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Abstract

An approach to dealing with missing data, both during the design and normal op-

eration of a neuro-fuzzy classifier is presented in this paper. Missing values are pro-

cessed within a general fuzzy min–max neural network architecture utilising hyperbox

fuzzy sets as input data cluster prototypes. An emphasis is put on ways of quantifying

the uncertainty which missing data might have caused. This takes a form of classifi-

cation procedure whose primary objective is the reduction of a number of viable al-

ternatives rather than attempting to produce one winning class without supporting

evidence. If required, the ways of selecting the most probable class among the viable

alternatives found during the primary classification step, which are based on utilising

the data frequency information, are also proposed. The reliability of the classification

and the completeness of information is communicated by producing upper and lower

classification membership values similar in essence to plausibility and belief measures to

be found in the theory of evidence or possibility and necessity values to be found in the

fuzzy sets theory. Similarities and differences between the proposed method and various

fuzzy, neuro-fuzzy and probabilistic algorithms are also discussed. A number of sim-

ulation results for well-known data sets are provided in order to illustrate the properties

and performance of the proposed approach.
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1. Introduction

There are many real-world pattern recognition problems where input feature
vectors are incomplete [1–3,9,13,14,16–18,21,23,27,28]. The reasons for missing
data can be multifold ranging from sensor failures in engineering applications
to deliberate withholding of some information in medical questioners. And
though such problems are very interesting from the practical and theoretical
point of view, there are very few pattern recognition techniques which can deal
with missing values in a straightforward and efficient manner. It is in a sharp
contrast to the very efficient way in which humans deal with unknown data and
are able to perform various pattern recognition tasks given only a subset of
input features.

There are two distinctive problems when dealing with incomplete data which
can be stated in the following way:
(a) How to use such data in the design stage of a pattern classifier, especially

when one cannot afford to discard the inputs with missing values? and
(b) How to perform the classification of an incomplete input vector during the

normal operation of the classifier?
Both learning on the basis of incomplete data and pattern classification

using input vectors with missing features will be discussed in this paper. The
proposed approach to handling incomplete data will be based on utilising
hyperbox fuzzy sets within a general fuzzy min–max (GFMM) neural network
architecture [5–12]. The facts that inputs to the GFMM can be given in a form
of upper and lower limits and that the hyperboxes are also represented by a
pair of minimum and maximum coordinates for each dimension of the input
space will be heavily used in the way the missing values are processed during
the learning and recall stages. This specific representation of inputs and cluster
prototypes allows for the missing values to be handled very efficiently. It is
achieved by representing the missing features as real valued intervals spanning
the whole range of possible values. It facilitates the classification of incomplete
input patterns without any need for modifications of the neural network
structure or substituting of missing features with estimated values. It is argued
that since there is a certain level of uncertainty associated with unobserved
features, this uncertainty has to be quantified in some way during the classi-
fication process. What distinguishes the proposed method from a vast majority
of the algorithms for dealing with missing data is that the primary goal of
classification is specified as the reduction of a number of viable alternatives on
the basis of observed features. Additionally the upper and lower degrees of
class membership are calculated in order to quantify the level of uncertainty
associated both with the classifier model built on the basis of incomplete
training data and incomplete input patterns to be classified. The use of upper
and lower degree of class membership is very similar to the plausibility and
belief measures used in the theory of evidence [22] or possibility and necessity
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values used in the fuzzy sets theory [19]. Despite using the upper and lower
classification limits, it has to be stressed that if the observed features are dis-
criminative enough a single class can be produced as a result of the classifi-
cation. However, when a number of alternatives is found and one winning class
must be specified, data frequency or hyperbox cardinality information can be
used to select the most probable class. In this way the proposed method
combines some ideas from the probabilistic methods and fuzzy sets in order to
produce more informative classification results. Before concentrating on the
description of the algorithms let us first review the existing approaches to
handling missing data and highlight some similarities between them and our
approach.

One of the most common ways of dealing with missing values is to substitute
the missing features with their estimates [3]. These could include the mean
value calculated over all examples (or k-nearest neighbours) for a particular
feature. However, as it has been pointed out in many papers [1,13,17,18,27]
such a ‘‘repaired’’ data set may no longer be a good representation of the
problem at hand (as illustrated in Fig. 9) and quite often leads to the solutions
that are far from optimal.

Another approach presented in [23] advocates the creation of a set of
classifiers that would work on different subsets of input features. Unfortu-
nately, this method of training classifiers for all possible combinations of input
features very quickly explodes in complexity with an increasing number of
features.

Within a probabilistic setting much better results have been obtained by
estimating conditional probability distribution over all unknown features given
the known features. The emphasis here has been put on the input data density
estimation. Ghahramani and Jordan [13] used a mixture of gaussians as a basis
for the density estimation and the Expectation–Maximisation algorithm for
learning the parameters of this mixture model. A very similar approach has
been presented in [27] where the input data density estimation has been carried
out by employing Parzen windows and gaussians centered at training data
points, though the training algorithm was based on the modified backpropa-
gation method. Tresp et al. [27] also point out that their proposed normalised
gaussian formula (very similar to the formula (18)) could be used with various
approximations where the gaussians do not necessarily have to be centred at
the training data points. It is especially important when one has a large number
of training data points. In terms of data density estimation and using clustering
methods as one of the alternatives for the above-mentioned approximation, the
method proposed in this paper can be regarded as one such approximation
with hyperbox fuzzy sets used instead of multidimensional gaussians. There are
however some crucial differences which will be pointed out in the later sections.
Yet another example of neural implementation of the approach based on
building the input data density model can be found in [18] where a radial basis
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Bolzmann machine has been used for conditional probability distribution es-
timation and modified learning rules have been proposed to deal with missing
values during the training. And although all the methods discussed above are
another form of estimating the missing values they proved to be more accurate
than the heuristic approaches used before.

Apart from the above-mentioned probabilistic approaches there have been a
number of fuzzy and neuro-fuzzy methods for dealing with missing values
[1,17]. Fuzzy sets/fuzzy rule based classification systems naturally lend them-
selves to efficient processing of missing features. Both in [1] and [17], which
discuss the processing of missing data within fuzzy rule based classifiers, the
classification is only based on the known features without making any as-
sumptions about the values of missing features. In other words, the assumption
that any value for missing features is possible means that such a feature should
not influence the computation of a degree of fulfilment of any of the classifi-
cation rules. In [1,17] this was achieved by assigning 1.0 as a degree of mem-
bership to the missing features. The general idea of using only the known
features for classification and ensuring that the missing features do not affect
the generation of classification membership values is also used in this paper.
The way of achieving this is however completely different though the final
result is very similar. As mentioned earlier, the main goal of the classification is
defined as a reduction of viable alternatives rather than producing one winning
class without supporting evidence. It is argued here that one of the potential
drawbacks of the methods based on the estimation of missing features is the
fact that once the estimated value has been used (in implicit or explicit way) the
output of the classifier does not differ in any way from the output generated for
examples with all features present. An extreme example would be an attempt to
classify an input pattern with all features missing which in case of probabilistic
models discussed above would result in a guess based on the estimated data
density model while for the fuzzy methods all classification rules would be
fulfilled with a degree of 1.0 making all classes equally viable. One difference of
the proposed method from [1,17] is that in the case of classification producing a
number of viable alternatives the hyperbox cardinality information can be used
to find the most likely class. The resulting formulas are very similar to the
normalised gaussian formula presented in [27]. Additionally, by taking ad-
vantage of the interval representation of the inputs, a way of using some limits
(if known) for missing features, which could help in the class discrimination, is
proposed.

While classification on the basis of patterns with missing features is the
same, the learning of fuzzy rules in [1] and [17] is performed differently. In [1]
the rule model that evolves during the training to predict the most possible
value for each of the missing features is used. These predictions are then
subsequently used to complete the input pattern. In [17] when a missing feature
is present all combinations of fuzzy sets, which are possible for such pattern,
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are created. Depending on the granularity (the number of fuzzy sets) used to
partition each variable this approach can initially lead to generation of a large
number of rules, especially for high dimensional problems with relatively large
proportion of missing values. However, this general approach of assuming that
a missing feature can take any value will be utilised in the training stage of our
method. But again the implementation of this idea will be based on a suitable
representation of the missing feature as a real valued interval spanning the
whole range of possible values.

Some other approaches to dealing with missing values within a context of
classification decision trees and hyperbox based neural networks can be found
in [20,28].

The remaining of this paper is organised as follows. Section 2 presents a
summary of GFMM neural network with definitions of hyperbox fuzzy sets
and associated fuzzy membership function. It also provides a short description
of one of the learning algorithms which can be used to place and adjust hy-
perboxes in the input space. A way of dealing with missing features within the
GFMM NN structure is described in Section 3. Both learning on the basis of
incomplete data and GFMM operation when given an incomplete input vector
are discussed. The simulation results for a number of well known data sets
follow in Section 4. And finally the discussion and conclusions are presented in
the last section.

2. An overview of GFMM neural network

GFMM neural network for clustering and classification [8,12] is a general-
isation of and extension to the fuzzy min–max neural networks introduced in
[24,25]. The main changes in GFMM constitute the combination of unsuper-
vised and supervised learning, associated with problems of data clustering and
classification respectively, within a single learning algorithm and extension of
the input data from a single point in n-dimensional pattern space to input
patterns given as lower and upper limits for each dimension, i.e. a hyperbox in
n-dimensional pattern space.

The GFMMNN can be realised as a three layer feedforward neural network
shown in Fig. 1. It consists of 2 � n input layer nodes, m second layer nodes
representing hyperbox fuzzy sets and p þ 1 output layer nodes representing
classes.

The basic idea of fuzzy min–max neural networks is to represent groups of
input patterns using hyperbox fuzzy sets. A hyperbox fuzzy set is a combina-
tion of a hyperbox covering a part of n-dimensional pattern space and asso-
ciated with it membership function. A hyperbox is completely defined by its
min point and its max point. A membership function acts as a distance measure
with input patterns having a full membership if they are fully contained within
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a hyperbox and the degree of membership decreasing with the increase of
distance from the hyperbox. Learning in the GFMM neural network for
clustering and classification consists of creating and adjusting hyperboxes in
the pattern space. In previous publications an on-line [12] and a batch (ag-
glomerative) [8] versions of the training algorithm had been proposed. One of
the two agglomerative learning schemes described in detail in [8] will be used in
this paper and is summarised later in this section.

Once the network is trained the input space is covered with hyperbox fuzzy
sets. Individual hyperboxes representing the same class are aggregated to form
a single fuzzy set class. The cores of hyperboxes belonging to the same class are
allowed to overlap while the cores of hyperboxes belonging to different classes
are not allowed to overlap therefore avoiding the ambiguity of an input having
full membership in more than one class.

The following are the definitions of input data format, hyperbox fuzzy sets,
hyperbox membership function and hyperbox aggregation formula that are
used within GFMM.

The input data used during the training stage of GFMM neural network is
specified as a set of N ordered pairs

fXh; dhg; ð1Þ

where Xh ¼ ½X l
h Xu

h 	 is the hth input pattern in a form of lower, X l
h, and upper,

Xu
h , limit vectors contained within the n-dimensional unit cube In; and dh 2

f0; 1; 2; . . . ; pg is the index of one of the p þ 1 classes, where dh ¼ 0 means that
the input vector is unlabelled.

Fig. 1. GFMM neural network for clustering and classification.
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The jth hyperbox fuzzy set, Bj is defined as follows:

Bj ¼ fV j;W j; bjðXh;V j;W jÞg ð2Þ

for all j ¼ 1; 2; . . . ;m, where V j ¼ ðvj1; vj2; . . . ; vjnÞ is the min point for the jth
hyperbox, W j ¼ ðwj1;wj2; . . . ;wjnÞ is the max point for the jth hyperbox, and
the membership function for the jth hyperbox is

bjðXh;V j;W jÞ ¼min
i¼1::n

ðminð½1� f ðxuhi �wji; ciÞ	; ½1� f ðvji � xlhi; ciÞ	ÞÞ; ð3Þ

where

f ðx; cÞ ¼
1 if xc > 1;
xc if 06 xc6 1;
0 if xc < 0;

8<
: – two parameter ramp threshold function;

c ¼ ½c1; c2; . . . ; cn	 – sensitivity parameters governing how fast the membership
values decrease; and 06 bjðXh;V j;W jÞ6 1: A graphical example of the mem-
bership function is shown in Fig. 2.

Hyperbox fuzzy sets from the second layer are aggregated using the ag-
gregation formula (4) in order to generate an output ck which represents the
degree to which the input pattern Xh fits within the class k. The transfer
function for each of the third layer nodes is defined as

ck ¼ max
m

j¼1
bjujk; ð4Þ

where U is the binary matrix with values ujk equal to 1 if the jth hyperbox fuzzy
set is a part of the kth class and 0 otherwise; and ck 2 ½0; 1	; k ¼ 0::p, represent

Fig. 2. A graphical illustration of the hyperbox membership function (3) for the values of

V ¼ ½0:2 0:2	, W ¼ ½0:3 0:4	 and c ¼ 4.
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the degrees of membership of the input pattern in the kth class with c0 rep-
resenting all unlabelled hyperboxes.

2.1. GFMM learning algorithm

The agglomerative learning for the GFMM neural network [8] initialises the
min points matrix V and the max points matrix W to the values of the training
set patterns lower X l and upper Xu limits, respectively.

The hyperboxes are then agglomerated sequentially (one pair at a time) on
the basis of the maximum similarity value calculated using the following
similarity measure sjh ¼ sðBj;BhÞ ¼ sjðBh;V j;W jÞ between two hyperbox fuzzy
sets Bh and Bj:

sjh ¼ min
i¼1::n

ðminð½1� f ðwhi � wji; ciÞ	; ½1� f ðvji � vhi; ciÞ	ÞÞ; ð5Þ

which has been adopted directly from (3) and takes into account not only the
proximity of two hyperbox fuzzy sets but also their sizes. Two other similarity
measures for hyperbox fuzzy sets are defined in [8] and although any of the
similarity measures could be used, for the clarity of further derivations, the
results presented in this paper have been obtained using (5). Since in general
when using (5) sjh 6¼ shj, i.e. a degree of similarity of Bh to Bj is not equal to a
degree of similarity of Bj to Bh (with exception when Bh and Bj are points and
some other special cases), the selection of a hyperbox Bl, to be aggregated with
Bj is made by finding the maximum value from either: (a) the minimum sim-
ilarity values minðsjl; slj); or (b) the maximum similarity values maxðsjl; sljÞ
among all possible pairs of hyperboxes ðBj;BlÞ: In this paper we have used
option (b) which leads to an agglomerative procedure somewhat resembling a
single link agglomerative algorithm [26]. The process of finding Bl can be
summarised as follows:

8
l¼1...m

l 6¼j

sjh ¼ max maxðsjl; sljÞ
� �

: ð6Þ

The hyperboxes with the highest similarity value are only agglomerated if:
(a) newly formed hyperbox does not exceed the maximum allowable hy-

perbox size 06H6 1

8
i¼l...n

ðmaxðwji;whiÞ �minðvji; vhiÞÞ6H ð7Þ

and/or the similarity between hyperboxes Bh and Bj is greater than a certain
user defined similarity threshold value 06 smin 6 1

sjh P smin; ð8Þ
(b) the agglomeration does not result in an overlap with any of the hyper-

boxes representing other classes (please see [12] for full details of the overlap
test); and
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(c) the hyperboxes Bh and Bj form a part of the same class or one or both are
unlabelled

if classðBhÞ ¼ 0 then aggregate Bh and Bj

else

if class ðBjÞ ¼
0 ) aggregate Bh and Bj

class ðBjÞ ¼ class ðBhÞ
class ðBhÞ ) aggregate Bh and Bj

else ) take
another pair of hyperboxes

0
BBB@

ð9Þ

If the above conditions are met the aggregation is carried out in the following
way:

(a) update Bj so that a new Bj will represent aggregated hyperboxes Bh and
Bj

vnewji ¼ minðvoldji ; v
old
hi Þ for each i ¼ 1; . . . ; n; ð10Þ

wnew
ji ¼ maxðwold

ji ;w
old
hi Þ for each i ¼ 1; . . . ; n; ð11Þ

(b) remove Bh from a current set of hyperbox fuzzy sets (in terms of the
neural network shown in Fig. 1 it would mean a removal of the hth second
layer node).

The process of agglomeration is repeated until there are no hyperboxes
which can be aggregated. The agglomeration of hyperboxes can be controlled
by specifying different values for the maximum hyperbox size H and hyperbox
similarity threshold smin during the training process. For instance, in order to
encourage creation of clusters in the densest areas first (i.e. aggregation of the
most similar hyperboxes) smin can be initially set to a relatively high value and
reduced in steps after all possible hyperboxes for a higher level of smin have
been aggregated. In this way we are able to produce (simulate) a hierarchy of
nested clusterings. The optimal value of smin when designing a GFMM classifier
is selected during a cross-validation procedure where a system with the smallest
error for the validation set is sought.

A similar effect can be obtained when using the maximum hyperbox size
parameter H and starting with relatively small values of H initially allowing to
create small hyperbox fuzzy sets, and increasing the value of H in subsequent
steps with inputs to the next level consisting of the hyperbox fuzzy sets from the
previous level.

Similarly to some other powerful classification methods [4] like unpruned
decision trees, artificial neural networks, nearest neighbour classifiers or some
if . . .then fuzzy rule based classifiers the training set can be learned perfectly.
This, however, usually leads to the training data overfitting and some suitable
complexity control mechanism needs to be employed. In order to ensure good
generalisation performance various approaches utilising statistical resampling
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techniques [6] have been studied and used together with: pruning procedures
[8], data editing techniques [7], and combinations of multiple copies of the
GFMM classifier at the decision and model levels [5].

3. Incomplete data processing

The training procedure and operation of the GFMM classifier described in
the previous sections assumed that the training data are complete, although a
case of missing labels has been covered and is reflected in the training algorithm
through suitably defined overlap testing procedure and the test for class
compatibility expressed by (9). In the following sections the case of missing
data is extended to a possibility of missing features. There are two major
problems associated with the missing features which can be stated in the fol-
lowing form:
(1) How the classification of an incomplete input pattern should be performed

given a trained GFMM classifier? and
(2) How the process of creating and adjusting hyperboxes should be modified

if an incomplete input pattern is encountered?
The proposed solutions to the above questions will now follow. In both the

classification and training based on incomplete data it is assumed that all
values from the whole range for a missing feature are possible. In the pro-
posed method the missing features are represented by a real valued intervals
which can be naturally processed within the GFMM neural network. Only the
observed values are used either for adjusting the hyperbox fuzzy sets during
the training or to produce the degrees of class membership during the clas-
sification process. The uncertainty of the classification, resulting from the
uncertainty present in the classifier model or uncertainty associated with
the missing features of the input pattern to be classified, are reflected in the
classifier output.

3.1. Classification of incomplete data patterns

It is assumed at this stage that the GFMM neural network has been trained
to classify n-dimensional input patterns to one of the p classes. The classifi-
cation is based on a similarity measure given by the hyperbox membership
function (3) and the hyperbox aggregation formula (4).

The discriminative character of the hyperbox membership function is based
on penalising the violations of hyperbox min and max values for each input
dimension. The smaller xlhi than vji or the larger xuhi than wji, the smaller the
membership value, bjðXhÞ for the jth hyperbox fuzzy set Bj. If the ith feature
(dimension) of the input pattern is missing and assuming that all values for this
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feature are possible, the hyperbox membership value associated with the
missing feature should be 1.0 and therefore should not cause a decrease of the
overall degree of membership. It can be assured by the following assignments
for the missing ith feature:

xlhi ¼ 1 and xuhi ¼ 0: ð12Þ
In this way the lower limit of the missing feature xlhi will never be smaller
than vji and the upper limit of the missing feature xuhi will never be greater
than wji. The assignment (12) can be thought of as modelling the missing
feature by a real valued interval spanning the whole range of values. By this
substitution it is also ensured that the structure of the neural network will not
have to be changed when processing inputs with missing dimensions and
values in (12) can be considered as the default values for the GFMM neural
network inputs.

The interval representation of the GFMM inputs has an additional ad-
vantage because when some limits for a missing feature are known they can be
used in a straightforward way and contribute to the discriminative character of
the membership function (3).

The following are the possible cases:
(a) if only the upper limit, upperi, for the ith feature is known then as-

sign:

xlhi ¼ upperi and xuhi ¼ 0; ð13Þ
(b) if only the lower limit, loweri, for the ith feature is known then assign:

xlhi ¼ 1 and xuhi ¼ loweri; ð14Þ
(c) if both the upper, upperi, and the lower, loweri, limits for the ith feature

are known then assign:

xlhi ¼ upperi and xuhi ¼ loweri: ð15Þ
The above considerations can be illustrated on a two dimensional example
shown in Fig. 3.

The two depicted hyperboxes represent two classes. The input to be classi-
fied

X ¼ xl1 xu1
xl2 xu2

	 

¼ 0:45 0:55

? ?

	 


has the second feature missing.
The four considered cases of membership values calculation for the second

feature include the examples where: (a) no limits are known – (12), (b) only an
upper limit equal to 0.4 is known – (13), (c) only a lower limit equal to 0.6 is
known – (14), and (d) both an upper and lower limits equal to 0.6 and 0.4,
respectively are known – (15).
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The substitution values and the classification results are as follows:
(a) input pattern:

X ¼ 0:45 0:55
1 0

	 

;

classification:

C ¼ 0:75
1

	 

– class 2 selected;

(b) input pattern:

X ¼ 0:45 0:55
0:4 0

	 

;

classification:

C ¼ 0
1

	 

– class 2 selected;

(c) input pattern:

X ¼ 0:45 0:55
1 0:6

	 

;

Fig. 3. A two-dimensional example of processing missing values and potential use of upper and

lower limits for missing features.
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classification:

C ¼ 0:75
0:5

	 

– class 1 selected;

(d) input pattern:

X ¼ 0:45 0:55
0:6 0:4

	 

;

classification:

C ¼ 0:75
1

	 

– class 2 selected:

As we can see from Fig. 3 the second missing feature of the input pattern is
processed differently from the first feature. Essentially when a feature is missing
we adopt an optimistic approach and consider which values are possible. In
the case of the considered example it translates into finding the maximum
membership value within the shaded areas for the second feature illustrated as
cases a, b, c and d in Fig. 3. It is in contrast to the first feature where we are
looking for the minimum values within the shaded areas. Of course all these
minimum and maximum values are found automatically just by setting the
appropriate values for missing data as given by (12)–(14) or (15). Otherwise
the processing is carried out as for the cases without any data missing as de-
scribed in Section 2.

Another consequence of (12) and the other three substitution formulas is a
possibility of an input with missing features having a full membership in more
than one class. This, however, is something rather desirable since it aids in
distinguishing from cases with all features present and reflects uncertainty as-
sociated with missing data. Generally, the more features missing the closer the
membership value to 1 for more classes. The first objective of the classification
here is to reduce a number of viable alternatives, however when a selection of
the winning class is required additional information can be taken into account.
During the agglomerative training process apart from the jth hyperbox pa-
rameters (i.e. min–max points coordinates and the hyperbox class label), the
hyperbox cardinality information nj is stored. By the hyperbox cardinality we
mean a number of training data patterns fully contained within the jth hy-
perbox.

This cardinality information can be additionally used for finding the most
probable class using the following formula:

P̂P ðclkjXhÞ ¼
P

j2jkmx njbjðXh;V j;W jÞP
i2mmx

nibiðXh;V i;W iÞ
; ð16Þ
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where mmx ¼ fi : if biðXh;V i;W iÞ ¼ ckwing is a set of indexes of all hyperbox
fuzzy sets for which the degree of membership is equal to the degree of
membership of the winning class found using the following formula:

ckwin ¼ max
p

j¼1
cj ð17Þ

and jkmx ¼ fj : if classðBjÞ ¼ clk and bjðXh;V j;W jÞ ¼ ckwing is a subset of mmx

with indexes for the kth class and
Pp

k¼1P̂P ðclkjXhÞ ¼ 1.
If there is only one class with the degree of membership equal to ckwin it

means that only one alternative has been found and P̂P ðclkjXhÞ for such class
will be equal to 1.0 while for the other classes it will be equal to 0.0. This case is
illustrated in the example of classification of the input patterns 1, 2, 3, 5 and 7
in Fig. 4. On the other hand when more than one alternative class is found
using (17) the most probable class from the selected alternatives is found by
utilising the hyperbox fuzzy sets cardinality values as given by (16). Please see
the example of classification of the input pattern 4 in Fig. 4 below where due
the second feature missing the hyperboxes 1 and 3 representing two different
classes are regarded as equally viable alternatives according to (17) but class 2
is selected as more probable when using (16).

As we can see from the above description only a subset of the hyperbox
fuzzy sets with the highest degrees of membership is used when deciding which
of the alternative classes found using (17) should be selected as the winner.
A generalisation of this definition of alternative classes will be given in the
next section when we introduce the upper and lower degrees of class mem-
bership.

Alternatively all hyperbox fuzzy sets, which here can be regarded as an al-
ternative to Parzen windows using gaussian window functions [27] or gaussian
mixtures [13] as an input data distribution estimators, can be used to carry out
the classification using the following formula:

P ðclkjXhÞ ¼
P

j2jk njbjðXh;V j;W jÞP
i¼1 nibiðXh;V i;W iÞ

; ð18Þ

where jk ¼ fj : if classðBjÞ ¼ clkg is a set of indexes of all the hyperboxes from
the kth class and

Pp
k¼1 P ðclkjXhÞ ¼ 1.

If (18) was to be implemented as a neural network shown in Fig. 1 the
connections between the second and third layer nodes would not be binary
values but equal to ujk ¼ nj

Pm
i¼1nibiðXh;V i;W iÞ

�
if the jth hyperbox fuzzy set

was part of the kth class and zero otherwise. The transfer function for the third
layer nodes would be a sum of weighted membership values rather than a
maximum as given in (4). In this case the GFMM would closely resemble the
radial basis function (RBF) neural networks but with a crucial distinction that
the inputs to the whole network can be given as the real number intervals.
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Similarly to the width of the window in the standard Parzen windows
density estimation [4], the parameter c, governing the speed of decreasing of the
membership function with the increasing distance from a hyperbox, has a
crucial effect on how the classifier performs. It is especially important when
using a weighted sum of all hyperbox fuzzy sets as in (18). However, as will be
illustrated in the results section, the value of c is not so crucial when using (16)
because only a subset of hyperbox fuzzy sets with maximum membership
values is selected.

When c is approaching zero all bj will have values approaching 1 and then P
approaches the unconditional class probabilities

P ðclkÞ ¼ P ðclkjXhÞ
P

j2jk niPm
i¼1 ni

estimated from the training data. This is also the case, both for (16) and (18),
when one attempts to classify an input pattern with all features missing irre-
spective of the value of c. On the other hand if c is large the membership
function decreases very quickly and the classification can be carried out only if
the input pattern fall into one of the cores of hyperboxes or in a case of an
input with missing features, all the observed feature values must fall between
the min and max values of at least one hyperbox fuzzy set.

3.2. Training with incomplete data

The GFMM training algorithm in presence of incomplete data is virtually
the same as for the training data with all features present. Once the substitution
(12) (or (13)–(15)) has been made the remaining steps of the training algorithm
ensure the use of observed features in the process of updating the hyperbox min
and max points while the missing features are automatically ignored as a result
of the hyperbox update rules (10) and (11).

The only modifications of the basic training algorithm concern the definition
of the overlap test and the use of the assumption that all the values for the
missing features are possible.

With respect to the overlap test only the hyperboxes for which wji P vji for
all i ¼ 1::n are tested for the undesired overlap after each agglomeration (up-
date) of hyperbox fuzzy sets during the training process.

The second modification concerns the way how the missing dimensions in
hyperboxes can affect the calculation of the hyperbox similarity values (5) (or
hyperbox membership values (3)) used during the training process for selecting
the most similar hyperboxes for agglomeration. Similarly to the classification
of an input pattern with missing features, hyperbox similarity values are de-
termined on the basis of observed features with missing dimensions not af-
fecting (decreasing) the similarity value. This can be achieved by changing the
hyperbox similarity measure (5) in the following way:
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sjðBh;minðV jW jÞ;maxðV j;W jÞÞ
¼ min

i¼1...n
ðminð½1� f ðwhi �maxðvji;wjiÞ; ciÞ	; ½1� f ðminðvji;wjiÞ � vhi; ciÞ	ÞÞ:

ð19Þ

If there are no missing data the above definition of the hyperbox similarity
measure is exactly the same as (5) since all wji P vji.

The final classifier trained using incomplete data can be composed of a set of
hyperbox fuzzy sets which can have some of the dimensions not set up during
the training (please see the hyperbox 4 in the example in Fig. 4). Whether there
will be some hyperboxes with ‘‘missing’’ dimensions or not depends on the
composition of the training set. It is our way of representing the training data
uncertainty in the classifier model.

Once the classifier is trained the potential uncertainty associated with the
fact that the limits (i.e. min and max points) for some hyperboxes’ dimensions
have not been set during the training, can be quantified by producing the upper
and lower degrees of class membership. This can be achieved by using (4) in the
following way:

cuk ¼ max
m

j¼1
bjðXh;minðV j;W jÞ;maxðW j;V jÞÞujk; ð20Þ

clk ¼ max
m

j¼1
bjðXh;V j;W jÞujk ð21Þ

for finding the upper cku and lower clk class membership values respectively.
The difference between (20) and (21) may only occur when some of vji > wji

signifying that some of the hyperbox min–max points have not been set. By
taking minðV j;W jÞ and maxðW j;V jÞ in (20) we effectively find the most op-
timistic class membership values. On the other hand, if we use (21) the most
pessimistic class membership values are found. In a sense we can think of the
values of cuk and clk as similar to the possibility and necessity values [19] or
the plausibility and belief values [22] to be found in the fuzzy set theory and the
evidence theory respectively.

The fact that the classification result can now be given in a form of upper
and lower class membership values requires a definition of what one would
consider as a viable class alternative. In the previous section two or more
classes were considered as viable alternatives if the class membership values for
such classes were equal to the membership value of the winning class. Here,
after finding cuk and clk for all classes first the class is found with the maximum
upper membership value

cukwin ¼ max
p

j¼1
cuj : ð22Þ

If there are more than one class with equal highest membership value the
class with the minimum difference between upper and lower membership values
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min
j¼1::p

cu
j
¼cu

kwin

cuj � clj ð23Þ

is selected.
Once such class has been found all classes for which

cuj P clkwin j ¼ 1 . . . p ð24Þ
j 6¼ kwin

are regarded as viable alternatives.
In a case where there are more than one viable alternative and if only one

winning class needs to be selected the hyperbox cardinality information is used
by utilising (16) with bj calculated as bjðXh;minðV j;W jÞ;maxðW j;V jÞÞ and a
set of hyperbox fuzzy set indexes to be used in (16) is found as follows:

mmx ¼ j : if bjðXh;minðV j;W jÞ;maxðW j;V jÞÞ
n

P clkwin

o
;

jkmx ¼ j : if classðBjÞ
n

¼ clk

and bjðXh;minðV jW jÞ;maxðWj;V jÞÞP clkwin

o

The membership values used in (18) are also calculated as bjðXh;minðV j;
W jÞ;maxðW j;V jÞÞ.

All the above derivations are a generalisation of the formulas from Section
3.1 and would simplify to the cases discussed in that section if for all the hy-
perboxes forming a classifier the values wji P vji for all i ¼ 1::n and j ¼ 1::m.

3.3. Example

To clarify some of the points introduced in the previous two sections and
illustrate the way of dealing with missing values within the proposed algorithm
a simple two dimensional example shown in Fig. 4 is now presented.

The classifier model consists of four hyperbox fuzzy sets representing
two different classes. The parameters of the hyperboxes and some hypothetical
cardinality values are shown in Table 1.

The fourth hyperbox is an example of a hyperbox with the second dimension
which has not been set during the training (i.e. all the training data points used
for the generation of this hyperbox had the second feature missing). Apart
from the hyperboxes forming the GFMM classifier, seven input patterns to be
classified are also shown. The first three patterns do not have any features
missing, patterns 4 and 5 have the first feature missing while patterns 6 and 7
have the second feature missing. Additionally, the first feature of pattern seven
is given in a form of lower and upper limit values. The numerical values for all
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the input patterns and classification results are shown in Table 2. All the de-
grees of membership have been calculated for the parameter c ¼ 2.

As it can be seen from Table 2 for input patterns 1, 2, 3, 5, and 7 only one
alternative class has been found while for input patterns 4 and 6 both classes
have been initially regarded as viable alternatives and the hyperbox cardinality
information has been used to decide the more likely class. Note that when
calculating P (last column in Table 2) all hyperboxes and their cardinalities are
always used. Input pattern 4 provides an interesting case since according to
(18) (a column marked P) the pattern should be classified as belonging to class
1 while according to Cu and C l there is probably not enough information in the
input pattern to choose one class over the other but after applying (16) (a
column marked P̂P ) the second class would be selected as a winner. This

Fig. 4. Two-dimensional example of processing missing data within the proposed method.

Table 1

The parameters of hyperbox fuzzy sets shown in Fig. 4

Hyperboxes

No. ðjÞ V j W j Class(Bj) Cardinality of Bj

1 [0.3 0.6] [0.45 0.8] 1 12

2 [0.4 0.75] [0.6 1] 1 20

3 [0.55 0.45] [0.7 0.65] 2 15

4 [1 0.1] [0 0.2] 2 10
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example also illustrates how the upper and lower degrees of class membership
can provide additional level of information about the discriminative qualities
of input data to be classified.

For input patterns 4 and 5 we can also observe that though in both cases the
first feature is missing input pattern 5 can be quite confidently classified as be-
longing to class 1 just on the basis of the second feature value which is dis-
criminative enough to do so, while input pattern 4 poses a much more difficult
case as described above.

Other interesting cases include patterns 1, 3 and 6 the classification of which
results in producing different values for Cu and C l reflecting the fact that we are
uncertain about the first dimension of hyperbox 4 which has not been set
during the training and it is assumed that any value for feature one is possible.

4. Results

The testing of the proposed approach has been carried out on four well-
known data sets, namely IRIS, Wine, Ionosphere, and SatImage obtained from
the repository of machine learning databases (http://www.ics.uci.edu/�mlearn/
MLRepository.html). The data sets have been selected due to their different
characteristics concerning the number of samples, features and classes. They
also represent four different classification problems drawn from different

Table 2

Input patterns and classification results for the example shown in Fig. 4

Input patterns Classification

No. ðhÞ X l
h Xu

h Cu C l P̂P P

1 [0.425 0.225] [0.425 0.225] [0.25 0.95] [0.25 0.55] [0 1] [0.15 0.85]

2 [0.67 0.77] [0.67 0.77] [0.86 0.76] [0.86 0.76] [1 0] [0.68 0.32]

3 [0.65 0.15] [0.65 0.15] [0.1 1] [0.1 0.4] [0 1] [0.07 0.93]

4 [1 0.625] [0 0.625] [1 1] [1 1] [0.44 0.56] [0.62 0.38]

5 [1 0.9] [0 0.9] [1 0.5] [1 0.5] [1 0] [0.8 0.2]

6 [0.35 1] [0.35 0] [1 1] [1 0.6] [0.55 0.45] [0.61 0.39]

7 [0.69 1] [0.71 0] [0.78 1] [0.78 0.98] [0 1] [0.46 0.54]

Table 3

The sizes of data sets used in classification experiments

Data set No. of inputs No. of classes No. of data points

Total Train Test

IRIS 4 3 150 75 75

Wine 13 3 178 90 88

Ionosphere 34 2 351 200 151

SatImage 36 6 6435 3219 3216
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domains, i.e. classification of iris plants (IRIS data set), three types of wine
(Wine data set), radar signals used to describe the state of ionosphere (Iono-
sphere data sets) and multi-spectral remotely sensed data of satellite images
(SatImage). The sizes and splits into the testing and training data for all four
data sets are shown in Table 3.

(a)

(b)

Fig. 5. Classiflcation results of the IRIS data set for the proposed method and the nearest

neighbour classifier with substituted mean value for the missing data: (a) training without missing

values – testing for different levels of missing values; (b) training for different levels of missing

values – testing without missing values; (c) training and testing for data with different levels of

missing values. The solid line with ‘+’ shows the classification results using (16); the dashed line

with ‘�’ shows the classification results using (18); and the dash-dot line with ‘*’ shows the

classification results for the nearest neighbour classifier.
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The results obtained using the proposed method and their comparison with
the nearest neighbour classifier, with missing values substituted with the mean
values calculated from the training set, are shown at Figs. 5–8. The testing of
the influence of missing data on classification performance has been divided
into three separate experiment groups.

In the first group, the GFMM neural network was trained using training
data sets without missing values. Subsequently, the testing was conducted on
all testing data sets for a factor of missing features ranging from 10% to 80%.
At each level, the average values over 100 testing runs, each for randomly
chosen missing features have been calculated. The results are shown in Figs.
5(a), 6(a), 7(a) and 8(a).

In the second group of experiments the GFMM was trained on the basis of
training data sets with a factor of missing features ranging from 10% to 80%.
The training has been repeated 50 times for IRIS, Wine and Ionosphere data
sets and 20 times for SatImage data set, each time with randomly chosen
missing features. The testing has been performed for the testing sets without
any features missing. The results are shown in Figs. 5(b), 6(b), 7(b) and 8(b).

In the third group of experiments both training and testing sets contained
the same level of missing features again between 10% and 80% of all features.
The results are shown in Figs. 5(c), 6(c), 7(c) and 8(c).

The greyed area in all figures represents cases where 2 or more classes have
been identified as viable alternatives (according to Eqs. (22)–(24)) with the
correct class always present. The area below the greyed area refers to the un-
ique, correct classification where only one, correct class has been chosen. The
area above the greyed area represents misclassified cases. The solid line marked
with ‘+’ within the greyed area represents the classification rates obtained when

(c)

Fig. 5 (continued )
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hyperbox cardinality information is used according to (16). The dashed line
with ‘�’ shows the classification results using (18) and the dash-dot line with ‘*’
shows the classification results for the nearest neighbour classifier.

The first comment which can be made on the basis of Figs. 5(a), 6(a), 7(a)
and 8(a) is that the substituting of the mean value for the missing features and
classifying using the nearest neighbour classifier produced much worse results
than the proposed method. This is not surprising since it is just a confirmation

(a)

(b)

Fig. 6. Classification results of the Wine data set for the proposed method and the nearest

neighbour classifier with substituted mean value for the missing data. Please see the caption of

Fig. 5 for additional description.
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of what has been found by other researchers investigating such substitutions. It
was though very surprising that the nearest neighbour method performed very
well in the second group of experiments where the training data was generated
with various levels of missing features and there were no missing data in the
testing set. The reason for this can be explained on the basis of the two di-
mensional example shown in Fig. 9. The data are the normal mixtures data
introduced by Ripley [20] and used in many other publications [5–8,15]. The
training data consists of two classes with 125 points in each class. Each of the
two classes has bimodal distribution and the classes were chosen in such a way
as to allow the best-possible error rate of about 8%. An independent testing set
of 1000 samples has been drawn from the same distribution. In the example
shown in Fig. 9 the training data with 80% of missing features have been
utilised. It means that out of the total number of 500 feature values only 100
have been used. As we can see from Fig. 9(a) substituting the missing values
with mean values completely changes the distribution of the data which makes
such ‘‘repaired’’ data completely inappropriate to use for training of other
classifiers though the performance of the 1-nn classifier on the testing set does
not decrease dramatically. On the other hand, the hyperboxes shown in Fig
9(b) generated on the basis of the same training data with 80% of missing
features cover the original training data very well and the classification per-
formance is also very good.

Another interesting observation based on Figs. 5(a), 6(a), 7(a) and 8(a) is
that the level of misclassified cases remains roughly the same for a whole range
of missing features. The increasing level of missing features is reflected in a

(c)

Fig. 6 (continued )
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higher percentage of cases for which classification resulted in producing more
than one viable alternative but almost always including the correct class. This
can be particularly observed for IRIS and Wine data sets. Please note that 80%
of missing features for IRIS data set means that a significant proportion of the
testing cases will have all features missing.

However, as it can be seen for Ionosphere and SatImage (up to 60% of
missing features) data sets even for a high level of missing features, one winning

(a)

(b)

Fig. 7. Classification results of the ionosphere data set for the proposed method and the nearest

neighbour classifier with substituted mean value for the missing data. Please see the caption of

Fig. 5 for additional description.
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class is produced for a vast majority of testing cases (i.e. there is a very small
grey area). This is an example of how the classification with missing features
can result in a one class being selected if only the known features are dis-
criminative enough to do so.

Another effect characteristic for the method used is illustrated for the Iono-
sphere data set in Fig. 7(b) and (c). It is an example for which a large number of
hyperboxes have been retained in the final classifier model many of which did
not have some of the dimensions set during the training. The upper and lower
degrees of class membership overlap for both classes for a large number of
testing cases which according to the test defined in Section 3.2 means that the
two classes are initially treated as viable alternatives (large greyed areas). The
use of cardinality information and Eqs. (16) and (18) result in a very good
classification performance even for high ratios of missing features.

When all the hyperbox fuzzy sets are used for classification as in (18) it is
very important that the parameter c is chosen carefully as it decides how wide
an influence of a hyperbox fuzzy set around the core hyperbox will be. It is
essentially the same problem when one needs to select the Parzen window
width or more specifically the variance of a gaussian when multidimensional
gaussians are used for the data density approximation as in [27]. While there
are procedures for finding a good estimate for c based on cross-validation it
does not change the fact that the results of applying (18) are very sensitive to
the changes in c. The illustration of this phenomena is given for SatImage data
set in Fig. 8(a) and Wine data set in Fig. 6(b)–(c). The value of parameter c ¼ 1
was clearly too small (the hyperbox membership values did not decrease

(c)

Fig. 7 (continued )
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quickly enough) since the performance of (18) was significantly worse than
(16). By increasing c to 2, therefore making the hyperbox fuzzy sets more local,
a significant improvement could be noticed as shown in Fig. 8(b)–(c) for
Satlmage data set and in Fig. 6(a) for the Wine data set. It is worth noting that
the performance based on (16) was not affected by changes in c. It is because
the hyperboxes to be used in (16) are selected as the best locally performing
ones in the first place.

(a)

(b)

Fig. 8. Classification results of the SatImage data set for the proposed method and the nearest

neighbour classifier with substituted mean value for the missing data. Please see the caption of

Fig. 5 for additional description.
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The performance of the GFMM classifier utilising formula (16) on IRIS
data set is similar to the results reported in [13,18] and for the SatImage data
set to the results reported in [1] though it has to be said that the emphasis in the
above-mentioned publications had been on the learning with missing values
while the testing was carried out on testing sets without missing features which
in our case refers to results in Figs. 5(b) and 8(b) respectively.

5. Discussion and conclusions

Though seemingly very different the two groups of algorithms with their
roots in probabilistic and fuzzy settings discussed in Section 1 have one major
common characteristic. They all use a mechanism for building an input data
model using a combination of local basis functions. In probabilistic approaches
the data density estimation is carried out based on a number of multidimen-
sional gaussians while in fuzzy approaches the triangular or trapezoidal
membership functions serve a similar purpose of covering the input space. In
other words after learning has been completed the input data space is covered
by ‘‘patches’’ which are then combined to give a final classification model. The
approach discussed in this paper also provides a mechanism for building an
input data model by covering the input space with hyperbox fuzzy sets.

It has been shown that the GFMM neural network, with its definition of the
inputs given in a form of real number intervals and hyperbox fuzzy sets used to
represent input data clusters, provides a natural and efficient way of

(c)

Fig. 8 (continued )
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representing and processing of missing data. No assumptions about the missing
features or substitutions with fixed values have been used either during the
classification or training of the classifier based on incomplete input patterns.
What is also distinctive about our method is that the process of placing and
adjusting the hyperboxes in the input space can lead to creation of some hy-
perbox fuzzy sets for which certain dimensions are not set. Such a hyperbox
would effectively represent a subspace of the original input space. This could
occur, for instance, when all the training data for one class would have con-
sistently one or more features missing. Such a ‘‘not missing at random’’ ex-

(a)

(b)

Fig. 9. The normal mixtures data with 80% of feature values missing: (a) nearest neighbour with

mean values used as substitutions; (b) hyperboxes created for the training data with 80% of features

missing. The complete original training data points are also shown. The error rates for an inde-

pendent testing set of 1000 samples are shown in the right corners of (a) and (b).

176 B. Gabrys / Internat. J. Approx. Reason. 30 (2002) 149–179



ample could cause serious problems for the methods which learn the para-
meters of the classifier model by using random initialisation and assume that
some values have to observed for each feature and all the classes. In contrast
such an example would be efficiently processed and is catered for within the
GFMM training algorithm which is virtually the same whether the missing
values are present or not. The classifier model uncertainty resulting from
training on incomplete data (like in the example above) can be quite easily
quantified by generating upper and lower class membership values during the
GFMM classifier operation.

It has been argued that the primary goal of the classificationwhenmissing data
are involved should be a reduction of the viable class alternatives based on the
evidence present in the observed features. This can lead to the selection of a single
winning class but in cases when two or more viable alternative classes are iden-
tified we have also proposed formulas utilising the hyperbox cardinality values
(the data frequency information) to find the most probable class. Such a proce-
dure leads to a more informative classification and could be crucial in situations
when important decisions have to be made on the basis of such classification.

One more advantage of the GFMM classifier, shared with the decision trees
or rule based classifiers, is its transparency and ability to provide easily in-
terpretable explanation of the suggested classification. The hyperbox min–max
values can be easily converted into a set of rules understandable to a non-
technical user. In cases when the classification results in a number of possible
alternatives this would also provide an opportunity to highlight and suggest the
features which would be most useful in reducing the number of alternatives. An
example could include a hypothetical loan approval application where on the
basis of initial processing of incomplete data a customer could be asked to
provide an additional information, suggested by the classification system,
which would reduce the risk/ambiguity of the decision to be made. The use of
the proposed techniques within the medical diagnosis and financial decision
support systems are currently under investigations.
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