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Abstract Missing values are an important problem in data mining. In order to tackle this
problem in classification tasks, we propose two imputation methods based on Bayesian
networks. These methods are evaluated in the context of both prediction and classification
tasks. We compare the obtained results with those achieved by classical imputation methods
(Expectation–Maximization, Data Augmentation, Decision Trees, and Mean/Mode). Our
simulations were performed by means of four datasets (Congressional Voting Records,
Mushroom, Wisconsin Breast Cancer and Adult), which are benchmarks for data mining
methods. Missing values were simulated in these datasets by means of the elimination of
some known values. Thus, it is possible to assess the prediction capability of an imputation
method, comparing the original values with the imputed ones. In addition, we propose a
methodology to estimate the bias inserted by imputation methods in classification tasks. In
this sense, we use four classifiers (One Rule, Naïve Bayes, J4.8 Decision Tree and PART)
to evaluate the employed imputation methods in classification scenarios. Computing times
consumed to perform imputations are also reported. Simulation results in terms of
prediction, classification, and computing times allow us performing several analyses,
leading to interesting conclusions. Bayesian networks have shown to be competitive with
classical imputation methods.

Keywords Missing values . Bayesian networks . Data mining

J Intell Inf Syst (2007) 29:231–252
DOI 10.1007/s10844-006-0016-x

E. R. Hruschka Jr. (*)
UFSCar/Federal University of São Carlos, São Carlos, Brazil
e-mail: estevam@dc.ufscar.br

E. R. Hruschka
Catholic University of Santos (UniSantos), Santos, Brazil

N. F. F. Ebecken
COPPE/Federal University of Rio de Janeiro, Rio de Janeiro, Brazil



1 Introduction

In real-life databases, some observations of one or more attributes (variables1) are typically
missing. These missing values are a critical problem for data mining methods, which are
usually not able to cope with them in an automatic fashion, i.e., without data preparation. In
general, there are many approaches to deal with the problem of missing values (Han &
Kamber, 2001): (a) Ignore the objects containing missing values; (b) Fill the gaps manually;
(c) Substitute the missing values by a constant; (d) Use the mean or the mode of the objects
as a substitution value; and (e) Get the most probable value to fill the missing ones.

The first approach involves removing the examples and/or attributes with missing
values. However, the waste of data may be considerable and incomplete datasets may lead
to biased statistical analyses. The second approach is unfeasible in data mining tasks,
because of the huge dimensionality of the employed datasets. The third approach assumes
that all missing values represent the same value, probably leading to considerable
distortions. The substitution by the mean/mode value is a common practice and sometimes
can even lead to reasonable results. However, it does not take into consideration the
between-attribute relationships, which are useful to the process of missing values
substitution. Therefore, we believe that the best approach involves trying to fill the missing
values with the most probable ones.

The substitution of missing values, also called imputation, should not change important
characteristics of the dataset. In this sense, it is necessary to define the important
characteristics to be maintained. Data mining methods usually explore relationships
between attributes and, thus, it is critical to preserve them, as far as possible, when
replacing missing values (Pyle, 1999). In other words, the imputation goal is to carefully
substitute missing values, trying to avoid the imputation of bias in the dataset. When the
imputation is performed in a suitable way, higher quality data are produced, and the data
mining outcomes can even be improved.

This work describes and evaluates two imputation methods based on Bayesian Networks
(BNs). Following Schafer and Graham (2002), maximum likelihood methods (e.g., EM and
Bayesian algorithms) represent the state of art for imputation. Considering high
dimensional datasets, BNs are usually more efficient than methods based on the EM
algorithm (Di Zio, Scanu, Coppola, Luzi, & Ponti, 2004). Since BNs may be seen as
classification/regression models (Heckerman, 1995), the imputation of missing values may
be seen as a prediction task (Hruschka Jr. & Ebecken, 2002). Thus, when having prior
information about the data (i.e., dataset), BNs can be automatically generated and
efficiently used to predict the most suitable values to substitute the missing ones.

The remainder of this paper is organized as follows. The next section approaches related
works found in the literature. Section 3 describes our Bayesian imputation methods, which
are evaluated in classification problems. The achieved results are compared with those
obtained by some classical imputation methods—EM (Expectation–Maximization),
Decision Trees, Data Augmentation and Mean/Mode imputation. Section 4 describes a
methodology to estimate the bias inserted by imputation methods in the context of
classification problems, as well as it reports our simulation results in four datasets that are
benchmarks for data mining methods. Finally, Section 5 describes the conclusions and
points out some future work.

1In this work the terms attribute and variable will be employed interchangeably.
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2 Related work

Techniques to deal with missing values are not recent (Anderson, 1946; Dempster, Laird, &
Rubin, 1977; Preece, 1971; Rubin, 1976) and many methods (most of them to survey data
analysis) are described in the literature (Little & Rubin, 1987). However, considering data
mining applications, missing values imputation has become an effervescent research area
only in the last years.

When working with decision trees, some practical results about ignoring instances with
missing values can be found in (Quinlan, 1986; White, 1987). Another approach involves
replacing missing values by the most frequent value (Kononenko, Bratko, & Roskar, 1984)
or by a nearest-neighbor based approach (Batista & Monard, 2003). In the probability
method (Lobo & Noneao, 2000; Quinlan, 1989), a decision tree is constructed to determine
the missing values of each attribute, using the information contained in other attributes and
ignoring the class. The dynamic path generation (Quinlan, 1986) and the Lazy decision tree
approach (Friedman, Kohavi, & Yun, 1996) do not generate the whole tree, but only the
most promising path instead.

Missing data may distort the statistical pattern of the sample, thus statistical learning
methods may not bring suitable results when employed in datasets containing missing
values. More on the influence of missing data to representative samples can be found in
(Gelman, Carlin, Stern, & Rubin, 1995; Little & Rubin, 1987; Rubin, 1976). Considering
the application of Bayesian methods to randomly distributed missing data (Han & Kamber,
2001; Rubin, 1976), a common way to find the posterior distribution of the joint
probabilities and the marginal probability of the variable containing missing values involves
treating missing values as unknown parameters and applying a MCMC (Monte Carlo
Markov Chain) method (Gilks, Richardson, & Spiegelhalter, 1996; Gilks & Roberts, 1996;
Spiegelhalter, Thomas, & Best, 1996, 1999). The Bayesian bound and collapse algorithm
(Sebastiani & Ramoni, 1997) works in two phases: bounding samples that have information
about the missing values mechanism and encoding the other ones in a probabilistic model
of non-response. Afterwards, the collapse phase generates a single value to substitute the
missing ones.

In multivariate analysis, some works apply the Multiple Imputation (MI) (Rubin, 1977,
1987) method to handle missing data. MI consists in using more than one value to fill the
gaps in the sample (for example the mean/mode of the more probable ones). The MI
method can provide good estimations of the sample standard errors and any kind of analysis
can be applied, but the computational cost is higher than in single imputation.

The EM (Expectation–Maximization) algorithm (Dempster et al., 1977) is a classical
imputation method. It assumes that missing data (Y ) are governed by a distribution f (Y|X,θ)
where X (data without missing values) and θ (i.e., mean and variance) are fixed. In a
nutshell, the EM algorithm consists in (Little & Rubin, 1987): (a) replace missing values by
estimated values; (b) estimate parameters θ; (c) re-estimate the missing values assuming the
new parameter estimates are correct; (d) re-estimate parameters, and so forth, iterating until
convergence. In other words, the EM algorithm is based on the likelihood function, and it
fills in the missing data based on a initial estimate of θ; re-estimates θ based on the
complete and filled data, iterating until the estimates converge. Depending on the
complexity of the density function that describes the dataset, the convergence may be
slow. More on the convergence rate can be found in (Friedman, 1997; Jordan & Xu, 1996;
Lam & Bacchus, 1994; Redner & Walker, 1984; Schwartz, 1978; Wu, 1983; Xu & Jordan,
1996). In addition, the computations necessary to the EM implementation are dependent on
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the particular application (density function and parameters). More details on the EM
algorithm can be found in (Bilmes, 1997; Dempster et al., 1977; Ghahramami & Jordan,
1995; Jordan & Jacobs, 1994; Redner & Walker, 1984; Wu, 1983).

Following Tanner and Wong (1987), the Data Augmentation (DA) method may be
informally described as the process in which observed data Y (whose distribution
depends on parameters θ) is augmented by the quantity Z (using a Monte Carlo sampling
strategy). Based on the multiple imputation idea, one can generate multiple values of Z
using the p(Z|Y ) distribution and then obtain p(θ|Y) as the average of p(θ|Y,Z) over the
imputed Z’s. In theory, this method provides a way to improve the inference in small
samples, in which the EM method has some pitfalls.

Di Zio et al. (2004) describe the use of Bayesian Networks (BNs) for imputing
missing values, arguing that one of the main advantages of using BNs as imputation
models is the possibility of preserving statistical relationships between variables, as well
as dealing with high dimensional datasets. The proposed method uses the implemen-
tation of the PC algorithm (Spirtes, Glymour, & Scheines, 1993), available in the Hugin
Software (Madsen et al., 2003), to learn a BN from data. Di Zio et al. (2004) have also
proposed some adjustments to improve the network structure. These adjustments are aimed
at defining an appropriate variable ordering, which is based on the concept of reliability.
Further details concerning the differences between our method and the one proposed by Di
Zio et al. (2004) are provided in Section 3. Finally, in the simulations to be described in
Section 4 we compare our Bayesian methods with the following classical imputation
methods:

(a) Mean/Mode (MM): mean imputation for ordinal attributes and Mode imputation for
nominal attributes;

(b) Decision Trees (DT): the J4.8 algorithm, to be described in Section 4.4, was employed
to construct decision trees to determine the missing values of each attribute, using the
information contained in other attributes and ignoring the class.

(c) Expectation–Maximization (EM): we employ the implementation provided by the
Norm Software (Schafer, 2000), which treats variables as if they were jointly
normal. The two steps of EM are: (i) expectation (E)—missing sufficient statistics
are replaced by their expected values given the observed data, using estimated
values for the parameters; and (ii) maximization (M)—parameters are updated by
their maximum-likelihood estimates, given the sufficient statistics obtained from the
E step. The procedure is run until convergence is met.

(d) Data Augmentation (DA): we also employ the DA implemented at the Norm Software
(Schafer, 2000) as an iterative simulation technique, i.e., a kind of Monte Carlo
Markov Chain (MCMC) in which there are three types of quantities: observed
data, missing data, and parameters. The missing data and the parameters are
unknown. The implementation alternately performs two steps, under an
assumption of joint normality. In the I-step, it imputes the missing data by
drawing them from their conditional distribution given both the observed data
and assumed values for the parameters; In the P-step, it simulates new values for
the parameters by drawing them from a Bayesian posterior distribution given the
observed data and the most recently imputed values for the missing data.
Alternating between these two steps the Norm software sets up a Markov chain
that converges to a stationary distribution, which is the joint distribution of the
missing data and parameters given the observed data. DA may be regarded as a
stochastic version of EM.
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3 Bayesian imputation methods

A Bayesian Network (BN) is a directed acyclic graph in which the nodes represent the
variables and the arcs represent a causal relationship among the connected variables. A
conditional probability table gives the strength of such relationship. The variables that
are not connected by an arc can be considered as having no direct causal influence on
them. The strength of the causal influence is given by the conditional probability P
(xi|πxi), in which xi is the i-th variable, and πxi is the set of parents of xi. As described by
Pearl (1988), the conditional independence assumption (Markov condition) allows one to
calculate the joint distribution of all variables as:

P x1; x2; . . . ; xnjBKð Þ ¼
Yn

i¼1

P xi pxi;BKjð Þ ð1Þ

where BK represents Background Knowledge. Therefore, a BN can be used as a
knowledge representation that allows inferences. Learning BNs from data became an
effervescent research topic in the last decade (Gelman et al., 1995), and there are two
main classes of methods to perform this task: methods based on heuristic search and
methods based on the conditional independence (CI) definition to generate the network.
There are also methods that combine these two strategies.

In a process of learning a BN from data, the variables of the BN represent the
dataset attributes. When using algorithms based on heuristic search, the initial order of
the dataset attributes is considered an important issue. Some of these algorithms
depend on this ordering to determine the arcs direction such that an earlier attribute (in
an ordered list) is a possible parent only of the later ones. On the other hand,
conditional independence methods try to find the arcs direction without the need of
ordering the attributes. However, even for the CI methods, when the ordering is known
the algorithms can be improved (Spirtes et al., 1993). In our work, we apply a method
(called K2χ2), originated from a heuristic search based learning algorithm (K2), that applies
the statistical χ2 test to determine an initial order of attributes to improve the learning
process.

3.1 K2 algorithm

The K2 algorithm (Cooper & Herskovits, 1992) constructs a BN from data and uses a
heuristic search for doing so. It assumes that the attributes are discrete; the dataset is
complete and has only independent cases; and all the attributes must be preordered.
Considering these assumptions, K2 searches for a Bayesian structure that best represents the
dataset.

The attributes preorder assumption is an important aspect of K2. It uses an ordered
list (containing all the attributes including the class), which asserts that only the
attributes positioned before a given attribute A may be parents of A. Hence, the first
attribute in the list has no parent, i.e., it is a root node in the BN. In our work, the class
attribute is always put as the first one in the ordered list.

The network construction uses a greedy method to search for the best structure. It
begins as if every node had no parent. Then, beginning with the second attribute from
the ordered list (the first one is the class), the possible parents are tested and those that
maximize the whole probability structure are added to the network. This process is
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repeated to all attributes in order to get the best possible structure. Formally, the results
of the following equation are maximized:

P Bs;Dð Þ ¼ c
Yn

i¼1

Yqi

j¼1

ri � 1ð Þ!
Nij þ ri � 1
� �

!

Yri

k¼1

Nijk! ð2Þ

where each attribute xi (i=1,...,n) has ri possible values vi1; vi2; . . . ; virif g. D is a dataset
with m objects and Bs is a structure containing the attributes to be represented. Each
attribute xi within Bs has a set of parents πxi, and qi is the number of instantiations of πxi.
Nijk is the number of objects in D, in which xi has value vik and πxi is instantiated as wij (wij

represents the j-th instantiation relative to D of πxi). Finally, Nij=∑Nijk and c is the a priori
probability constant P(Bs) of each Bs.

With the best structure already defined, the network conditional probabilities are
determined. It is done using a Bayesian estimation of the (predefined) network structure
probability. The Bayesian estimation is adopted in other learning Bayesian methods as in
Spiegelhalter and Lauritzen (1990), but there are also other ways to compute this
probability like, for instance, by variance analysis (Cooper & Herskovits, 1992).

3.2 K2χ2 algorithm

The use of K2 for learning BNs from data is often motivated by its ability to find the
network structure efficiently (Cano, Sordo, & Gutiérrez, 2004; Hsu, 2004) given that a
reasonable variable ordering (VO) is provided. If the VO is not adequate, the quality of the
learned structure may be low. Thus, searching for a good VO is relevant to the K2 learning
process and it can be performed by: (a) using the knowledge of a human expert to help the
definition of such an ordering; (b) performing an exhaustive search; (c) using heuristic
search methods.

Di Zio et al. (2004) propose to order the variables according to their reliability. They
consider more reliable those variables with a lower percentage of missing items, higher
accuracy, and availability of external sources. The authors observe that reliable variables are
frequently available when samples are drawn from a sampling frame where social or
demographic variables are already known. Taking into account such domain knowledge, a
single BN is constructed for imputation in all attributes with missing values. However, such
a scenario is not common in data mining applications, and the assessment of the reliability
of the variables may be hard to perform automatically. Actually, in data mining applications
human experts are not always available to define the variable ordering, and the exhaustive
search approach is usually not computationally feasible. Therefore, the adopted strategy
usually involves performing a heuristic search.

It is particularly desirable to employ an efficient heuristic search for the K2 algorithm.
Although it is known that the search for an adequate ordering is computationally less
expensive than the search for the BN structure (Friedman, Linial, Nachman, & Pe’er, 2000),
if the complexity of the VO search procedure is too high, one of the main characteristics of
K2 (i.e., its fast performance in the learning process) may be affected and, in this case, other
BN learning algorithms may be more suitable. For this reason, in this work we apply a
heuristic based on the classical χ2 statistical test (DeGroot, 1970) to define an appropriate
VO before using K2.

As stated in (Cheng & Greine, 1999), the Chi-squared (χ2) statistical test allows finding
conditional independence relationships among attributes. Such relationships can be used as
constraints to construct a BN. The PC algorithm (Spirtes et al., 1993), which is a classical
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BN learning algorithm that does not depend on an initial VO, uses the χ2 statistical
test to measure the effectiveness of the relationships between pairs of attributes. Following
this concept, we have applied the χ2 statistical test to optimize the attribute ordering in the
structure learning phase of K2. Therefore, our BN learning method is called K2χ2. In order
to define the VO, the χ2 statistical test is performed in each attribute jointly with the class
attribute. Thus, the strength of the dependence relationship between each attribute and the
class attribute can be measured. Subsequently, the attributes are decreasingly ordered
according to the χ2 scores. The first attribute in the ordered list has the highest χ2 score, i.e.,
it is the most dependent upon the class attribute. Obviously, the relation between the χ2

statistical test and the best VO may not hold strictly, but some previous works (Hruschka Jr.
& Ebecken, 2003; Hruschka Jr., Hruschka, & Ebecken, 2004), as well as our current paper,
suggest that good results can be achieved.

Before providing a detailed description of our imputation methods, we illustrate the
efficacy of the K2χ2 learning algorithm when compared with the K2 originally proposed by
Cooper and Herskovits (1992). To do so, we apply the K2χ2 to construct a Bayesian
Network (BN) from 10,000 cases generated from the classic ALARM BN (Beinlinch et al.,
1989). The GENIE data generator (Druzdzel, 1999) was employed to obtain such cases. In
(Cooper & Herskovits, 1992), the ALARM network is retrieved (reconstructed from data)
assuming a given VO that is defined a priori, taking into account the observation of the
original network. In this sense, a node X is added to the node-order list only after its parents
have been inserted in the list. Using this approach to define the VO, Cooper & Herskovits
got a network structure very similar to the original one, as indicated by the results reported
in Table 1. However, the approach employed by Cooper and Herskovits (1992) to define
the VO can only be applied when the network structure is known beforehand, or when
domain knowledge is available. In our work, we assume that there is no a priori
information concerning the VO. More precisely, our underlying assumption is that the VO
estimated by means of the χ2 test allows achieving accurate BNs. To apply the χ2 test,
information about a class variable is required. The ALARM network represents 8 diagnostic
problems, 16 findings and 13 intermediate variables. In our experiments, we have chosen
the variable 12 to be the class variable. This choice allows performing an interesting
comparison between the network structures achieved by K2 and K2χ2 (Table 1), provided
that in the work of Cooper and Herskovits (1992) such variable is the first one in the VO.
Since our work addresses the application of K2χ2 for imputation in classification problems,
it is particularly important to compare the results obtained by K2 and K2χ2 in a
classification task. From this standpoint, in Table 1 we also report the average correct
classification rates (ACCRs), achieved by means of a 10-fold cross-validation strategy
(Witten & Frank, 2000), for BNs constructed by K2 and K2χ2. In summary, one can
observe that, even with a network structure with some extra and missing arcs, the results

Table 1 Summary of the ALARM network structures achieved by K2 and K2χ2 in relation to the original
network structure described by Beinlinch et al. (1989)

Variable ordering (VO) Correct arcs Extra arcs Missing arcs ACCR
(%)

Correct direction Wrong direction

K2 (Cooper & Herskovits, 1992) 45 0 1 1 99.08
K2χ2 16 27 39 3 98.99

ACCR = Average Correct Classification Rate
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obtained by K2χ2 are very similar to the ones achieved by K2 using the VO taken from the
original network. Also, good classification results have been reported for K2χ2 in
(Hruschka Jr. & Ebecken, 2003; Hruschka Jr. et al., 2004).

3.3 Imputation methods (BN-K2Iχ2 and 1BN-K2Iχ2)

We propose two imputation methods that rely on the construction of BNs to infer the most
suitable values to fill in the gaps produced by missing values. For both methods, the K2χ2

learning algorithm is applied to construct BNs to be used as prediction models to substitute
the missing values. Particularly, we propose two variants for a method that we have called
K2Iχ2, which stands for K2 Imputation using the χ2 statistical test, namely BN-K2Iχ2 and
1BN-K2Iχ2. Fundamentally, the former constructs one Bayesian network for each attribute
with missing values, whereas the latter uses a single Bayesian network for imputation in all
attributes with missing values. For both BN-K2Iχ2 and 1BN-K2Iχ2, the imputation process
starts with the selection (from the original sample) of all sample objects that do not have
missing data. These objects form a clean sample, which is then used as a clean training
dataset to the construction of BNs.

BN-K2Iχ2 identifies all attributes with missing values and for each one—now
considered as a class attribute—a Bayesian network is generated. It means that if there
are n attributes with missing values, n training clean samples are generated. More
specifically, the imputation process performed by BN-K2Iχ2 can be summarized as follows:
(a) identify the attributes with missing values; (b) generate a clean training dataset for each
class attribute identified in the previous step; (c) construct a BN for each clean training
dataset; and (d) infer the best values to substitute the missing ones. In summary, a BN is
generated for each attribute with missing values (here considered as the class attribute). As
detailed in Section 3.1, the class variable is used as the first one in the VO. Thus, in
principle our approach could be considered unsuitable for learning tasks in which a decision
attribute (class variable) is not available in the dataset. To circumvent this problem, a
hidden variable can be inserted in the network structure (Cooper & Herskovits, 1992) or
other unsupervised or semi-supervised methods (Nigam, 2001) can be applied. However, as
far as imputation problems are concerned, there will be no difficulties for the application of
our approach even when a decision attribute is not available (e.g., unsupervised learning
tasks). Since the steps (a) and (b) described above generate a dataset for each variable with
missing values, such variable can be always considered as a decision attribute and,
consequently, be accordingly positioned as the first one in the VO. Therefore, the absence
of a decision attribute in the original sample will not impair the application of our
imputation method. In a causal interpretation, putting the variable with missing values as
the class attribute corresponds to assume that it may cause all the other variables.

Instead of generating one BN for each attribute with missing values, 1BN-K2Iχ2

constructs a single BN to infer the best values to substitute the missing ones in all attributes.
Thus, the imputation process performed by 1BN-K2Iχ2 can be summarized in the following
steps: (a) generate a single clean training dataset; (b) construct a BN using the single clean
training dataset generated in the previous step; and (c) use the BN generated in step (b) to
infer the best values to substitute the missing ones. Therefore, differently from BN-K2Iχ2,
1BN-K2Iχ2 is not suitable for unsupervised learning (clustering) tasks and, to evade this
limitation, an unsupervised learning algorithm must be used instead of K2χ2. However, as
our work focuses on classification problems, this possibility will not be further explored in
this paper.
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Having a VO focusing on each attribute tends to produce more accurate Bayesian
networks for imputation. In this sense, the motivation for generating a Bayesian network for
each attribute with missing values (BN-K2Iχ2) relies on the optimization of the imputation
process. On the other hand, generating a single Bayesian network (1BN-K2Iχ2) tends to
require less computation effort. These aspects are experimentally assessed in Section 4.

Depending on the proportion of missing values for a given attribute, substitution
methods may have problems to infer suitable values to be imputed. From a general
standpoint, there is a relationship between the quality of imputations and the availability of
clean (without missing values) training examples. The more clean training examples, the
better the imputations tend to be, because there is more information available. Thus, high
proportions of missing values tend to degrade the results of imputation methods.

The K2Iχ2 uses an inductive learning process (Mitchell, 1997) to generate the imputation
model. Thus, similarly to several inductive learning methods, it assumes that the dataset
attributes are related to each other. However, whenever a attribute A is independent from the
other attributes, the BN structure will not connect attribute Awith the other ones (for instance
like illustrated in Fig. 1). In this case, since the K2Iχ2 generates a probabilistic model, the
imputation (or prediction) will be based only on the observed marginal distribution of
attribute A. Putting it differently, if a specific attribute A has no relationship with the other
ones, the K2Iχ2 imputation efficacy would be based only on this attribute (A) marginal
distribution (a priori knowledge) obtained from the objects without missing values.
Regardless of some theoretical limitations, the next section shows that our method provides
good results, mainly because attribute interactions wildly exist in many datasets.

4 Simulations

Classifications problems emerge in several data mining applications (e.g., in bioinformatics,
business, text classification, etc.). This fact has motivated the evaluation of our imputation
method in the context of classification tasks.

A

Fig. 1 Bayesian network without
connection between the target
attribute A and the other attributes
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4.1 Theoretical aspects

In general, a dataset D is formed by examples with and without missing values. Let us call
C (complete) the subset of examples of D that do not have missing values, and M (missing)
the subset of examples of D with at least one missing value. In this context, imputation
methods should carefully complete the missing values of M, originating a filled dataset F.
Figures 2, 3, 4, and 5 illustrate these concepts considering an hypothetical dataset D, where
ajs are the attributes, eis are the examples, kij are known values (i-th example and j-th
attribute), and the symbol “?” represents a missing value. In an ideal situation, the
imputation method would fill in the missing values, originating filled values fij, without
inserting bias in the dataset. In a more realistic view, one tries to decrease the amount of
inserted bias to acceptable levels, in a way that a dataset D0 ¼ C þ Ff g, probably
containing more information than C (in the sense that the attributes without missing values
in M may contain important information), can be used for data mining (e.g., considering
issues such as attribute selection, combining multiple models, and so on).

There are two ways of evaluating the bias inserted by an imputation method: in a
prediction task and in a classification task. In a prediction task, one simulates missing
values in C. Some known values are removed and then imputed. In this way, it is possible
to evaluate how similar the imputed values are to the real, known values. The more similar
the imputed value to the real one, the better the imputation method is. This alternative is
efficient to compare different imputation methods, because it requires few computations
after imputing values. However, it does not allow estimating the efficacy of the classifier in
D′. In other words, although this procedure is valid, the prediction results are not the most
important issue to be analyzed, but they are here reported for illustrative purposes. In
reality, the substitution process must generate values that least distort the original

Example / Attribute a1 a2 a3 a4 Class
e1 k11 k12 k13 k14 A 
e2 k21 ? k23 ? B 
e3 k31 k32 k33 k34 A 
e4 k41 k42 ? k44 B 
e5 k51 k52 k53 k54 A 
e6 k61 k62 k63 k64 B 
e7 ? k72 k73 k74 A 
e8 k81 k82 k83 k84 A 
e9 k91 k92 k93 k94 B 

Fig. 2 Dataset D (Original)

Example / Attribute a1 a2 a3 a4 Class
e1 k11 k12 k13 k14 A 
e3 k31 k32 k33 k34 A 
e5 k51 k52 k53 k54 A 
e6 k61 k62 k63 k64 B 
e8 k81 k82 k83 k84 A 
e9 k91 k92 k93 k94 B 

Fig. 3 Dataset C (Complete)
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characteristics of D, which are given by the between-attribute relationships, defined by each
particular classification algorithm. In a more practical view, the known values in M may
contain important information, which, in turn, would be lost if their corresponding
examples were discarded.

Several authors have also argued that it is more important to preserve the relationships
between attributes than to get more accurate predictions. For instance, Pyle (1999) explains
that although the imputed values are predictions, it is not the accuracy of these predictions
that is of most importance when replacing missing values. It is more important that such
predictions produce a workable estimate that least distorts the values that are actually
present. In other words, the main purpose of imputation is not to use the values themselves,
but to make available to the modeling tools the information contained in the other variables’
values that are present. Di Zio et al. (2004) also argue that the imputation should preserve
the between-attributes relationships as much as possible. To evaluate it in the context of
sample surveys, they employ a probabilistic approach, analyzing the preservation of the
joint distribution—statistical consistency. Schafer and Graham (2002), by their turn, observe
that a missing value treatment cannot be properly evaluated apart from the modeling,
estimation, or testing procedure in which it is embedded. Therefore, in our experiments, we
have focused on the inserted biases in terms of classification results, which somehow allow
evaluating to what extent the relationships between attributes are being maintained. Di Zio et
al. also observe that “obtaining high values for the proportion of correct imputations is very
difficult, emphasizing that it may be unnecessarily difficult.” Finally, one must remember
that in real-world applications the imputed values can not be compared with any value. Thus,
since the evaluation of the prediction capability must be performed in a complete dataset, one
could alternatively employ a sample of C to perform such evaluation. However, this
procedure has the undesirable effect of lessening the information available for the evaluation
of candidate imputation methods. In summary, the maintenance of the between-attributes
relationships is the most important aspect to be evaluated in the imputation process. Under
this perspective, we define the inserted bias as follows.

Definition 1 The inserted bias is the magnitude of the change in the between-attribute
relationships caused by patterns introduced by an imputation process.

The problem is that the relationships between attributes are hardly known a priori, i.e.,
before the data mining process is performed. Therefore, usually the inserted bias can not be
directly measured, but it can be estimated. In classification problems, the underlying
assumption is that the between-attribute relationships are induced by a particular classifier.

Example / Attribute a1 a2 a3 a4 Class
e2 k21 f22 k23 f24 B 
e4 k41 k42 f43 k44 B 
e7 f71 k72 k73 k74 A 

Fig. 5 Dataset F (Filled)

Example / Attribute a1 a2 a3 a4 Class
e2 k21 ? k23 ? B 
e4 k41 k42 ? k44 B 
e7 ? k72 k73 k74 A 

Fig. 4 Dataset M (Missing Values)
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Consequently, the quality of such discovered relationships can be indirectly measured
(estimated) by classification measures like, for instance, the Average Correct Classification
Rate (ACCR) criterion. In this sense, we propose a methodology to estimate the inserted
bias as follows.

In data mining applications, one usually employs different classifiers, choosing the best
one according to some criterion of model quality (e.g., the ACCR). The underlying
assumption is that the best classifier (BC)—in relation to C and to the available classifiers—
should provide a suitable model for classifying examples of D. Thus, it is important to assess
if the imputed values adjust themselves to the BC model. It is a common practice to evaluate
classifier performance in a test set. The same concept can be adapted to evaluate
imputations, considering C as the training set and F as the test set. In summary, we propose
to estimate the inserted bias by the procedure described in Fig. 6:

According to Fig. 6, a positive bias is achieved when the Average Correct Classification
Rate (ACCR) in F (step 2) is greater than in the cross validation process in C (step 1), i.
e., the imputed values are likely to improve the classifier’s ACCR in D′. By the same
token, a negative bias is inserted when the imputed values are likely to worsen the
classifier’s ACCR. Finally, no bias is likely inserted when the accuracies in F and in the
cross-validation process are equal, and this is the ideal situation. The imputation process
should not introduce patterns into the data that are not present in the known values (Pyle,
1999), because these patterns may be later discovered during data mining in D′. Indeed,
these artificial patterns are simply an artifact of the imputation process.

One could argue that a cross-validation process should be performed in both datasets
(C and F), comparing the corresponding results. However, it is possible to get different
models in C and F. For instance, different decision trees (e.g., in terms of selected
attributes), but with similar accuracies in a cross-validation process, may be obtained in
C and F. In this case, it is unlikely that a similar ACCR would be get in D′. In addition,
we are interested in evaluating if the imputation process preserves the between-attribute
relationships, assuming that these are defined by each particular classification model. In
this sense, the complete dataset (C) is more reliable and, consequently, is its associated
model. In other words, verifying how the data in F adjust themselves to the model
obtained in C allows estimating the classifier ACCR in D′. In addition, performing cross-
validation in both datasets (C and F) is computationally more expensive, because it is
necessary to get and evaluate the classifier several times for both C and F.

4.2 Methodology

Our imputation methods were evaluated both in prediction and classification tasks, making
possible to investigate relationships between these two aspects. To do so, we simulate
missing values in complete datasets, eliminating some values that are a priori known. In this
context, artificial missing values are imputed and compared with the original ones. We also

1) Evaluate the classifier’s ACCR in a cross-validation process, using C; 

2) Evaluate the classifier’s ACCR in F (test set) considering that C is the training set; 

3) The estimated inserted bias is the difference between the results achieved in 2) and 1).

Fig. 6 Estimating the inserted bias in a classification context
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compare imputations performed by BN-K2Iχ2 and 1BN-K2Iχ2 with those obtained by
Expectation—Maximization (EM), Data Augmentation (DA), Decision Trees (DT), and
Mean/Mode (MM). For the sake of simplicity, from now on BN-K2Iχ2 and 1BN-K2Iχ2

will be called BN and 1BN respectively.
In our simulations, we employed four datasets that are data mining benchmarks:

Congressional Voting Records, Mushroom, Wisconsin Breast Cancer, and Adult. These
datasets are available at the UCI Machine Learning Repository (Merz & Murphy, 1997) and
allow showing the applicability of our method in datasets formed by several types of
attributes. Table 2 summarizes the main features of each employed dataset. Our Bayesian
imputation methods were not used in continuous datasets, mainly because they require
discrete valued datasets. However, this is not a severe limitation of BN and 1BN, because
attributes formed by continuous values can be discretized. In this sense, the Wisconsin
Breast Cancer can be viewed as an example of such discretized dataset.

Let us first consider how the datasets employed in our simulations were formed. As
previously mentioned, some values from the original dataset were randomly eliminated in
order to simulate the missing ones. It was performed by removing, independently, 30% of
the values from each attribute. According to Rubin’s definitions (1976), we are assuming a
probability distribution of missingness called MCAR (missing completely at random). We
have used stratified datasets, i.e., the class proportion was maintained in each dataset. Thus,
according to Section 4.1, C and M are formed by 70% and 30% of D, respectively. In
another perspective, we assume a missing value pattern that involves missing values in one
attribute at a time. In this sense, for each dataset described in Table 2 (formed by n
attributes), n simulated datasets are generated by eliminating the values of a particular
attribute, i.e., the remaining (n−1) attributes maintain their original values. Then,
imputation methods (BN, 1BN, EM, DT, DA, and MM) are used to substitute the missing
values in M. After the substitution process, all the imputed values are combined into a
single dataset, which contains only imputed values, representing what we have called F in
Section 4.1. In this way, we can better evaluate the inserted bias (Fig. 6) of each imputation
method, because the classification results in F are not influenced by original values. Since
we have employed six imputation methods for each dataset with missing values, six
datasets with imputed values are generated—these could be called F1 (BN), F2 (1BN), F3
(EM), F4 (DT), F5 (DA), and F6 (MM).

Table 2 Summary of dataset characteristics

Dataset # examples # classes # attributes Attribute type

Congressional Voting Records 232 2 16 Binary
Mushroom 5644 2 22 Nominal
Wisconsin Breast Cancer 683 2 9 Ordinal
Adult 45,222 2 14 8 Nominal/6 Ordinal

Table 3 Typical execution times (in seconds) to impute missing values in one attribute

Dataset BN 1BN EM DT DA MM

Congressional Voting 16 1 48 16 64 ≅0
Mushroom 264 12 352 88 396 ≅0
Wisconsin Breast Cancer 9 1 27 9 36 ≅0
Adult 798 57 1,190 350 1,246 ≅0
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In order to illustrate the computational efficiency of each imputation method, we report
results of typical execution times necessary to impute missing values in each dataset. To do
so, we employed a PC AMD 2.0 GHz, 512 MB of RAM, running on Windows XP and the
achieved results are described in Table 3. In Section 4.5, we analyze these results in the
light of both prediction and classification results, which are detailed in Sections 4.3 and 4.4
respectively.

4.3 Evaluating imputation as a prediction task

In this section, we compare the original values with the imputed ones. For nominal
attributes, we report the average proportion (%) of incorrect imputations, that is the fraction
(in relation to the total number of imputations) of incorrectly imputed values. For numerical
attributes, we describe the average Euclidean distances between original and imputed
values. The prediction results are illustrated in Fig. 7, where one can see that imputations

Fig. 7 Prediction results
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performed by Bayesian networks (BN and 1BN) and DT (Decision Trees) have, in general,
provided superior results in our simulations. In fact, imputations performed by DTs have
slightly surpassed those obtained by the other employed imputation methods. In Fig. 8, we
illustrate the influence of imputed values in classifications performed by K2χ2. In most
of the datasets, the classification bias inserted by 1BN is greater than the one inserted by
BN. This is the expected result, because the same Bayesian network is used for both
imputation and classification by 1BN. However, in this work we are particularly interested
in evaluating the efficacy (in terms of inserted bias) of BN and 1BN as data preparation
tools for other classifiers. This aspect is addressed in the next section.

4.4 Evaluating imputation in classification tasks

This section reports results of simulations performed to evaluate the influence of imputed
values in classification tasks. To do so, we employ the concepts described in Section 4.1,
using four classifiers: One Rule, Naïve Bayes, J4.8 Decision Tree and PART. These
classifiers are popular in the data mining community, and make part of the WEKA System
(Witten & Frank, 2000), which was used to perform our simulations, using its default
parameters. These classifiers can be briefly described as:

(a) One Rule (1R): it is an efficient and simple method that often produces good rules for
characterizing the structure in the data. It generates a one-level decision tree, which is
expressed in the form of a set of rules that test just one selected attribute.

(b) Naïve Bayes: it uses all attributes and allows them to make contributions to the
decision that are equally important, and independent of one another given the class,
leading to a simple scheme that works well in practice. Naïve Bayes has an inductive
bias similar to the one of K2χ2. However, K2χ2 induces a network structure taking
into account the possible dependences among the set of attributes, instead of using the
naïve assumption, for which all the variables are connected directly to the class.

(c) J4.8: it is the Weka’s implementation of the popular C4.5 decision tree learner
(Quinlan, 1986). In fact, J4.8 is the later and slightly improved version, called C4.5
revision 8, which was the last public version of this family of algorithms before the
commercial C5.0 was released (Quinlan, 1989).

(d) PART: this method provides rules from pruned partial decision trees built using C4.5.
It combines the divide-and-conquer strategy of decision trees learning with the
separate-and-conquer one for rule learning (Witten & Frank, 2000). In essence, to
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Fig. 8 ACCRs of BN in original (C) and imputed datasets (F)

J Intell Inf Syst (2007) 29:231–252 245



make a single rule, a pruned decision tree is built for the current set of examples.
Then, the leaf with the largest coverage is made into a rule and the tree is discarded.

In order to estimate the classifier ACCR in the set C, we perform a ten-fold-cross
validation process. In practical data mining applications, this estimate is usually considered
a suitable criterion for choosing the best classifier, considering the available ones. Under
this perspective, it is important to estimate the inserted bias (Fig. 6) considering the best
classifier in each dataset.

Figures 9, 10, 11, and 12 show the simulation results in each dataset, considering the
employed classifiers. In these figures, 70% OCV stands for 70% 10-fold Cross-Validation in
C, whereas 30% Ori corresponds to the original data used to simulate the missing values,
originating the missing dataset (M), which was then filled by each imputation method.
Consequently, the ACCRs in filled datasets are represented by 30%BN, 30%1BN, 30%EM,
30%DT, 30%DA, and 30%Mean/Mode, respectively for imputations by K2Iχ2 (BN and
1BN), Expectation Maximization, Decision Trees, Data Augmentation and Mean/Mode.
The results in 30% Ori are reported only to give an idea of how the employed classifiers
perform on the corresponding original data, i.e., they are useful for illustrative purposes
only, because in practice these data would not be available.

Fig. 9 Classification results—Congressional Voting Records Dataset

Fig. 10 Classification results—Mushroom Dataset
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Considering the estimated inserted bias (Fig. 6), in general imputations by K2Iχ2 (BN
and 1BN) provided better results in two datasets (Wisconsin Breast Cancer and Adult),
whereas Decision Trees (DT) achieved better results in Mushroom, and Expectation–
Maximization (EM) presented superior results in Congressional Voting Records. The
assignment of constant values to substitute missing values (in our simulations the
imputations performed by the Mean/Mode may be seen as a special case of such
procedure) inserted the most important biases, and further important results obtained in
each dataset are described in the sequel.

Figure 9 reports the results obtained in the Congressional Voting Records dataset. Two
classifiers (1R and J4.8) provided the best results, in terms of the Average Correct
Classification Rate (ACCR) in the complete dataset (70% OCV). In fact, 1R and J4.8
selected the same attribute for classification purposes. Considering the classifiers 1R and
J4.8, the values imputed by EM inserted less bias (+1.07%) than other imputation methods.
It is interesting to observe that, although the ACCRs in the data filled by DA and 1BN are
equal to 100% (i.e., better than those provided by EM—98.59%) their corresponding
inserted bias are equal to + 2.48%. In this sense, DA and 1BN may have inserted additional
information in the dataset. As previously addressed in Section 4.1, this is an undesirable
characteristic of an imputation method, which should permit the original information

Fig. 12 Classification results—Adult Dataset

Fig. 11 Classification results—Wisconsin breast cancer dataset
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(present in non-missing values) to be used by the employed classifier, ideally adding as
little distortion to the dataset as possible.

In the Mushroom dataset (Fig. 10), classifiers PART and J4.8 have provided the best
results in terms of ACCRs achieved in the complete dataset (70%OCV). In this context,
imputations by decision trees (DT) have inserted no bias and this is the ideal result.

Figure 11 depicts simulation results in the Wisconsin Breast Cancer dataset, in which
Naïve Bayes achieved the best classification results, and imputations by BN inserted less
bias (−0.76%) than other methods.

Simulation results achieved in the Adult dataset are reported in Fig. 12. The classifier
J4.8 provided the best results and 1BN inserted less bias (−1.44%) than other imputation
methods.

Under a data mining perspective, simulation outcomes concerning the inserted bias in
relation to the best classifier for each dataset may be regarded as the most important aspect
to be observed. However, we believe that it is also interesting to provide details about what
imputation method inserted less bias in each specific scenario (dataset/classifier). Table 4
provides an overview of the performance of the employed imputation methods. As it can be
seen, K2Iχ2 (BN and 1BN) have shown a slight superiority in relation to other imputation
methods, providing the best results in 7 out of 16 scenarios. As far as the performance of
BN and 1BN are taken into consideration, in 62.5% of our simulations BN has inserted less
classification biases than 1BN, which, by its turn, has shown to be more computationally
efficient than BN.

4.5 Summary of simulation results

So far, we have assessed our simulation results mainly considering each important aspect
(prediction, classification bias and computing times) individually. In this section, we are
mainly interested in evaluating relationships between prediction and classification (inserted
bias considering the best classifier in each dataset) results, because, in principle, one is

Table 4 Less inserted bias: italic type refers to the best classifier(s) in each dataset

Dataset/Classifier 1R PART J48 Naive Bayes

Congressional Voting Records EM EM EM BN
Mushroom DT DT DT DT
Wisconsin Breast Cancer BN EM/DA DT BN
Adult BN/1BN/DT/Mean BN 1BN BN

Imputation method IP (%) Bias (%)—1R
and J48

Computing
times (s)

1BN 21.57 +2.48 1
DT 21.57 −11.60 16
DA 24.82 +2.48 64
EM 24.82 +1.07 48
BN 40.14 −3.16 16
Mode 41.81 −44.00 0

Table 5 Congressional voting
records dataset
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tempted to assume that better prediction results imply in less inserted bias. In order to
facilitate the understanding of such relationships, our tables report the prediction results
(Fig. 7) in an ascending order, i.e., from the best obtained result to the worse achieved result
in terms of the maximum incorrect prediction (IP) or distance. Also, we here reproduce the
computing times previously reported in Table 3.

Table 5 shows the results in the Congressional Voting Records dataset. Although EM
provided the less inserted bias (+1.07%), its corresponding incorrect prediction results were
not the best ones. Indeed, DT imputations were the best ones according to prediction
results. The results obtained by 1BN shown a slightly inferior result in terms of inserted
bias (+2.48%), but with associated computational times approximately 50 times faster than
EM. Therefore, 1BN also provides very competitive results in this dataset.

The results achieved in the Mushroom dataset (Table 6) indicate that better predictions
imply in less inserted bias. As already observed, this situation would be, in principle, the
expected one. However, it was only observed in this dataset. Table 6 also shows that
imputations by decision trees were superior in terms of inserted biases.

Table 7 describes the most important simulation results obtained in the Wisconsin Breast
Cancer dataset, in which BN provided the best result in terms of the estimated inserted bias.
It is particularly important to observe that 1BN has also provided very good results in this
dataset, mainly if computational efficiency is considered in the analysis. Again, better
results in terms of prediction did not necessarily imply in less inserted bias.

Imputations by 1BN inserted less bias in the Adult dataset (Table 8). As far as the
computing times are concerned, only Mean/Mode imputations were more efficient than
those performed by the 1BN. Since the Adult dataset is formed by nominal and ordinal
attributes, we report two columns for prediction results (IP and Distance). One observes that
there is a correlation between them. However, better predictions in general did not imply in
less inserted bias.

Table 6 Mushroom dataset

Imputation method IP (%) Bias (%)—PART Bias (%)—J48 Computing times (s)

DT 22.76 0.00 0.00 88
1BN 24.81 −9.45 −9.45 12
BN 26.19 −11.16 −18.90 264
EM 36.87 −39.87 −40.40 352
DA 37.10 −40.17 −38.69 396
Mode 38.45 −38.22 −38.22 0

Imputation
method

Distance Bias (%)—Naive
Bayes

Computing
times (s)

DT 1.08 −1.25 9
1BN 1.17 +0.91 1
BN 1.19 −0.76 9
EM 1.47 −5.15 27
DA 1.50 −2.23 36
Mean 2.31 −31.98 0

Table 7 Wisconsin breast cancer
dataset
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5 Conclusions and future work

In this work, we proposed two Bayesian methods (BN-K2Iχ2 and 1BN-K2Iχ2) for
imputation, which is an important task in data mining. BN-K2Iχ2 constructs one Bayesian
network for each attribute with missing values, whereas the 1BN-K2Iχ2 uses a single
Bayesian network for imputation in all attributes with missing values. We have also
elaborated on the bias inserted by imputation methods. From this standpoint, the imputation
goal is to carefully substitute missing values trying to avoid the imputation of bias in the
dataset. When the imputation is performed in a suitable way, higher quality data are
produced, and the data mining outcomes can even be improved. Under this perspective, this
paper also described a methodology to estimate the bias inserted by imputation methods in
classification tasks.

The performance of BN-K2Iχ2 and 1BN-K2Iχ2 was illustrated by means of simulations
performed in four datasets that are benchmarks for data mining methods: Mushroom,
Congressional Voting Records, Wisconsin Breast Cancer and Adult. We assessed BN-
K2Iχ2 and 1BN-K2Iχ2 in the context of prediction and classification tasks, using four
classifiers (One-rule, J48, PART and Naïve Bayes). The achieved results were compared to
those obtained by some classical imputation methods—Expectation–Maximization,
Decision Trees, Data Augmentation, and Mean/Mode imputation. Computing times
consumed to perform imputations were also reported. The analyses of such simulations
lead to interesting conclusions. Considering the estimated inserted bias, imputations by
Bayesian networks provided better results in two datasets (Wisconsin Breast Cancer and
Adult), whereas Decision Trees achieved better results in the Mushroom dataset and
Expectation–Maximization presented superior results in the Congressional Voting Records.
The assignment of constant values to substitute the missing ones (in our simulations the
imputations performed by the Mean/Mode may be seen as a special case of such procedure)
inserted the most important biases. In most of our simulations, better prediction results did
not imply in better classification results in terms of inserted bias. Taking into account the
proposed imputation methods, BN-K2Iχ2 tends to provide more accurate results. However,
1BN-K2Iχ2 showed a better compromise between imputation quality and computational
efficiency.

Our future work will concentrate on the evaluation of BN-K2Iχ2 and 1BN-K2Iχ2 in real-
world data mining applications. We are also going to assess the sensitivity of our
imputation methods with respect to other distributions of missingness (Schafer & Graham,
2002), i.e., MAR (missing at random) and MNAR (missing not at random, also called
nonignorable missingness mechanism). Another interesting future work involves studying
ways of extracting causal rules by means of imputation methods, trying to explain the
missing data mechanism in real-world applications.

Imputation
method

IP(%) Distance Bias (%)—J48 Computing
times (s)

DT 20.66 0.41 −8.75 350
1BN 26.26 0.47 −1.44 57
BN 30.15 0.51 −3.09 798
Mean/Mode 43.53 0.77 −59.69 0
EM 68.06 1.13 −12.78 1,190
DA 68.21 1.14 −13.41 1,246

Table 8 Adult dataset
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