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Linear Fuzzy Clustering Techniques With Missing
Values and Their Application to Local Principal
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Abstract—In this paper, we propose two methods for parti-
tioning an incomplete data set with missing values into several
linear fuzzy clusters by extracting local principal components.
One is an extension of fuzzy -varieties clustering that can be
regarded as the algorithm for the local principal component
analysis of fuzzy covariance matrices. The other is a simultaneous
application of fuzzy clustering and principal component analysis
of fuzzy correlation matrices. Both methods estimate prototypes
ignoring only missing values and they need no preprocessing of
data such as the elimination of samples with missing values or the
imputation of missing elements. Numerical examples show that
the methods provide useful tools for interpretation of the local
structures of a database.

Index Terms—Fuzzy clustering, missing value, principal compo-
nent analysis.

I. INTRODUCTION

AUSEFUL technique for knowledge discovery from data-
base (KDD) is to extract local feature values by using

the simultaneous applications of multivariate analysis and fuzzy
clustering. Fuzzy -varieties (FCV) proposed by Bezdek et al.
[1]–[3] is the fuzzy clustering method that partitions a data set
into several linear clusters by using linear varieties as the pro-
totypes of the clusters. Because the FCV algorithm estimates
the vectors spanning the prototypical linear varieties by solving
the eigenvalue problems of the fuzzy scatter matrices, it can
be said that the vectors are equivalent to local principal com-
ponent vectors derived in each cluster and the algorithm per-
forms a simultaneous application of fuzzy clustering and prin-
cipal component analysis (PCA). In the algorithm, the eigenvec-
tors corresponding to the largest eigenvalues of the fuzzy scatter
matrices span the prototypical linear varieties. Using the linear
combination of the objective function of FCV and that of fuzzy
-means (FCM) [1], which is useful to derive spherical clusters,

the methods can be expanded to fuzzy -elliptotypes (FCE) for
the detection of ellipsoidal clusters. Though it is difficult to de-
scribe characteristics of a large-scale database by only one sta-
tistical model, we often obtain practical knowledge from a local
model of each cluster.

In spite of the usefulness, however, the analyzing techniques
often suffer from the presence of missing values in real world
applications. For such an incomplete data set, a simple strategy
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is to remove all sample data or attributes including missing
values. But the strategy isn’t desirable because the elimination
brings a loss of information. Another technique for dealing
with an incomplete data set is to impute the missing values.
Besides imputing the averages of the attributes, we can yield
the maximum likelihood estimates of the missing values using
the EM algorithm [4] under the condition that the defects
arise randomly. But the imputations are often computationally
demanding and the errors in the imputation may accumulate
and propagate through the iterative optimization procedures.
Therefore, it is desirable to analyze the incomplete data set
without elimination or imputation of data. In the application
of PCA, several methods that extract principal components
without any preprocessing of data have been proposed. Ruhe
[5], Wiberg [6], and Shibayama [7] proposed PCA-like
methods for capturing the structure of incomplete multivariate
data without any imputations and statistical assumptions, and
Shum et al. [8] applied such techniques to object modeling.
The methods are based on the lower rank approximation of the
data matrix, which accomplishes the minimization of the least
square criterion, and they extract principal components of the
covariance matrix of the sample data set. In the methods, such
an iterative optimization technique as Gauss–Newton algorithm
is used. Generally, PCA is not scale invariant and the results are
sensitive to the scales of the measurement of the variables. Then
we often use the correlation matrix instead of the covariance
matrix to derive unique principal components. Takane [9]
proposed a technique that can handle missing values in PCA of
the correlation matrix. Takane’s method can derive the solution
analytically even when the data set includes missing values.

Fuzzy clustering also suffers from the presence of missing
values. Miyamoto et al. [10] proposed several methods for han-
dling missing values in FCM. A basic strategy is to replace
missing values by the weighted averages of the corresponding
attributes. Another simple approach is to ignore the missing
values and calculate the distances from the remaining coordi-
nates. Timm et al. [11] also proposed similar techniques and re-
ported that the simple approach of ignoring the missing values
gave fuzzier membership assignments than the strategy of re-
placing the missing values with the averages. Other observations
such as the convergence property and the initialization problem
are discussed in [12].

In this paper, we propose two methods for partitioning an in-
complete data set including missing values into several linear
fuzzy clusters by using local principal components. One is the
direct extension of FCV to an incomplete data set and it uses the
least square criterion as the objective function. FCV is the same
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technique as the extraction of local principal components based
on the minimization of the least square criterion, which per-
forms the lower rank approximation of the data matrix. While
the objective function of FCV is based on the minimization of
the distances between data points and prototypical linear vari-
eties, we can derive the same objective function from the least
square criterion under a certain condition. The proposed objec-
tive function is equivalent to that of FCV when the data matrix
includes no missing values; hence the technique is regarded as
an extension of FCV into incomplete data sets.

The other is a hybrid technique of fuzzy clustering and
Takane’s PCA with missing values. Because the principal
components are extracted from the fuzzy correlation matrix
in each cluster, the method is a simultaneous application of
fuzzy clustering and PCA of correlation matrices. Although
the proposed objective function with no missing values is not
equivalent to that of FCV, the local principal component vectors
are derived by solving a set of eigenvalue problems.

In Section II, the objective function of FCV is rewritten by
using the least square criterion and the FCV algorithm is ex-
tended to incomplete data sets including missing values. In Sec-
tion III, a simultaneous approach to fuzzy clustering and PCA of
correlation matrices, in which the objective function is defined
by ignoring missing values, is proposed. Several experimental
results including the knowledge discovery from point-of-sales
(POS) transaction data are presented in Section IV. Section V
contains the summary conclusions.

II. EXTENSION OF FCV ALGORITHM TO INCOMPLETE DATA

SETS USING LEAST-SQUARE CRITERION

Let denote an data matrix consisting
of dimensional observation of samples where includes
missing values. In this paper, we often represent the data ma-
trix as using dimensional column vec-
tors ’s composed of the elements of the th columns of , or

using dimensional column vectors ’s
composed of the th row elements of , respectively. (In the fol-
lowing, bold symbols represent column vectors and the column
vectors superscripted by “ ” are composed of the row elements
of a matrix.)

Unfortunately, it is difficult to apply the existing clustering
algorithms without any modification such as the completion of
the data matrix. This paper deals with only the techniques that
simply ignore the missing values without any elimination or im-
putation of data, so that the techniques are free from the influ-
ences of the preprocessing.

In this section, we use the fuzzification technique so called
entropy regularization [13] instead of the weighting exponent
in the standard FCM-type algorithm. Ignoring missing values,
the objective function of FCM with entropy regularization and
missing values is written as follows [10]:

(1)

where is the center of the th cluster and
is defined by

is observed
is missing. (2)

is the membership with the constraint

(3)

The larger is, the fuzzier the membership assignments are.
The fuzzification technique has several merits, e.g., “singulari-
ties” do not occur even if several sample points are on the proto-
types and cluster centers are the means of simply weighted by

’s. In the case of linear fuzzy clustering, the vectors spanning
prototypes are also derived from standard fuzzy scatter matrices
using the regularization method.

This strategy of using (1) is useful only for spherical clus-
tering. In this paper, we enhance the method of partitioning
an incomplete data set into several linear fuzzy clusters by ex-
tracting local principal components.

A. Local Principal Component Analysis Using Least Square
Criterion

In this section, we show that the objective function of FCV
can be rewritten by using the least square criterion introduced in
PCA [14]–[16]. The goal of the simultaneous approach to PCA
and fuzzy clustering is to partition the data set using local prin-
cipal component vectors to express local linear structures. FCV
is the clustering method that partitions a data set into linear
fuzzy clusters. The objective function of FCV with entropy reg-
ularization consists of distances from data points to -dimen-
sional prototypical linear varieties spanned by linearly indepen-
dent vectors ’s as follows:

(4)

(5)

where denotes the membership degree of the data point
to the th cluster and represent the transpose of the matrix or
the vector.

From the necessary condition for the optimality
, the optimal ’s are derived by solving the

following eigenvalue problem:

(6)

where is the fuzzy scatter matrix:

(7)

Because the optimal ’s are the eigenvectors corresponding
to the largest eigenvalues, the vectors are regarded as the fuzzy



HONDA AND ICHIHASHI: LINEAR FUZZY CLUSTERING TECHNIQUES WITH MISSING VALUES 185

principal component vectors extracted in each cluster consid-
ering the memberships [17].

In the same way, cluster centers and memberships are updated
from the conditions and re-
spectively. An iterative algorithm is used to derive the clustering
result.

In this section, we extract local principal components by
using a least square criterion. We define the least square
criterion for local PCA using membership and entropy
regularization as

(8)

where . denotes the lower
rank approximation of the data matrix in th cluster,

(9)

where is the score matrix and
is the principal component matrix.

is dimensional vector whose all elements are 1.
With fixed memberships, the extraction of local principal

components in each cluster is equivalent to the calculation
of , and such that the least square criterion of (8) is
minimized.

From the necessary condition for the optimality of the objec-
tive function , we have

(10)

and if

(11)

Here, (11) is equivalent to the updating rule for the cluster center
in the FCV algorithm. Substituting (9), (8) is

(12)

where .
From

(13)

Under the condition that , we have and
the objective function is transformed as follows:

(14)

Therefore, it can be said that (8) is equivalent to the objective
function of FCV and the minimization problem is solved by
computing the largest singular values of the fuzzy scatter ma-
trix and their associated vectors, when the data matrix does not
include any missing value.

B. Extraction of Local Principal Components From Incomplete
Data Sets

When we deal with an incomplete real world data set in-
cluding missing values, we cannot define the objective function
of FCV composed of the distances between data points and pro-
totypical linear varieties. In this section, we propose a new clus-
tering method that partitions an incomplete data set into several
linear or ellipsoidal fuzzy clusters using the least square crite-
rion. Because the least square criterion with a complete data set
is equivalent to the objective function of FCV, the new method
is an extension of FCV to incomplete data sets.

To extract principal components from an incomplete data set,
Shibayama [7] proposed to estimate the lower rank approxima-
tion of the data matrix, , minimizing the
following objective function:

(15)

(16)

where is the matrix whose elements are defined
by (2) and denotes the Hadamard product. In this method,
only the elements of whose counterparts of are observed
are approximated while others are estimated depending on the
effects of the observed elements.

The objective function to be minimized is defined by the
convex combination of and as follows:

(17)

where is a constant which defines the tradeoff between FCM
and local PCA. When is 0, (17) is equivalent to (1).

To obtain a unique solution, the objective function is mini-
mized under the constraints that

(18)

(19)

(20)

and is orthogonal.
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Here, the optimal solution cannot be derived from eigenvalue
problems because the data matrix includes missing values. In
this paper, we derive the solution based on alternating least
squares.

To derive the optimal and , we rewrite (17) as follows:

(21)

where

From and , we have

(22)

(23)

In the same way, we can derive the optimal and . Equa-
tion (17) is equivalent to

(24)

and and yields (25) and
(26), as shown at the bottom of the page, where

(27)

The proposed algorithm can be written as follows.

FCE With Missing Values (FCEM) Algorithm

Step 1) Initialize , , , ran-
domly in each cluster and nor-
malize them so that they sat-
isfy the constraints (18)–(20)
and is orthogonal.

Step 2) Update ’s using (22) and
transform them so that each
is orthogonal.

Step 3) Update ’s using (25) and nor-
malize them so that they satisfy
the constraints (18) and (19).

Step 4) Update ’s using (23).
Step 5) Update ’s using (26) and nor-

malize them so that (20) holds.
Step 6) If

then stop. Otherwise, return to
Step 3).

The orthogonalization of the matrices in Steps 2) and 3) is
performed by such a technique as Gram–Schmidt’s orthgonal-
ization.

Here, we can rotate the score matrix and the principal com-
ponent matrix applying the technique used in factor analysis.
Assume that is an arbitrary orthonormal matrix as

(28)

and and are the transformed matrices

and are also the solutions of the minimization problem
because

(29)

Thus, the principal component vectors derived by our method
have flexibilities and we can give some meanings to the prin-
cipal component scores through a suitable rotation in the inter-
pretation of the results based on a priori knowledge.

(25)

(26)
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III. EXTRACTION OF LOCAL PRINCIPAL COMPONENTS OF

CORRELATION MATRIX

There are two alternatives in fuzzy PCA [17]. One is to use
fuzzy covariance matrices (or fuzzy scatter matrices) and FCV
is included in this category. The other is to use fuzzy correlation
matrices. In this section, we propose a linear clustering tech-
nique that is a simultaneous approach to fuzzy clustering and
PCA of correlation matrices.

Takane [9] proposed a technique for the extraction of prin-
cipal components from an incomplete data set by extending the
linear equating method proposed by Shibayama et al. [18]. Let

denotes an diagonal matrix whose diagonal ele-
ments are the th row elements of matrix and is the trans-
formation of as follows:

(30)

where matrix and matrix are unknown
weight matrices. The objective function of PCA for an incom-
plete data set with missing values is defined as follows:

(31)

where is defined by (27). To derive a unique solution, the
objective function is minimized under the condition

(32)

where is the diagonal matrix composed of the diagonal ele-
ments of the scatter matrix. The objective function is minimized
when all the elements of the th column of are equal to the th
element of , i.e., all elements are mutually equalized by the
th column vector of , and the optimal solution is derived by

PCA of the correlation matrix if the data set includes no missing
values. Although the technique can be applied only to PCA of
the correlation matrix, the optimal principal component vectors
are derived by solving an eigenvalue problem even when the
data set includes missing values.

In the following, we propose a linear fuzzy clustering tech-
nique by combining Takane’s technique and FCM in the same
way as FCE, in which the objective function is the linear com-
bination of two criteria (FCM and local PCA of covariance ma-
trices).

A. Fuzzy Principal Component Analysis of Correlation Matrix
With Missing Values

In this section, we propose a technique for fuzzy PCA of cor-
relation matrices when data include missing values. In the tech-
nique, memberships are introduced into Takane’s technique. As-
sume that the data set was partitioned into fuzzy clusters and
the membership values are given.

To extract local principal components in th cluster, we define
the following linear model:

(33)

where is an matrix and and are
weight matrices. The objective function is defined as

(34)

and is minimized under the condition

(35)

where is the diagonal matrix whose th diagonal element
is that of the modified fuzzy scatter matrix

When and are fixed, the optimal is derived from

(36)

(37)

Consequently, (34) is transformed into

(38)

where

(39)

(40)

Substituting (33), the objective function is rewritten as

(41)

where , , and are given by

(42)

(43)

(44)

From , we have

(45)

We can obtain the optimal solution from (45). But the in-
verse matrix does not exist because of the depression of the rank
of since the data set includes missing values. Therefore,
is calculated by using which is the Moore and Penrose gen-
eralized inverse of

(46)
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Accordingly, (41) is

(47)

where . The constraint can be trans-
formed into

(48)

Then, (47) is

(49)

where

(50)

(51)

Minimizing (47) under the constraint of (51), we have the char-
acteristic equation

(52)

Therefore, we obtain the principal components from the eigen-
vectors corresponding to the least eigenvalues of (52).

In the following, we show that the aforementioned technique
is equivalent to PCA of the correlation matrix when the data
matrix includes no missing values. For the illustrative purposes,
let us consider the case of and the goal is to estimate the
weight vector . The linear models and the
objective function are defined as

(53)

(54)

From the necessary condition for the optimality, we have

(55)

(56)

Then, the objective function is transformed into

(57)

When the data matrix includes no missing values, .
Therefore, (40) is represented as

(58)

and, substituting it, we have

(59)

(60)

where is the diagonal matrix composed of the elements of

(61)

Consequently, the objective function becomes

(62)

(63)

where is the fuzzy scatter matrix in the th cluster. Consid-
ering

(64)

(65)

Here, is the fuzzy correlation matrix in th cluster. Then,
when , the eigenvalue problem of (52) is equivalent to

(66)

(67)

and yields that the eigenvector corresponding to the smallest
eigenvalue of is the principal component vector
of the normalized data [17]. In the same way, we can extract
two or more principal component vectors as the eigenvectors
corresponding to the smallest eigenvalues of the fuzzy correla-
tion matrix.
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B. Simultaneous Application of Local PCA of Correlation
Matrix and Fuzzy Clustering

Next, we combine the above technique with FCM to apply
PCA of normalized data sets and fuzzy clustering simultane-
ously. In the following, we adopt the fuzzification method called
“regularization by Kullback–Leibler (K–L) information” [19],
[20] that is useful to partition a data set into several fuzzy clus-
ters considering the proportions of the clusters. Using K–L in-
formation instead of entropy terms, the FCM algorithm with a
regularized objective function is closely related to the EM al-
gorithm with Gaussian mixture models, in which the capaci-
ties of clusters correspond to the a priori probabilities in the
mixtured models. Because the local PCA technique proposed in
Section III-A considers the normalization of data in each cluster,
we should consider the normalized clustering criterion in which
the capacities of the clusters are also optimized. Let the objec-
tive function of the proposed method be

(68)

where represents the capacity (proportion) of the th cluster
and has the constraint that the sum of ’s with respect to is
equal to 1. in the brackets corresponds to the ob-
jective function for local PCA introduced in Section III-A and

is the criterion for the FCM clustering. is the
trade-off coefficient between the two criteria. When , we
have spherical clusters. As approaches 1, we have ellipsoidal
or linear shape clusters. represents the K–L in-
formation term and is added for the fuzzification instead of the
weighting exponent or the entropy term. The minimization of
the K–L information forces memberships ’s to take the same
value that represents the capacity of the cluster. The larger

is, the fuzzier the membership assignments are. When the ca-
pacity is large, the memberships become large, and vice versa. In
this way, the memberships are fuzzified considering the capac-
ities of the clusters unless all other ’s except for only one are
zero and all samples are crisply belonging to an identical cluster.

and are the Lagrangian multipliers whose corresponding
terms represent the constraints about the sum of memberships
and that of capacities.

From the necessary condition for the optimality
, we have

(69)

where

(70)

In the same way, the conditions and
yield

(71)

(72)

The proposed algorithm can be written as follows.

Local PCA With Missing Values (LPCAM)
Algorithm

Step 1) Initialize , ran-
domly in each cluster and nor-
malize them so that they satisfy
the constraint of (20).

Step 2) Solve the eigenvalue problem
of (52) to derive the local prin-
cipal component vectors, ’s
and ’s for each cluster.

Step 3) Update ’s using (71).
Step 4) Update ’s using (72).
Step 5) Update ’s using (69).
Step 6) If

then stop. Otherwise, return to
Step 2).

C. Fuzzy Factor Loadings

To analyze the relation between the local principal compo-
nents derived in each cluster and the original attributes, we can
use fuzzy factor loading [17] that is equivalent to the corre-
lation coefficient between the th principal component and
the th attribute .

(73)
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where , and represent the co-
variance between and , the variance of and that of

, respectively.
In the case of no missing values, the principal component

score vector is calculated by

(74)

However, that cannot be applied to the incomplete case in which
the sample includes missing values. It is natural to assume that
the sample data is on the most likely point. In our experiments,
we calculated using the following equation:

(75)

The equation is equivalent to (25) when the missing values are
imputed as if the sample is on the prototypical linear variety or
exists on the nearest point to the prototype.

IV. NUMERICAL EXPERIMENTS

In this section, we give two examples of how the proposed
methods achieve the linear clustering of incomplete data sets.
We first show illustrations of the application to a simple artificial
data set and then the differences of the techniques are discussed
through a real world application.

A. Analysis of Artificial Data

We generated an artificial data set consisting of 24 data
points distributed uniformly on two lines in three-dimensional
(3-D) space. Table I lists the coordinates of the samples and
Fig. 1 shows its 3-D plots. In order to test the clustering abilities
of the proposed methods, we performed several experiments
using the data set. Table II shows the prototypes derived in each
cluster. For the comparison, the principal component vectors
of the LPCAM algorithm are transformed to the original
coordinate system as follows:

(76)

Because the FCEM algorithm is a direct extension of the FCV
algorithm, the two algorithms extracted the same prototypical
lines except for the magnitude of the principal component vec-
tors in the case of no missing values. And the LPCAM algorithm
also captured the similar prototypical lines because the three at-
tributes seem to have similar variances in each clusters.

After that, we made an incomplete data matrix including 33%
missing elements, withholding one attribute from every sample
data randomly. The withheld elements are represented by bold
letters in Table I. Even though all samples lost one-third infor-
mation, both methods captured two local structures properly. In
this way, the two methods have the ability to capture the local
linear structures of the incomplete data set and they provide sim-
ilar clustering results if all attributes have identical variance in
each cluster.

B. Analysis of Point of Sales (POS) Transaction Data

In this subsection, we discuss the characteristic features of
the proposed methods through the analysis of a real world data
set. We applied the linear fuzzy clustering algorithms introduced

Fig. 1. 3-D plots of artificial data set.

TABLE I
COORDINATES OF ARTIFICIAL DATA SET

in Sections II and III to a POS transaction data set to extract
meaningful knowledge and compared the results. The POS data
set collected in 1997 at two supermarkets in Osaka includes
333 sample data and each sample datum is composed of the
following 20 values (meteorological elements, transaction data,
and so on).

Items of POS transaction data set 1: National holiday; 2:
Friday; 3: Saturday; 4: Sunday; 5: Average temperature of the
day; 6, 7, 8, and 9: Temperature at 6, 12, 15, and 18 o’clock; 10:
Humidity; 11 and 12: Weather category during day and night;
13: Precipitation,14, 15, and 16: Precipitation during 9–12,
12–15 and 15–18 o’clock; 17 and 18: Number of customers
of supermarket A and B; 19 and 20: Sales of perishables of
supermarket A and B.

The items of holiday, Friday, Saturday, and Sunday are
dummy variables and weather categories have integer values
(0: Sunny or Cloudy, 1: Light Rain or Shower, 2: Rain, 3: Heavy
Rain). Here, “perishables” mean foods such as egg, milk, and
tofu (bean curd) etc., which are made in factories and should be
consumed within a few days. The goal of the analysis is to find
some knowledge about the relationship among the elements.
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TABLE II
RESULT OF ANALYSIS OF ARTIFICIAL DATA

TABLE III
RESULT OF FCEM ALGORITHM WITH NO MISSING VALUES (� = 0:9,

� = 1:0)

Before the experiments, the data set was preprocessed so that
each attribute had zero mean and unit variance.

First, we applied the FCEM algorithm and local PCA of the
correlation matrix proposed in Section III to compare the differ-
ences between fuzzy scatter matrices and correlation matrices
using whole elements of the data matrix with no missing values.
Tables III and IV show the cluster center and the factor loadings
of two principal components derived in each cluster. In the ta-
bles, the elements whose absolute values are greater than 0.35
are represented in bold letters.

The cluster centers in Tables III and IV show that both
methods partitioned the data set into warm season and cool
season by considering the temperatures(variable 5–9). From
the comparison of the factor loadings, we can derive the
following characteristics: the first principal components (first
PCs) derived from correlation matrices are closely related to the
temperatures and indicate that the temperatures have positive
correlation with the precipitations only in cool season. On the
other hand, the first PCs derived by the FCEM algorithm are
closely related to the precipitations and the transaction data
and, indicate that the numbers of customers and the sales of
perishables have negative correlation with the precipitations.
The difference came from the influences of the data parti-
tioning. Because the data set was partitioned with respect to the
temperatures, the variances of the temperatures in each cluster
became smaller than that of other elements and the FCEM
algorithm neglected the influences of the temperatures. In this
way, the factor loadings of the FCEM (or FCV) algorithm can

TABLE IV
RESULT OF LPCAM ALGORITHM WITH NO MISSING VALUES

(� = 0:9, � = 1:0)

TABLE V
RESULT OF FCEM ALGORITHM WITH MISSING VALUES (� = 0:9, � = 1:0)

be influenced by the change of the variances (the result of the
partitioning) while the local PCA of correlation matrices is
scale invariant.

Second, we analyzed the data set with missing values. With-
holding two values from meteorological elements (variable
5–16) of every sample data randomly, we made an incomplete
data set in which 10% of the elements of the data matrix
are missing. Results of analysis by the FCEM algorithm and
the LPCAM algorithm are shown in Tables V and VI, and
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TABLE VI
RESULT OF LPCAM ALGORITHM WITH MISSING VALUES (� = 0:9, � = 1:0)

the elements whose absolute values are greater than 0.35 are
represented in bold letters.

The cluster centers in Tables V and VI show that the methods
also partitioned the incomplete data set into warm and cool sea-
sons regardless of missing values. From the comparison of the
factor loadings, we can derive the following characteristics: the
FCEM algorithm extracted the principal components similar to
the complete case although the absolute values of the fuzzy
factor loadings of the meteorological elements are smaller than
that of Table III. On the other hand, the principal components of
the 1st cluster derived by the LPCAM algorithm are not so sim-
ilar to those of Table IV although the principal components of
the warm season have similar features. However, the principal
components are more closely related to the temperatures than
those of the FCEM algorithm and the LPCAM algorithm seems
to be free from the influences of the data partitioning.

V. CONCLUSION

In this paper, we proposed two methods of handling missing
values in the simultaneous application of principal component
analysis and fuzzy clustering. One is a direct extension of the
FCV algorithm in which the objective function is defined by
using least square criterion and is equivalent to local PCA of
fuzzy covariance matrix. The FCEM algorithm is useful to
partition a data set into several linear clusters in the original
coordinate system and the clustering result is derived by the
FCM-like simple iterative procedure that does not include
eigenvalue problems. However, the local principal components
are not scale invariant. And the algorithm often yields heavy
memory requirements because we must calculate the principal
component scores of sample data in each iteration. If we deal
with a large-scale data base, it might bring a severe problem.

The other is regarded as the simultaneous application of local
PCA of fuzzy correlation matrices and fuzzy clustering, and it
cannot be influenced by changes of the scales. Therefore, the
LPCAM algorithm is useful to discover the knowledge from a
data group without the influences of other groups. Although we
can apply only to the PCA of normalized data, the LPCAM al-
gorithm needs lower memory amount than the FCEM algorithm

because it estimates the principal component vectors from the
fuzzy correlation matrix directly.

We used regularized objective functions with entropy or K–L
information terms for the fuzzification of memberships. The
FCEM algorithm can be also formulated by the standard ap-
proach based on a weighted exponent. However, it does not
seem that the standard approach suits the LPCAM algorithm
because the algorithm takes the normalization of attributes into
consideration in each cluster.

The proposed methods are based on the assumption that
the defects arise randomly. However, it is often the case that
we cannot neglect the missing data mechanism and other ap-
proaches such as imputation or trilevel alternating optimization
might work better than our methods. The future works include
the introduction of such a mechanism to linear clustering
techniques.
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