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Abstract

Nearest neighbour search is a widely used technique in pattern recognition. During the last three decades a large number of fast
algorithms have been proposed. In this work we are interested in algorithms that can be used with any dissimilarity function provided

that it fits the mathematical notion of distance.

Some of such algorithms organize, in preprocessing time, the data in a tree structure that is traversed in search time to find the nearest
neighbour. The speedup is obtained using some pruning rules that avoid the traversal of some parts of the tree.
In this work two new decomposition methods to build the tree and three new pruning rules are explored. The behaviour of our proposal

is studied through experiments with synthetic and real data.
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1. Introduction

Nearest neighbour search (NNS) is a simple technique
widely used in pattern recognition problems, information re-
trieval, data mining, etc. The NNS method consists in find-
ing the nearest point from a prototype set to a given sample
point using a dissimilarity function [1].

To avoid the exhaustive search, many algorithms have
been developed in the last 30 years [2]. One of the most com-
mon techniques is an application of the branch-and-bound
technique [3,4,6,7,9-11]. In preprocessing time, prototypes
are organized in a tree structure and, in search time, the tree
is traversed to find the nearest neighbour. The speed up is
obtained when the exploration of some parts of the tree is
avoided using efficient pruning rules. If the rules use special
properties of some dissimilarity measures then its applica-
tion is restricted to such dissimilarity measures.

* Corresponding author. Tel.: +34 965903772.
E-mail addresses: eva@dlsi.ua.es (E. Gomez-Ballester),
mico@dlsi.ua.es (L. Micd), oncina@dlsi.ua.es (J. Oncina).

While a number of algorithms rely on the use of the vec-
torial representation of the data, others are applicable in any
metric space.

An example belonging to the first group is proposed by
Chen et al. [3]. In the preprocessing stage, the proposed al-
gorithm constructs a lower bound tree, in which each leaf
node represents a sample point and each internal node repre-
sents a mean point in a space of smaller dimension. Kim and
Park [9] used an ordered partition algorithm based on the
ordered list of the training samples of each projection axis.
This algorithm can find k-nearest neighbours in a constant
expected time using a branch-and-bound search. A PCA-
based decomposition is used by D’haes et al. [4] to evaluate
some elimination rules and the traversing order in the tree.
Also, decomposition methods based on PCA have been used
in [10]. In both cases, it was shown that these algorithms
have a linear space complexity, an average number of dis-
tance computations bounded by a constant term, and a time
complexity very close to logarithmic for a small number of
dimensions.
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The second group determines the nearest neighbours in a
metric space, i.e., only the distance between points is used to
build the tree. The search is accelerated using the properties
of the distance.

The Fukunaga and Narendra’s (FN) algorithm [6] follows
this pattern. The algorithm is defined to work in an Euclidean
metric space. However, the modification to make it work in
any metric space is trivial. In the preprocess stage an n-ary
tree is obtained. Each node represents a set of prototypes,
but only its mean and radius (the distance to the furthest pro-
totype) are stored in it. The tree is built applying recursively
a clustering algorithm, while the set of prototypes repre-
sented by the node is greater than a threshold. The search is
a depth-first traversal of the tree, combined with a best-first
traversal in each node. Two pruning rules (FN pruning rules)
are used in the algorithm, one for leaf nodes and the other
for non-leaf nodes to avoid the full exploration of the tree.

Note that usually, the mean of a set of prototypes does not
belong to the set. Based on this fact, Kamgar-Parsi and Kanal
[8] introduced two new pruning rules (KK pruning rules),
one for leaves and one for non-leaves, using the distance
from the mean to the nearest prototype of the node.

Kalantary and McDonalds (KM) [7] proposed a similar
algorithm that can be used in any metric space. Now the tree
is binary and such that the leaves represent only one proto-
type. Similarly to the FN algorithm, each node represents a
set of prototypes and stores a representative (note that in this
case the mean cannot be computed) and the radius of the
set. The tree is built incrementally storing each new proto-
type in the nearest node. The algorithm uses the FN pruning
rule for nodes.

The TLAESA algorithm [11] is another fast branch-and-
bound nearest neighbour search algorithm. The algorithm is
an improvement of the LAESA algorithm [12] that is an im-
provement of the AESA algorithm [14] as well. In this family
of algorithms, a lower bound of the distance from the sample
to each prototype is computed and used to eliminate candi-
dates to nearest neighbour and to find a better candidate. In
the AESA and LAESA, all the prototypes should be visited
in order to compute a lower bound of the distance and elim-
inate the prototypes whose lower bound is greater than the
actual nearest neighbour prototype. Then, those algorithms
are only competitive if the computation of the lower bound
is much faster than a distance computation. The TLAESA
organizes the prototypes in a tree structure similar to that
used in the KM algorithm. Now, sets of prototypes can be
eliminated in a step. The search is a traversal of the tree
similar to the one used in the FN and KM algorithms but us-
ing the lower bound instead of the true distances in order to
avoid distance computations. In [13], Mic6 explored alter-
native ways of building the tree. Nevertheless, as the lower
bound was expensive to compute, this approach, similarly
to AESA and LAESA algorithms, is only competitive when
the distances are very expensive.

In this work, a tree similar to the one used in the KM algo-
rithm is used. Three methods to build binary trees are tested

function search( tree_node t, sample x )
if not exists(left _child(¢)) then return
dg = d(rep(left_child(t)), z); update nearest neighbour
if not exists(right_child(¢)) then
if not pruned(left_ child()) then search(left_child(t), z)
return
end if
d, = d(rep(right _child(¢)), z); update nearest neighbour
if d; < d, then
if not pruned(left_ child(t)) then search (left_ child(t), z)
if not pruned(right_child(¢)) then search (right_child(t), z)
else
if not pruned(right_ child(¢)) then search (right_child(z), z)
if not pruned(left_ child(¢)) then search (left_child(¢),z)
end if
end function

Fig. 1. Binary branch-and-bound search algorithm.

taking ideas of the techniques used in the FN algorithm and
the TLAESA algorithm. Also three pruning rules are used in
the search procedure: the FN pruning rule, a new one based
on sibling node information and an iterated combination of
both.

2. The search algorithm

All the proposed improvements can be used on general
metric spaces. Formally, a metric space (M, d) is a set of
points M with an associated distance function (also called a
metric) d : M x M — R (where R is the set of the reals).
For all x, y, z € M, this function is required to satisfy the
following properties:

d(x,y)>20 (=0if x =y) (identity, when x =y),
d(x,y)=d(y, x) (symmetry),
d(x,z)<d(x,y)+d(y,z) (triangle inequality).

A binary tree structure similar to the Kalantari and Mc-
Donald’s algorithm has been used to organize the prototype
set. The KM algorithm is a special case of the Fukunaga
and Narendras’s algorithm where the number of children is
fixed to 2 and the leaves contain only one prototype.

Each node (7) of the tree represents a subset (S;) of the
prototype set. Among other information needed in the prun-
ing, each node stores a representative (rep(z)) of S;. When a
node is visited, the distance from the sample x to the repre-
sentatives of both children is computed, and the closer node
is the first to be explored. Each time a distance is computed,
the current nearest neighbour candidate is updated if neces-
sary. Obviously, the exploration of a node is done only if the
node exists and cannot be pruned using some of the pruning
rules described on the following sections (see Fig. 1 for a
scheme of the algorithm).

3. The pruning rules

In order to have a base line to test the improvements
obtained with the subsequent pruning rules proposal, firstly
the Fukunaga and Narendra’s pruning rule is described.
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Fig. 2. Fukunaga and Narendra pruning rule (FNR).

In our case, as a binary tree with only one prototype at the
leaves is used, the special rule for leaves in the FN rules is
not applicable. Then, in the following, the FN pruning rule
for non-leaves is referred simply as the FN pruning rule.

3.1. The Fukunaga and Narendra’s pruning rule

The Fukunaga and Narendra’s pruning rule [6] (FNR) is
based on the following lemma:

Lemma 1. Let (M, d) be a metric space, let S C M be a
finite subset, let | € M, and let e = argmax g d(s, (). Then
Vx,n € M:

de,)<d(x,l) —d(x,n) = Vs € Sd(x,s) >d(x, n).
Proof. Lets € Sand x,n € M,

d(x,s)>d(x,l) —d(s,]) by the triangular inequality
>d(x,l)—d(e,]) asseS=d(s,1)<d(el)
>d(x,l) —d(x,l)+d(x,n) by hypothesis
=d(x,n). O

Let x be the sample point, let n be the current near-
est prototype, let ¢ be a node in the tree, and let
r =maxses, d(s, rep(t)) (Fig. 2). Then, if r <d(x, rep(t)) —
d(x,n), by Lemma 1, no prototype in S; can be nearer to
the sample that the current nearest neighbour and then the
exploration of the node can be avoided (Fig. 2).

Note that the distance r does not depend on the sam-
ple, thus it can be computed and stored in preprocess-
ing time. Note also that, when the node ¢ is checked for
pruning, the distances d(x,n) and d(x, rep(¢)) have been
already computed, then the FNR can be computed in
constant time.

3.2. Sibling-based pruning rule (SBR)

To define this rule in a node, it is necessary to know
the distance between the representative of the node and the
nearest prototype of the sibling node. If this distance is too
big, the sibling node can be safely ignored.

rep (t)

Fig. 3. Sibling-based rule (SBR).

The rule is based on the following lemma:

Lemma 2. Let (M, d) be a metric space, let S C M be a
finite subset, let r € M, and let e = argming ¢ d(s, r). Then
Vx,n e M:

d(e,r)y>d(x,r)+d(x,n) = Vs € Sd(s, x)>d(x,n).
Proof. Lets € Sand x € M,

d(s,x)=d(s,r) —d(x,r) by the triangular inequality
>d(e,r)—d(x,r) asseS=d(s,r)<d(e,r)
>d(x,r)+d(x,n) —d(x,r) by hypothesis
=d(x,n). Il

Let x be the sample, let n be the current nearest prototype,
let # be a node in the tree, let #; be its sibling node, and let
r =minges, d(s, rep(t)) (Fig. 3). Then if r >d(x, rep(?)) +
d(x,n), by Lemma 2, no prototype in S;, can be nearer to
the sample than the current nearest neighbour and then the
exploration of the node can be avoided.

Note that the distance r does not depend on the sample,
it can then be computed and stored in preprocessing time.
Note also that, when the node 7 is checked for pruning, the
distance d(x, n) is already computed, then the SBR can be
computed in constant time (as de FNR rule).

Moreover, if SBR is evaluated before the computation of
the distance d(x, rep(f)), in case of pruning, this distance
computation can be avoided.

Kamgar-Parsi and Kanal [8] proposed, for the FN algo-
rithm, a similar rule (KKR), but the distance from the mean
(used as representative) to the nearest prototype in the node
was used. It is important to note that in our case the repre-
sentative is always a prototype belonging to the node, then
this distance is always zero and then, the KKR cannot be
applied. Moreover, the new proposed rule allows the prun-
ing of the sibling node but the KKR only can prune the own
node.

3.3. Generalized pruning rule (GR)

This rule is an iterated combination of the FNR and the
SBR. The rule is based on the following lemma:
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Lemma 3. Let (M, d) be a metric space, let S C M be
some finite subset, letl,r € M, lete; € S, and G; C S such
that

G =8,
e; = argmax d(g, ),
8€G;

Git1={geG;:d(g,r)<d(e,r)}.
ThenVx,n € M:

i :d(r,e;)>d(r,x) +d(x,n)
ANd(l,ei41)=d, x) —d(x,n)
=VseS d(s,x)>=d(x,n).

Proof. Let s € S, there are two cases,

(1) Let s € Gy, then ¢4 = argmax,eg, ., d(g,l). Let
xeM,
d(x,s)>d(x,l) —d(s,]) by the triangular inequality

zd(x, 1) —d(eiy1,1)

ass € S =d(s,1)<d(ei+1,1)
>d(x,l) —d(x,l) +d(x,n) by hypothesis
=d(x,n).

(2) Lets # Gjy1,thenas Gi11={g € G; : d(g,r) <d(ej, 1)}
we have that d (s, r)<d(e;,r). Let x € M,
d(s,x)>=d(s,r) —d(x,r) by the triangular inequality

=zd(ei,r) —d(x,r)

as s # Giy1 = d(s,r)<d(e;, 1)
>d(x,r)+d(x,n) —d(x,r) by hypothesis
=d(x,n). [l

Let x be the sample, let n be the current nearest prototype,
let  be a node in the tree, #; be the sibling node of ¢, ¢; € §;,
and G; C S, such that

Gl = Sl3
e; = argmax d(g, rep(1)),
8€G;

Giv1=1{g € G; : d(g,rep(t;)) <d(e;, rep(ty))}

and let m be the smaller natural number such that |G,,| =0.
Then if it exists i such that

d(rep(ts), e;) = d(rep(y), x) +d(x, n) (D
A d(rep(t), ej11) 2d(rep(t), x) —d(x, n) 2

no prototype in S; can be nearer to the sample than the
current nearest neighbour, and then the exploration of the
node 7 can be avoided. Note that the computation of the
distances d(rep(t;), e;) and d(rep(t), e;+1) does not depend
on the sample, those distances can then be computed and
stored on preprocessing time (Fig. 4).

Note also that, when the node ¢ is checked for pruning, the
distances d(x, n), d(rep(t), x) and d(rep(f), x) are already
computed. Then, for each i, the test can be computed in

d(rep(t,),e;)

rep (tg)

Fig. 4. Generalized rule (GR).

constant time. In order to find if there is a i fulfilling the
conditions, a binary search can be used.

Note also that the rules FNR and SBR are special cases
of GR in the two following cases:

e If i =0 and only Eq. (2) is considered, then we obtain
FNR.

e If i = m and only Eq. (1) is considered, then we obtain
SBR.

4. The tree construction

As said in a previous section, a binary tree with one pro-
totype at the leaves is used by the algorithm. In this section
three different constructions of the tree are described.

In order to have a base line to compare the other proposals
a technique similar to the used in the FN algorithm is going
to be described.

4.1. c-means tree

Fukunaga and Narendra [6] proposed the construction of
the tree applying recursively a clustering algorithm, the c-
means algorithm [1]. The centroid provided by the clustering
algorithm was used as representative of each node instead
of the mean.

Fig. 5(a) shows the partition induced in a set of 1000 two-
dimensional points in the first stages of the algorithm.

4.2. Most scattered points tree

The use of the centroid as the representative of a set of pro-
totypes is a common choice in clustering techniques. How-
ever, it is not a good idea if the FNR is used to prune. With
regard to this rule, each node can be considered as a ball
centred in the representative and with radius the distance
between the representative and the furthest prototype of the
node. Then, to maximize the chances to prune a node, a good
choice is to minimize the overlapping regions of a node with
respect to its sibling node. This can be done by choosing
both representatives as scattered as possible. This scheme is
followed by the most scattered points (MSP) strategy.
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Fig. 5. Left column shows the way in which 1000 points of a two-dimension uniform distribution are divided in the first stages of the building of the
tree following the c-means strategy. The middle column shows the behaviour when MSP is used and the right column when MDF strategy is used.

Given a node ¢:

e Use as representatives of the two children of node ¢ the
two most scattered prototypes in the node;

e Classify the rest of the prototypes in the node of the
nearest representative;

e Recursively repeat the previous steps until each final
node has only a prototype, the representative.

In the worst case, when the tree is degenerated, the time
complexity is O(n?), where n is the number of points. But
in a typical case, the tree is balanced, and then the cost is
0(n?).

Fig. 5(b) shows the partition induced in a set of 1000
two-dimensional points in the first stages of the algorithm.

4.3. Most Distant from the Father tree

This approach is based on a similar technique used
in the TLAESA algorithm [11]. In the search, each time
an internal node is explored, the distance to the repre-
sentatives of the children is computed. In the Most Dis-
tant from the Father (MDF) technique one of the dis-
tance computations is avoided using as representative of
the left child the representative of its father. Following
the ideas of the MSP technique, the right representative
is the most distant point of the left child representa-
tive. Obviously, in this case, the tree is not as balanced
as using the MSP technique, but the saving on distance
computations in the search procedure compensates this
drawback.
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Fig. 6. Behaviour of the algorithm when c-means, MSP and MDF techniques are used in the tree building process using FNR as pruning rule.
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Fig. 7. Behaviour of the algorithm when MDF is used to build the tree and the pruning rules FNR, FNR+SPR and GR are used in the search.

Given a node t, let us call the children nodes ¢,, ty:

e Select rep(?) as the representative of f;

e Select argmax s, d(ty, s) as representative of ¢,;

e Classify the rest of the prototypes in the node of the
nearest representative;

e Recursively repeat the process until each leaf node has
only one point, the representative.

In the worst case, when the tree is degenerated, the time
complexity is O (n%), where n is the number of points. But in
a typical case, the tree is balanced, and then the complexity
is O (n log(n)).

Fig. 5(c) shows the partition induced in a set of 1000 two-
dimensional points in the first stages of the algorithm.

5. Experiments

Some experiments with synthetic and real data were car-
ried out to study the behaviour of our proposals. Two dif-
ferent distances were used in these experiments: Euclidean
distance and string edit distance. The experiments were de-
veloped by combining the proposed decomposition methods
and pruning rules. Different sizes of the training set were
used and 1000 samples were used as test set in all the ex-
periments both with synthetic data and with real data.

5.1. Experiments with Euclidean distance

In the synthetic experiments, prototype sets were pro-
duced from uniform distributions in the unit hypercube. Ex-
periments for a range of dimensions were tested. For clar-
ity, only results for dimensions 4 and 8 are showed in this
section. Each plot in the graphics shows the average of 10
experiments, using 1000 samples as test in each of them.

A first set of experiments were carried out in order to
study the behaviour of the algorithm using c-means (the pro-
posed by Fukunaga and Narendra), and the MSP and MDF
techniques to build the tree for increasing sizes of the train-
ing set (Fig. 6). In all these experiments, the FNR pruning
rule was used. The experiments show that MDF is clearly
superior due to the saving of one distance computation at
each level, compensating the fact that the trees are deeper.
It can also be observed that MSP also improves the c-means
technique, although its behaviour degenerates quickly with
the dimension.

A second set of experiments were carried out to show
the behaviour of the algorithm for FNR, SBR+FNR and
GR pruning rules (Fig. 7). All the experiments were done
using the MDF technique in the tree building process. The
experiments show that the addition of the SBR to the FNR
reduces the distance computations, although degenerates
quickly when the dimension grows. It can also be ob-
served that GR pruning rule reduces drastically the distance
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no so quickly.
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build the tree and GR in the searching process in relation to the use of
c-means to build the tree and FNR in the search.

In order to illustrate the improvement of our proposal,
Fig. 8 shows the average number of distance computations
using the classical approach (c-means tree building strategy
and FNR pruning rule), and the best of our techniques (com-
bining MDF tree building strategy and GR pruning rule). In
both four-dimension and eight-dimension it can be seen a
considerable saving on distance computations. We can ob-
serve, that in eight-dimension and using 20,000 prototypes
as training set, a saving near a 50% distance computations
is possible.

The previous experiments were repeated using real
data, the PHONEME database from the ROARS ESPRIT
project [5]. The PHONEME database consists of 5404 five-
dimension vectors from 2 classes. The set was divided in
five subsets, using four sets as prototypes and one set as
samples. A leaving one out technique was used.

Fig. 9 shows the distance computations when the size of
the training set increases for the three tree building strategies
and the FNR pruning rule. Fig. 10 shows the effect of the
pruning rules on the computations using MDF technique in
the building tree process.

Finally, Fig. 11 shows the distance computations using
the classical approach and the best of our techniques. As
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Fig. 14. Improvement of using the combination of MDF technique to build the tree and GR in the searching process in relation to the use of c-means

to build the tree and FNR in the searching process.

the results show a saving of near, a 75% distance com-
putations is obtained using around 4500 prototypes as
training set.

5.2. Experiments with edit distance

To test our proposals with other type of distances, sim-
ilar experiments using edit distance were carried out. Edit
distance [15] between two strings is the minimum cost se-
quence of character insertions, deletions and substitutions to

make equal the two strings. In our experiments the values
of the weighting parameters were fixed to 1.

A database of 51,589 words of the Spanish dictionary
were used. Words containing upper and lower letters, ac-
centuated vowels and diaeresis were included. The experi-
ment consists of a simulation of a real spelling task. The in-
put test of the speller was simulated distorting these 51,589
words. To obtain the distorted dictionary, insertion, deletion
and substitution operations were applied to the words in the
original dictionary.



E. Gomez-Ballester et al. / Pattern Recognition 39 (2006) 171-179 179

Increasing sizes of the set of prototypes were used in the
training. The test size consists of 1000 randomly selected
words of the distorted dictionary.

In order to obtain reliable results, 10 different experiments
were carried out for each size of the training set, all the
figures show the averages.

Fig. 12 illustrates the distance computations and the
search time by test sample using c-means, MSP and
MDF as tree building techniques and FNR as pruning
rule. As it was expected, the MDF method reduces the
search time.

A second set of experiments were carried out in order
to study the behaviour of the algorithm with the FNR,
FNR+SBR and GR pruning rules using the MDF tree build-
ing technique (see Fig. 13). As was expected the addition
of the SBR reduces slightly the number of distance compu-
tations but GR reduces it noticeably. The same behaviour is
observed with the search time.

Finally, to illustrate the improvement of our proposal,
Fig. 14 shows the distance computations and the computa-
tion time using the classical approach and the best of our
techniques.

Note that for 30,000 prototypes as training set, a saving
of more than a 50% search time is obtained using the com-
bination of MDF tree building strategy and GR pruning rule
instead of the classical approach.

Obviously, lower search time can be obtained with tailored
methods for the spelling task. It should be noted that this
algorithm is completely general and then it can work in any
metric space.

6. Conclusions

In this paper we have developed a series of improvements
based on a branch-and-bound search scheme.

On the one hand, two simple new methods to build
the tree have been proposed. These techniques allow
the search of the nearest neighbour with less distance
computations.

On the other hand, two new elimination rules are proposed
to speed up the nearest neighbour search.

Both techniques can be combined. The experiments sug-
gest that high speed ups can be obtained.

In the future, we plan to apply these approximations to
other nearest neighbour search algorithms based on a tree
structure. We are also interested in testing these techniques
in general metric spaces studying the behaviour of these
techniques in relation to the dimensionality of the data.
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