-29] [30-351 [36-521 [53-112] 

7ndMCDeg: [O-01 [5-231 [24-36] [37-65] 

Uegl: [3-11] [12-35] [36-52] [54-l121 

DagZ: [O-01 [2-26] [27-36] [37-523 [53-931 

D e g 3 :  [0-0][3-21] [22-601 

Mens: [-9 - -91 [0-41 [5-301 [99-99] 

llicii Baycsian network slrticlurcs a re  
induced in the second phase. We employ 
advanccd evolutionary algorithms such as 
generic genetic programming, evolutioii- 
ary progrtiinming. and genetic ;ilgorilhms 
lo conducl Ihc Icxn ing tasks. 

Prom llie lracturc ilal;ihesc, we discov- 
ered knowledge about the patlcrns o l  
child lractiircs, Frnin the scnlinsis data- 
base, wc discovered knowlcdge aboul [lie 
classificatiiin 01 scoliosis. We also fbund 
unexpcctcd rules that Icd lo discovery ot 
crrors in lhc database. Thcsc results deiii- 
oiistliile lhat the knowlcdgc discovery 
process can find interesting knowlcdgc 
ahout tlic &ala, which can providc novel 
clinical knowledge iis well as suggest re- 
(Inciiiciils of the existing knowledge. 
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Appendix 2. The Best Rule Set learned from the Fracture Database 

Type I Roles: About Diagnosis 
I. Ilulnertls 
ii'agc i s  lhelweeii 2 and 5, then diagnosis i s  I-lumcriis. 
Fitness: 3.48 
Confidence: 39.75%'; Support: 8.42%; I'rohahility ofconsc- 
qocnl: 23.43% 

2. Radius 
i f  sex i s  M. a w l  age i s  helweeii I I and 13, tlicii diagnosis is 
Radius. 
Fitness: 3.04Cnnfidcnct:: 5 I .43W: Siippml: 10.0I %; I'rnhn- 
hi l i ty of conscqucnt: 36. 10% 

Type I I  Rules: About Opcretion/Surgcon 
I. Iladius versus CK+POP 
i lage is  helween 0 and 7, ani1 adinissinti yearhctwccii 1988 
and 1990, iiiid diagnosis i s  I<;idiiis, tlicn opel-aliun i s  
CR+POP. 
Fitness: 8.56 
Confidence: 40.6 I %: Support: 3.1%; I'riibahilily ofcoiisc- 
qiicnl: 17.72% 

i lagc i s  belwccn I and 12. and aihiiissiun ycarbclwccii 1989 
and 1992, and diagnosis i s  IJlna, Llieii iiperalion i s  CR+POP. 
Filiicss: 7.19 
Coiifideiice: 47.07%; Support: 3.50%; Prnhehilily oi' come 
quctit: 17.729" 
if diagnosis i s  IJlna, then operatioii i s  CKtI'OP. Fillless: 
4.23 Conlidence: 36.17%; Support: 7.40%; I'rohahilily o f  
cimscqucnt: 17.72%' 

4. Rnditis vcrsus CR+K-Wire 
if admission y c ; ~  is  hctwccn I 902 iind I W4,  and diagnosis i s  
Radius, tlieii operation i s  CR+K-Wire. 

Cmli i lcnce: 34.03%1: Suppm1 
qucnt: 16.23% 

5. f [uincriis versus CR+K-Wire 
if dingnosis i s  Iluiiicros, then operalion is  CR+K-Wire. 
Fitness: 2.52 
Coiifidencc: 27.96%; SupporI: 6.06%: Prnbabi l i ly  ofconsc- 
qocnl: 16.23% 

X3%>: Priilxibilily nfconse- 

2. 'l'ihia versus No Operation 
i f age i s  hclwccn I and7, xnddingniisis isl'ibia, [lien opera- 
tion i s  Null (i.e. !io openition). 
Fitness: 7.86 
Conficlcnce: 74.05%,: Suppnr~: 3.7X%: Pnhahil i ly of conse- 
qtlcllt: 38.1 1% 

3. Ulna ve r s~ ib  CR+T'OP 

6 .  Uliiii \'erstis OR 
i fageis betweeii I I and 15, and diagnosis i s  Ulna, then opcr- 
iitinii i s  OK. Fitness: 3.24 Confidcncc: 33.20%; Support: 
3.25%; Prohahilily o f  coiiscquciil: 18.26% 

7. Age versus OR 
ifscx is  M, and age i s  bclwccn 13 iind 17, and admissirin year 
hclwccii Ic)X5 illid 1989, tlicii npcl-etioii i s  OR. 
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Filness: 2.51 
Confidence: 30.53%; Supporl: 3.22%; Psohabilily of coiisc- 
quent: 18.26% 

Confidencc: 64.90%: SU[JpOI'l: 12.22%,; Prohahility of con- 
seqiienc: 36.5 1 %  

8. Age vessus No Operation 
ifage is hclween Oand7, lhcn operatioil is Null (i.e. nnoper- 
ation). 
Fitness: I .OX 
Crinfidencc: 43.33%; Support: 16.22Yo; Probability ol.ciiii- 
sequent: 38. I I % 

Type 111 Rules: About Stay 
I .  Feinus vcssus Stay 
if admission y a i r  between I985 and 1996, and diagnosis is 
Femur, then stay is hclween 8 aiid 2000days. (i.e. stay 8 days 
or more, since 2000 is the iniixinium value of slay) 
Fitness: 21.99 
Confidence: 70.875; Support: 3.14%: Probability oi'consc- 
quent: 10.24% 
i f  diagnosis is Fcmus, then stay is betwccn 5 and 2000 days. 
(i.e. stay 5 days or more) 
Fitness: 18.70 
Confidence: 80.99%; Supliorl: 3.30%; Probxbilily ulconse- 
qoent: 19.22% 

4. No operation versus Stay 
i lage is bctwccn 10 and 14, and admission year is bclwccn 
I987 and 1996, and diagnosis is Radius, and operatioil is 
Null, then stay is between 0 and I day. 
Filness: 9.55 
Cunfidcnce: 77.(10%; Support: 3.09%; Prubabilily ol'coiise- 
quent: 35.65% 
i l  operation is Null, then slay is hetween 0 and I day. 
Fitness: 3.38 
Confidence: 52.06%; Support: 19.62%; Probabilily of con- 
scl~uenl: 35.65% 

5. Radius versus Stay 
ifage between 6 and 12, and admission year is between I989 
and 1992, and diagnosis is Kadius, and opcralion is 
CR+POP, hen stay is bctwccn I and 2 days. 
Fitncss: 6.01 
Confidencc: 81.1 I % ;  Supporl: 3.22%: Psobabilityolconse- 
quenl: 5 I .29% iS diagnosis is Kadius, and operation is 
CR+POP, then slay is betwccn I and 2 days. 
Filness: 5.49 
Confidcncc: 78.57%; Support: 10.22%; Probability of con- 
scqucnl: s I .29% 
iSagcisbctwccn0antlX,aiiddiagiiosisisKadius,lhensleyis 
bclween 0 and 3 days. 
Fitness: 2.89 
Confidence: 86.92%; Support: I O .  19%:; Probability of con- 
scquclll: 71.30% 

2. Tibia vcrsus Slay 
i lage hctwecn 5 and 12, aiid &ignusis is Tibia, theil stay is 
between 3 and 2000. (i.e. slay 3 days or more) 
Filness: 8.93 
Confidence: 78.92%; Suppost: 5.05%: Probahilily of cmise- 
quenl: 39.15% 

6. Humerus versiis Slay 
ifdiagnosis is Hunresiis,;indopcr~ilion isCR+K-WIRE, then 
slay is bctwccn 2 and 5 days. 
Filness: 3.90 
Confidence: 67.30%: Support: 4.56%; Psnbahility olconse- 
quent: 47.164 

3. OR vcrsus Slay 
ilagebetween2allcl 14,anddiagnosis isHulnerlls, andol,cs. 
ation is OR, lhen stay is between 3 and 25 days. 
Fitness: 8.86 
Collfidcncc~ 7s,578; Supl,or,: 3,520/c; Psol,ability ofcunsc- 
quenl: 36.5 I % 
if admission is between I985 and 1987, and opesalion is OR, 

Fillless: 6.99 
Confidence: 65.52%; Supporl: 3.47%; Psohiihility oiconse- 
quent: 33.85% Filness: 2.58 
if operation is OK, then stay is between 3 and 25 days. 
Filness: 6. I 3  qiicnt: 33.85%1 

then slay is between 3 and 10 days. I. Year VcKsUs Slay 
iladmission yeas is between 1985 and 1987, then stay is be- 
tween 3 ;ind 10 days. 

Confidence: 46.98%; Suppost: 8.65%; Probabilily of conse- 

Appendix 3. The Best Rule Set learned from the Scoliosis Database 

Rilles for Classification 2. il. IstMCCrcalcr=N and Is tMCDcg=2I-80 and 
1 sIMCApes =TILT1 2 and 2ndMCApex=L2-L3, then Kbig-l 

I. i l  IstMCGreates=N and I slMCApes='TI-TX and King-I. 
2ndMCApes=L3-L4, lhen King-I. Fitness: 19.06 
Filness: 20.20 Coiifidcncc: 96.67%; Supporl: 6.22%; Probability ofconsc- 
Confidence: 100%; Supporl: 0.86%; Prohahility of conse- quent: 28.336 
qucnl: 28.33%> 

3. il. IslMCGre;itcs=N and IATiIl=Y m d  I slMCApex 
=TI -T I 0  and 211dMCApcn=l,2-LS, then King-I. 
l'itncss: 18.92 
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Confidcncc: 96.150/0; Support: 10.73'Yo; Probability ofcon- 
scqitcnt: 28.11% 

King-ll 
I. if IstCurveTI=N and IsIMCGrcalcr=Y 
tinil ls tMCDcg=16-45 arid 21idMCDcg=28-54 ancl 
I slMCApex =T4-T1 I imd 2ndMCApcx=L2-L3, lhen 
King-ll. 
Fitness: 16.63 
Conlidencc: I00.00%; Support: I .07%; I'rohahility or coli- 
sequent: 35.41 %, 

2. il IslMCGrcatcr=Y ancl TAl'ill=Y and lslMCDcg=22-77 
and 2ndMCDcg=I9-54 atid IstMCApex='I'-1'I I and 
2ndMCApcx=L2-L2, then King-ll. 
Fitness: 12.85 
Confidence: X7.88%; Suppurl: 6.22%; Prnbability ofconsc- 
quenl: 35.41% 

3. i T  lslMCGrcatcr=Y and L4Tilt=Y and 

King-TI. 
Fitness: 10.52 
Confidence: 79.76%; Support: 14.38%; Pmb:ibility <if con- 
sequent: 35.41 % 

4. ir I stMajorCurveC;realer=Y and 2ndMCDcg=8-95 and 
IstMCApcx=T1-TI I imcl  211dMCApex= T4-TI0, then 
King-II. 
Fitness: 3.32 
Confidence: 52.17%; Support: 7.73%): Probability or consc- 
qucnl: 35.41% 

Kitrg-Ill 
I .  if IstCurveTI=N and IATilt=N and IstMCApex=Tl-T9 
and 2ndMCApcx=Null, then King-111. 
Fitness: 5.87 
Confidence: 25.87%; Support: 0.86%; Prohahility ofconsc- 
quent: 7.94% 

2. i f  L 4 T i k N  and IstMCApex=T?-T6 and 
2ndMCApcx=T2-Tl I, then King 111. 
Fitness: 4.Xh 
Confidence: 25.1 1%; Supporl: I .93%; Probability ofconse- 
quent: 7.94% 

Kinfi-IV 
I .  if I slCurvcT I =Y atid I stMCGrealcr=Y ; incl  L 4 l ' i k Y  
and I stMCApcx=LS-T I O  and ZndMCApcx=T9-L5, tlieii 
King-IV. 
Fitness: 11.10 
Conl'idcncc: 29.4 I %; Support: 1.07%; Probahility of consc- 
qiictit: 2.79% 

I stMCApex=Th-TIO and 2ndMCApcx=L2-L5. then 

2. il IslMCGrc;itcr=Y and IATiIl=Y atid 

King-IV. 
Fitiiess: 6.02 
Confidence: 19.35%; Support: I .29%>: Probability olconsc- 
qucnt: 2.79% 

KiizR-V 
I .  il' IstMCGreiiter=Y and L4Tilt=Y and 

King-V. 
Fitness: 22.75 
Cotifidetice: 62.50%; Support: 1.07%: Probiihility olconsc- 
qucnt: 6.44% 

2. if I stMCGrcalcr=N iind 2ndMCDcg=37-70 and 

King-V. 
Fitness: 19.98 
Cunlidcncc: 57.14%; S~pl~or I :  0.86%; Probabilily ofconse- 
quent: 0.44% 

3. if I stCurveTl=Y and IstMCGreater=Y and IATilt=Y 
and I s tMCDcg=3-35 and I s tMCApcx=T2-Th and  
2ndMCApcx=T7-T9, llicii King-V. 

Coofidcncc: 50.00%~; Suppnri: 0.86%; Probability of conse- 
qucnl: 0.44% 

77' 
I .  if latMCCrcater=Y iind IstMCApcx=TI L T l 2  and 
2ndMC Apex=N til I ,  tlicii TL. 

Conlidcnce: 41,18%; Supporl: I .SO%; Probiihility ol'consc- 
qoent: 2.15% 

I stMCApex=TIO-L5 and 2ndMCApex='l'S-124, tlieii 

1 slMCApcx=T2-TS and 2nclMCApcx=T9-TI I ,  then 

IstMCApex=T4-T7 and  211dMCApcx=T2-'~ I I ,  then 

L 
I .  if IslMCGreatel-Y and IAl'ilt=N and 
I stMCApcx=ld-LS and 2ndMCApcx=Null, then L. 

IVitiiess: 26.32 
Confidcnce: 62.50%; Support: 1 .S17%; Probability nf coiise- 
lI1ICllt: 4.51Y" 

2. il' I slCurvcl'l=N and L4Tilt=N and 2ndMCDeg=Null 
; ~ n d  lstMCApex=LI-L? and 2ndMCApex=Null, then L. 
Fitness: 21.59 
Conlidcncc: 54.17%; Support: 2.79%; Probability olconsc- 
quent: 4.5 1 %  

3. i l  I s t C u r v c T I = N  and IstMCApcx=L2-L.? and 
2ndMCApcx=Null, tlicn L. 
Fitness: 16.84 
Conliilcncc: 45.45%; Supporl: 2.15%; Pmhihility ol'consc- 
quent: 4.51Y0 
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