
Mathematical and Computer Modelling 44 (2006) 790–806
www.elsevier.com/locate/mcm

Inductive learning models with missing valuesI

I. Fortesa,∗, L. Mora-Lópezb, R. Moralesb, F. Triguerob

a Dept. Matemática Aplicada, E.T.S.I. Informática, Univ. Málaga, Campus Teatinos, Málaga 29071, Spain
b Dept. Leng. y C. de la Computación, E.T.S.I. Informática, Univ. Málaga, Campus Teatinos, Málaga 29071, Spain

Received 30 September 2004; received in revised form 7 February 2006; accepted 21 February 2006

Abstract

In this paper, a new approach to working with missing attribute values in inductive learning algorithms is introduced. Three
fundamental issues are studied: the splitting criterion, the allocation of values to missing attribute values, and the prediction of new
observations. The formal definition for the splitting criterion is given. This definition takes into account the missing attribute values
and generalizes the classical definition. In relation to the second objective, multiple values are assigned to missing attribute values
using a decision theory approach. Each of these multiple values will have an associated confidence and error parameter. The error
parameter measures how near or how far the value is from the original value of the attribute. After applying a splitting criterion, a
decision tree is obtained (from training sets with or without missing attribute values). This decision tree can be used to predict the
class of an observation (with or without missing attribute values). Hence, there are four perspectives. The three perspectives with
missing attribute values are studied and experimental results are presented.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Missing values; Decision tree; Decision theory; Data mining; Machine learning

1. Introduction

One of the main tools of data mining is rule induction from raw data represented by a database. Real-life data
are frequently imperfect: erroneous, incomplete, uncertain and vague. In this paper we have investigated one of the
forms of data incompleteness: missing attribute values. Missing data randomness can be divided into three classes, as
proposed by [1]:

• Missing completely at random (MCAR). This is the highest level of randomness. It happens when the probability
of an instance (case) with a missing value for an attribute does not depend on either the known values or the missing
data. In this level of randomness, any missing data treatment method can be applied without risk of introducing
bias into the data.

• Missing at random (MAR). When the probability of an instance with a missing value for an attribute may depend
on the known values, but not on the value of the missing data itself.

I This work has been partially supported by MOISES project number TIC 2002–04019–C03–02 of the CICYT-Spain.
∗ Corresponding address: Universidad de Malaga, Campus de Teatinos, Dpto. Matematica Aplicada E.T.S. De Ingenieria Informatica, Bulevar

Luis Pasteur s/m, Malaga 29071, Spain.
E-mail address: ifortes@ctima.uma.es (I. Fortes).

0895-7177/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mcm.2006.02.013

http://www.elsevier.com/locate/mcm
mailto:ifortes@ctima.uma.es
http://dx.doi.org/10.1016/j.mcm.2006.02.013

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 791

• Not missing at random (NMAR). When the probability of an instance with a missing value for an attribute could
depend on the value of that attribute.

This paper only considers the MCAR model and uses it to introduce missing values when performing experiments.
We assume that the format of input data files is in the form of a table, which is called a decision table. In this table,

each column represents one attribute, which represents some feature of the examples, and each row represents an
example (training case) by all its attribute values. The domain of each attribute may be either symbolic or numerical.
The last column is the target class, i.e. the values of the other attributes determine the target class values.

Methods for treating missing data

In general, two groups of algorithms to process databases that contain missing values can be distinguished. The first
group concerns unsupervised algorithms that do not use target class values. The second group is supervised algorithms
that use target class values and which are commonly implemented by using supervised inductive learning algorithms
[2]. Other works on dealing with missing values in supervised algorithms have been undertaken in the context of
rough set theory [3–8]. The proposal in [3] is to reduce knowledge by eliminating only the non-essential information
in order to classify or to make decisions; this is based on the discernibility function. Another direction, related to the
previous one, is considered in [8], where missing attributes are classified in three groups: “lost”, “non relevant” and
“attribute–concept value”; in each case, a decision to complete or to expand or to not include the data is taken.

For unsupervised learning, statistically intensive methods have been developed mainly to manage incomplete data:

• Conventional methods
A decision could be to discard the training cases with missing attribute values. If the training cases with missing

attribute values are discarded (listwise deletion and pairwise deletion methods), we would decrease the ability to
find patterns, and obtain worse predictions when using the decision tree in Data Mining, because fewer training
cases are taken into consideration. Thus, our decision, and the main goal of this paper, is to adapt the algorithms to
work with missing attribute values.

• Global imputation based on a missing attribute
If we look at the other values taken by a variable with a missing item, and we find that some of them are more

frequent than others, then we may decide to use this fact to assign the most frequent value to a missing one. We fill
the missing attribute values with a measure of central tendency (see [9–11] for a comparison of mean imputation
and the most common imputation attribute value). These methods are usually regarded as inadequate, because the
standard deviation of the sample is underestimated even when data are MCAR.

• Parameter estimation and global imputation based on non-missing attributes
These have proven to be very effective in many situations, especially the EM algorithm [1] and multiple

imputation [12]. The main problem with these techniques is the need for strong model assumptions, which are
usually difficult to justify in the knowledge discovery process.

Our method for working with missing attribute values is based on a well-known approach to supervised inductive
learning algorithms, that is, tree-based classification. From incomplete data, a decision tree is built, which is also
able to classify unseen records with missing values. For a short overview of tree-based classification techniques, see
[13,14].

The methods cited above fill all the missing values, and in the tree-based classification method there are cases in
which it is not necessary to fill all the missing values, because they are unnecessary in tree construction. This fact
simplifies the computation. Besides this, it is not necessary to model assumptions in decision tree classification.

The original idea of generating a decision tree from a set of training cases arose in [15–18], where experiments
with several implementations of concept learning systems (CLS) are described. Other studies include [19], ID3
[16–18,20], PLS1, and ASSISTANT86 [21]. The basic TDIDT (Top Down Induction of Decision Tree) algorithms [18,
20] assume that the attribute values for all training cases of the training set are known.

If the training set contains missing attribute values, we must decide how to work with them. The most famous
algorithm of this kind is C4.5 [22], which has proved to be very effective (see [23] for an experimental comparison
among supervised inductive learning algorithms, CLIP4, Naive–Bayes, and C4.5).

CLIP4 [24,25] is a rule-based algorithm that works in three phases. It works only with discrete data.
Naive–Bayes [26] is a classification technique based on computing probabilities. It works only with discrete data.

792 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

C4.5 [22] is a decision tree algorithm. The usual splitting criterion to select an attribute is the gain ratio [20] based
on the information concept defined by Shannon [27]. Each tree level is generated by dividing the data at a given node
into a number of subsets, which are represented by branches. For each division, the gain ratio is used to select the
best attribute, whose values are used to divide the data into subsets. Each subset contains data that take on one of the
values of the selected attribute. It can work with both discrete and continuous data.

It has been shown in [23] that, in general, supervised imputation algorithms have better performance compared to
unsupervised algorithms. Another important trend shows that increasing the number of attributes and examples results
in increasing the quality of imputation for the supervised imputation methods. Besides this, several measures indicate
that the supervised imputation method used in C4.5 has the best overall performance. A probabilistic approach is
adopted: each case in each subset has an associated weight representing the probability that the case belongs to each
subset. If the case has a known outcome, this weight is 1; if the case has an unknown outcome, the weight is just the
probability of outcome of each value at this point. Each subset is then a collection of possibly fractional cases.

In [28], the problem of missing values is studied from the point of view of several committee methods (Bagging,
Boosting, SASC, and SASCMB). Committee methods are methods for groups of classifiers/predictors to select one
or more options from many, taking into account the individual classification/prediction of the group members. It is
shown that SASCMB is the most robust. Our work occupies a previous stage. We can assign values to missing values,
and then the committee methods can be applied.

2. Our approach to working with missing attribute values

The main contributions of this work are the following: the definition of a general splitting criterion, taking into
account the missing attribute values and generalizing the classical one; the assignation of values to missing attribute
values by means of a decision theory approach, taking into account the information of observations and classes with
associated parameters (confidence and error); and finally the prediction of new observations (in all perspectives) with
two associated parameters.

This approach to processing missing attribute values was introduced in a brief and preliminary version in [30].
It can be integrated straightforwardly in any software dealing with inductive learning: academic software [31,32] or
commercial software [22].

Our approach to working with missing attribute values is a supervised inductive learning algorithm, specifically a
decision tree algorithm. The method defined in [29] has some similarities to our method. However, we have developed
a complete process from data with missing values to decision trees, by including the prediction process.

We assume that the unknown values (in the training cases or in the observations) are missing completely at random.
To select an attribute in the building process of the decision tree, a general splitting criterion will be formally defined.
To do so, the missing value is first taken as a new value of the attribute. Second, the splitting criterion takes into
account this new value. Finally, a reduced weight is assigned to the attribute with missing values. In this way, every
splitting criterion defined as working without missing values is adapted to work with missing attribute values.

Let us suppose that an attribute has been selected. A node of the decision tree is then expanded and several child
nodes are generated (one child for each known value of the selected attribute).

The training cases with the selected attribute value known are split in the child nodes. The training cases with
exactly that attribute value missing will appear in every child node. Each of these training cases in each child node
will have two associated parameters: confidence and error (real numbers). Obviously, training cases with that value
known have confidence one and error zero associated with their class. The process to obtain the values of these
parameters is performed within a Decision Theory enviroment [33]. The attribute with missing values is interpreted
as a statistical parameter. We also take into account the class to which the training case with an unknown value
belongs. With this information, we calculate the Bayes’ probability (confidence parameter) and the Bayes’ risk (error
parameter). We calculate the Bayes’ risk through the loss matrix obtained from the distance between the different
values of the attribute.

After applying our method by using a specific splitting criterion, a decision tree is obtained (from training sets with
or without missing attribute values). Regarding the building of the decision tree, if the value of the current node’s
attribute is unknown in the training case, then its parameters are calculated as explained before. Then the training case
is included in the subsets of the partition in the current node, the probabilities are multiplied and the risks added. This
decision tree can be used to predict the class of an observation (with or without missing attribute values). Hence, there

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 793

are four perspectives. The three perspectives with missing attribute values are studied and experimental results are
included. In all these predictions, we give a confidence parameter and an error parameter calculated from the number
of training cases associated with each node and from the accumulated probabilities and accumulated risks associated
with each node of the decision tree.

The rest of this paper is organized as follows. The next section introduces the notation used and preliminary
concepts. The fourth section is devoted to explaining how to modify the splitting criterion and how to adapt the
algorithms to work with missing attribute values. Prediction with missing attribute values is explained in Section 5.
Finally, experimental results are presented along with conclusions and future work.

3. Notation and previous concepts

In this section, we provide some basic notions about Decision Trees [20,18] and the necessary Decision Theory
concepts [33].

3.1. Decision Trees

Let TRS be a training set. Let X i , i = 1, . . . , f be the attributes in the training cases of TRS.
The attributes take values denoted by {Oi1, Oi2, . . . , Oim(i)}, where m(i) is the function (m(i) : {1, . . . , f } → N).

Let Y be a special attribute called “class” which takes values denoted by {yk, k = 1, . . . , h}. This is the set
formed by h classes that belong to the training cases of TRS. A training case e ∈ TRS is represented by e =

(X1(e), X2(e), . . . , X f (e), Y (e)), where Y (e) is the class that belongs to e and X i (e) is the value of the attribute
X i evaluated in e, and e− denotes a training case with missing attribute values. By analogy with e and e−, the
observations b and b− are defined as: b = (X1(b), X2(b), . . . , X f (b)), where X i (b) is the value of the attribute X i
evaluated in b, and b− denotes an observation with missing values. b and b− correspond to cases in some data testing
sets.

This method works with symbolic and numerical attributes (continuous and discrete). If there are continuous
attributes, they are processed in a discretization process.

The generation of a Decision Tree from a training set TRS is as follows:

• At each node, for each attribute X i , a test X is chosen that makes a partition over the values of the attribute. This
partition is denoted by {θ j , j = 1, . . . , n(i)/n(i) ≤ m(i); n : {1, . . . , f } → N}. The sets θ j are also called values.
(The algorithm’s basic version [20,18] always assumes that n(i) = m(i) for the partition.)

• An attribute is chosen (by means of any splitting criterion) in order to expand the decision tree.
• Partitioning the current training set. The tree is expanded in that node (new child nodes are obtained under that

node) and the training set (TRS) is partitioned among the child nodes: {T1, T2, . . . , Tn(i)}, where T j = {e ∈ TRS :

X i (e) ∈ θ j } j = 1, . . . , n(i).
• In each child node, the process is applied again.

The tree-building process tries to build a tree that reveals the structure of the domain and therefore has predictive
power. To achieve this, we need a significant number of cases at each leaf; in other words, the partition must have
as few blocks as possible. The problem of finding the smallest decision tree consistent with a training set is NP-
complete [34]. Therefore, the solution for each problem depends a great deal on the choice of suitable tests and the
suitable splitting criterion.

3.2. A Decision Theory problem with risk

Now, we give three basic definitions related to Decision Theory. These definitions include its relation to our
problem. We will use these concepts in the next section. An expanded version can be found in [33].

Definition 1. A decision problem is defined as (Ω ,A, L), where
Ω = {θ j ; j = 1, . . . , n(i)} is the parametric space (values of the partition of the attribute X i)
A = {ar ; r = 1, . . . , o} is the space of actions for the considered attribute X i (multiple values that will be assigned

to every missing attribute value)
L : A × Ω → R is the loss function Cr j = L(ar , θ j). The matrix defined by L is called the loss matrix. In our

case, Ω = A.

794 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

With a decision problem, we try to minimize the loss incurred when we assign the value to each missing attribute
value. A loss function is defined for each decision and each of the classes. The function represents the loss incurred
when a specific decision is made conditional on a specific class. The loss function is unit-less. The loss function can be
a combination of costs, risk, etc. The purpose of the loss function is to quantify performance. For example: if a patient
suffering from heartburn is sent to the emergency room, it creates unnecessary inconvenience for the patient and a
monetary cost to the emergency room treating the patient; in contrast, if a patient suffering a myocardial infarction
(heart attack) is told to stay home and see if the symptoms get worse, then they may suffer irreversible harm, or
even possible death. In both of these examples, the decisions would be classified as wrong, but one is clearly more
wrong than the other. The loss function synthesizes all of the various factors to form real-valued quantities that can be
compared numerically.

Now, we define an experiment as a situation involving chance or probability that leads to results called outcomes;
for example, if a single six-sided die is rolled, then that is an experiment.

Definition 2. An experiment E is E = {Y, P(Y), P(Y | θ), θ ∈ Ω}, where
Y is the random variable “class”
Y = {yk; k = 1, . . . , h} is the sample space (possible outcomes of an experiment)
P(Y) are the events
P : Y × Ω → [0, 1]/P(Y | θ) = p(Y = yk | θ j) is the matrix of the experiment. Every element of the matrix

represents a conditional probability.

Definition 3. The “a posteriori” risk corresponding to ar and yk is defined as the function R : A × Y → R+:

R(ak | yk) =

n(i)∑
j=1

L(ar , θ j)p(θ j | yk).

The “a posteriori” risk is the expected value of the loss with respect to the conditional probability. When using the
0–1 loss function, this risk is the probability that a missing attribute value is incorrectly labeled.

4. Building decision trees with missing attribute values

In this section, the core of the paper is developed, i.e. a new approach to working with missing attribute values in
TDIDT algorithms is presented. We deal with three basic points: first, we modify the splitting criterion in order to
include missing attribute values; second, we explain how to assign values to the training cases with missing attribute
values; and, finally, these training cases are added to subsets of the partition.

4.1. Adapting a splitting criterion

Let us assume that the current node is an intermediate node. Our universe is TRS. To simplify the notation, we
denote the actual training set of TRS in the current node as T .

The philosophy of the splitting criterion (defined below) is:

1. Test X is chosen using a measure similar to the gain ratio, adjusted by a factor that depends on the number of
records complete on the tested attribute.

The gain ratio measures the information that is gained by partitioning T in accordance with test X . The gain
ratio selects a test to maximize this information gain (which is also known as the mutual information between test
X and the class). It is defined as:

gain(X) = info(T) − infoX (T)

where info(T) measures the average amount of information needed to identify the class of a case in T (this quantity
is also known as the entropy of set T). infoX (T) is similar to info(T), but after T has been partitioned in accordance
with the n outcomes of a test X ; the expected information requirement can be found as the weighted sum over the
subsets.

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 795

2. Every incomplete record is then assigned to all partitions, with a probability which depends on the size of the
partition.

3. When an unseen record has to be classified but the testing attribute is unknown, all possible paths are examined,
leading to more than one possible class.

Let m be a function (data score) that is used with known values only (with this function, we will introduce a
splitting criterion that uses missing values). This measure decides the partition of a set of training cases to build the
decision tree. We are going to define the generalization of the gain ratio:

m : P(TRS) → R+ where P(TRS) is the power set of TRS.

If we choose m as the gain ratio, the measure that expresses the improvement in the classification power of the tree
after the partition can also be used in the presence of missing values. However, after partitioning, the gain ratio has
an inherent bias in some situations [22]. In order to avoid this bias, the function m′ with the name split info was
introduced in [22], and we adapt its use to cases with missing attributes.

For X i , given the function m and test X , function m′ (split info) is defined as follows:

m′

X : {X i , i = 1, . . . , f } × P(TRS) → R+

m′

X (X i , T) =

n(i)∑
j=1

|T j |

|T |
× m(T j) i = 1, . . . , f

where T = T1 ∪ T2 ∪ · · · ∪ Tn(i).
m′ is the weighted sum of the data score for the children of the current node (with data T).
A general criterion is defined below, where the missing values are considered in order to select the attribute in the

current node. Let X i (e−) = ?, that is, the value of the X i attribute is unknown in the training case e−. From test
X , we obtain the outcomes of X i to partitioning in the current node. Let {θ j , j = 1, . . . , n(i)} be the partition of the
values of X i (outcomes) given by X . Let us assume that the ratio between the amount of known values of the attribute
X i and the cardinal of the set TRS is Fi .

The gain information is the difference between m and m′. This gain information must be affected by Fi in a
proportional way. For this reason:

Definition 4. Let X i be an attribute. Let X be the test associated with X i . Function ∆ is defined as:

∆X : {X i , i = 1, . . . , f } × P(TRS) → R+

∆X (X i , T) = Fi × (m(T) − m′

X (X i , T)) i = 1, . . . , f.

∆ is the change in score that results from the split, multiplied by the fraction of cases in which X i is present. The
∆ measure ignores cases in which X i is missing.

Up until now, we have only considered the known values of attribute X i . In the following definition, the unknown
value of attribute X i is taken into account. All the training cases in this situation belong to a new subset (only used to
measure the disorder in the set of cases) [22].

Definition 5. Let X i be an attribute. Let X be the test associated with X i . The splitting criterion m′′

X (X i , T),
i = 1, . . . , f , is defined in the subsets of the partition {T1, T2, . . . , Tn(i), Tn(i)+1}, where the subset Tn(i)+1 is defined
as Tn(i)+1 = {e− ∈ T/X i (e−) = ?}.

m′′ is the same as m′ when ‘?’ is treated as another state for attribute X i .
Finally, the splitting criterion follows the idea of [22].

Definition 6. Let X i be an attribute. Let X be the test associated with X i . Function ∆′ is defined as:

∆′

X (X i , T) = ∆X (X i , T)/m′′

X (X i , T) i = 1, . . . , f.

For every attribute Xk , we compute the value ∆′

X (Xk, T). Let X i be the attribute such that ∆′

X (X i , T) is maximum.
Then the attribute X i is selected to expand the tree in the current node (that is, to obtain new child nodes).

796 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

Table 1
The training set TRS

X1(e) X2(e) X3(e) X4(e) Y (e)

e1 Sunny 75 70 Yes Play
e2 Sunny 80 90 Yes Don’t Play
e3 Sunny 85 85 No Don’t Play
e4 Sunny 72 95 No Don’t Play
e5 Sunny 69 70 No Play
e6 ? 72 90 yes Play
e7 Overcast 83 78 No Play
e8 Overcast 64 65 Yes Play
e9 Overcast 81 75 No Play
e10 Rain 71 80 Yes Don’t Play
e11 Rain 65 70 Yes Don’t Play
e12 Rain 75 80 No Play
e13 Rain 68 80 No Play
e14 Rain 70 96 No Play

We have formally defined the concept of a splitting criterion to work with missing attribute values. Our development
considers a general splitting criterion m. Thus, it can be adapted to every particular splitting criterion.

Example 1. This simple example, taken from [22], will be used throughout the paper. Some climatological
characteristics are observed, then we decide to play or not to play. Let X1 be the outlook, X2 the temperature, X3
the humidity, X4 be windy, and Y the class. In Table 1 we show the training set TRS.

The tests X for each X i are chosen. Let us assume that, for X1, the partition is θ1 = sunny, θ2 = overcast,
θ3 = rain. Let us also assume that the splitting criterion m is the gain ratio criterion:

m(T) =
−8
13

log2

(
8

13

)
−

5
13

log2

(
5

13

)
= 0.961 bits

m′

X (X1, T) =
5

13

(
−2
5

log2

(
2
5

)
−

3
5

log2

(
3
5

))
+

3
13

(
−3
3

log2

(
3
3

)
−

0
3

log2

(
0
3

))
+

5
13

(
−3
5

log2

(
3
5

)
−

2
5

log2

(
2
5

))
= 0.747 bits

∆X (X1, T) =
13
14

(0.961 − 0.747) = 0.199 bits

m′′

X (X1, T) =
−5
14

log2

(
5
14

)
−

3
14

log2

(
3

14

)
−

5
14

log2

(
5

14

)
−

1
14

log2

(
1
14

)
= 1.809 bits

∆′

X (X1, T) = 0.199/1.809 = 0.110 bits.

Let us assume that X1 maximizes ∆′

X (X i , T). Then, the following step is the partition of the training set.

4.2. Assigning multiple values

C4.5 uses a probabilistic approach to handling missing data. Given a training set T , C4.5 finds a suitable test, based
on a single attribute, that has one or more mutually exclusive outcomes θ1, θ2, . . . , θn . T is partitioned into subsets
T1, T2, . . . , Tn , where Ti contains all the training cases in T that satisfy the test with outcome θi . The same algorithm
is applied to each subset Ti until a stop criterion is obeyed. Once a test based on an attribute X is chosen, C4.5 uses a
probabilistic approach to partition the training cases with missing values in X . When a training case in T with known
value is assigned to a subset Ti , this indicates that the probability of that training case belonging to subset Ti is 1

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 797

Table 2
Contingency table

Table 3
Contingency table 2

Table 4
Adjusted frequencies

and to all other subsets is 0. When the value is not known, only a weaker probabilistic statement is made from C4.5.
This associates with each training case in Ti a weight representing the probability of that training case belonging to
Ti . If the training case has an unknown value, this training case is assigned to all partitions with different weights for
each one. The weight for the partition Ti is the probability of that training case belonging to Ti . This probability is
estimated as the sum of the weights of training cases in T known to satisfy the test with outcome θi , divided by the
sum of weights of the cases in T with known values on the attribute X .

The idea of C4.5 working with missing attribute values is based on the concept that cases with missing values are
distributed across the values of the attribute with missing vales in proportion to the relative frequency of these values
in the training set.

C4.5 only considers the values of the attribute (it does not consider the class). If the goal is to make predictions
rather than to classify, then a new approach is in order. Our approach is based on considering the values of the attributes
and the class too. Note that, in a training case, values of attributes determine class values. This relationship must be
taken into account.

Example 2. Consider the 2 × 2 contingency Table 2 of those cases whose value for attribute X is known, where Yi
and θi (i = 1, 2) represent class and attribute values, respectively. Suppose that there are another five cases of class 1
and five cases of class 2 with missing values for attribute X . Then, if we adjust the frequency counts according to the
column proportions, Table 3 can be derived.

The reason why this method can give such unsatisfactory estimates for missing values is that the procedure takes
no account whatsoever of the structure in the database. Missing value estimates are assigned merely on the basis of
prior attribute value probabilities. In our method, the estimates are made conditional upon class membership. Thus, in
the example just considered, the adjusted frequencies are shown in Table 4.

798 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

This is clearly preferable.

Let us turn our attention to the assignation of values to the missing attribute values. There are h classes (recall
Section 3). Thus, every training case has an associated vector with 2h components: the h first components are
probabilities (one for every class) and the h last components are risks (one for every class).

In a Decision Theory problem with risk, we have a parameter with an unknown value. We must take a decision
(called action). This decision is to assign one or several values to that parameter. We aim at minimizing the losses. In
our case, the parameter is X i . In the training case e−, the value of the X i attribute is unknown, that is, X i (e−) = ?

Let Ω = {θ j j = 1, . . . , n(i)} be the values of X i in the e training cases. We consider attributes to be random
variables.

We have prior information about the possible values of the attribute; that is, p(X i (e) ∈ θ j , e 6= e−) = p(θ j). This
preliminary information is taken from the frequencies of the values of X i .

The action is to take a decision regarding the value of X i (e−). To do so, for each k we calculate p(Y (e−) = yk |

X i (e−) ∈ θ j), j = 1, . . . , n(i). The decision is taken with the help of an experiment. This experiment is performed
with a random variable whose probability distribution is related to the values θ j . In this case, the random variable is
Y = “class” and the values of the sample space are yk, k = 1, . . . , h. Clearly, the distribution of Y is related to the
values θ j . Next, we apply Bayes’ theorem and obtain p(X i (e−) ∈ θ j | Y (e−) = yk).

The decision about the value of an attribute has an associated risk that indicates the weighted loss caused by this
decision. These losses are represented in a matrix called the loss matrix, which is used to calculate the risk associated
with the decision. Every element of the loss matrix measures our belief (a real number belongs to [0,1]) about how far
or how near the assigned value is from the true value of the attribute. This idea is related to the distance concept. To
calculate the loss matrix, we take into account all attribute types. We classify these into Nominal (Order or Non-Order)
attributes and Linear (Continuous or Discrete) attributes.

Let us assume that we have sets of values θi and θ j . By considering the attribute types, we define a loss function as
follows:

L(θi , θ j) =

d(θi , θ j) linear
1/n(i) nom. non-order and θi ∩ θ j = ∅

0 nom. non-order and θi ∩ θ j 6= ∅

|ord(i) − ord(j)|/n(i) nominal order and θi ∩ θ j = ∅

0 nominal order and θi ∩ θ j 6= ∅

where ord(i) is the ordinal position of the outcome θi .
Finally, it is necessary to define the distance between two sets when the attribute is linear, that is, d(θi , θ j). Several

definitions for calculating distances between attribute values can be found in [35]. We have adapted and normalized
these distance functions to our case to measure distances between sets of values from an attribute.

Definition 7. The following are some possible functions d:

d1(θi , θ j) =
‖θi , θ j‖

n(i)∑
k=1,k 6=i

‖θi , θk‖

d2(θi , θ j) =
‖θi , θ j‖

2

n(i)∑
k=1,k 6=i

‖θi , θk‖
2

where ‖θi , θ j‖ is defined as

‖θi , θ j‖ = min
o∈θi ,o′∈θ j

|o − o′
|.

Example 3. Let us use the data in Example 1. Let us assume that the first selected attribute to expand the first node of
the decision tree was X1. Let us suppose that test X for the attribute X1 gave the finest partition. Let us assume that
the training case e6 is e6 = (?, 72, 90, yes, Play). Then, we assign multiple values to this missing value.

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 799

Table 5
The loss matrix

Ω
A θ1 = sunny θ2 = overcast θ3 = rain

Sunny 0 1/3 2/3
Overcast 1/3 0 1/3
Rain 2/3 1/3 0

Let p(sunny) = 5/13, p(overcast) = 3/13, p(rain) = 5/13 be the prior information. In Table 5 the losses are
shown.

The “a posteriori” probabilities are
p(sunny | play) = 0.25, p(overcast | play) = 0.375, p(rain | play) = 0.375.

Therefore, the risks associated with these decisions and calculated from Table 5 are the following:

R(sunny | play) = p(sunny | play)L(sunny, sunny)

+ p(overcast | play)L(sunny, overcast)
+ p(rain | play)L(sunny, rain) = 0.375

R(overcast | play) = 0.20

R(rain | play) = 0.29

4.3. Allocate training cases and assign parameters

Let X be the test associated with X i that produces the partition {θ1, θ2, . . . , θn(i)}, such that ∆′

X (X i , T) is
maximum. Then, X i is the attribute in the current node. Now, we have to partition the current training set. As before,
T is the current training set. T is split into {T1, . . . , Tn(i)}.

There are h classes (recall Section 3). Thus, every training case has an associated vector with 2h components: the
h first components are probabilities (one for every class) and the h last components are risks (one for every class).

Then, in an intermediate step, we associate every training case with the corresponding T j in the following manner:

• If the value of attribute X i in the training case e is known, the vector associated with e has probability one and
risk zero assigned to its class. The components of the other classes have associated probability zero and risk zero;
when partitioning for the attribute X i , e is included in the appropriate T j and the probabilities are multiplied and
the risks are added.

• If the value of attribute X i in the training e− is unknown, the vector associated with e− has assigned for each class
probability p(X i (e−) ∈ θ j | Y (e−) = yk) and risk R(θ j | yk) ∀k. When partitioning for the attribute X i , the e−
training case is included in every T j and the probabilities are multiplied and the risks are added.

The risk is interpreted as the confidence that we have in the prediction of the class (so zero risk means total
confidence and high risk means low confidence).

Example 4. Let us consider Example 1 again. The value of attribute X1 is unknown in this training case e6. Let
us assume that X1 was the attribute selected for expansion and test X gave the finest partition of the values of the
attribute. These values induce a partition in the current training set T into T1, T2, and T3. The probabilities and risks
for e6 were computed in Example 3. Hence, the training case e6 is assigned to T1 with probability 0.25; to T2 with
probability 0.375; and to T3 with probability 0.375. Hence, overcast or rain are more probable than sunny. The other
13 training cases with the value of X1 known are assigned to

T1 = {e1, e2, e3, e4, e5}, T2 = {e7, e8, e9}, T3 = {e10, e11, e12, e13, e14}.

Every training case has an associated vector with four components (two probabilities and two risks, one for every
class:“Play” or “Don’t Play”). Thus, every T j is as follows: (p1, p2, R1, R2).

In the current decision tree, each leaf has the associated vector (N/E/R), where

• N is the number of training cases that reach the leaf (N is the sum of the probabilities of training cases being placed
on the leaf).

800 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

• E is a k-dimensional vector where each component is the number of training cases belonging to each class (Ek is
the sum of the probabilities of these training cases). The nominated class in the leaf is the class with the highest
value in Ek .

• R is a k-dimensional vector of risk associated with each class.

Therefore, the partition of the training set is:
For T1,

X3(e) Y (e) p1 p2 R1 R2

e1 70 Play 1 0 0 0
e2 90 Don’t Play 0 1 0 0
e3 85 Don’t Play 0 1 0 0
e4 95 Don’t Play 0 1 0 0
e5 70 Play 1 0 0 0
e6 90 Play 0.25 0.6 0.375 0.26

sky = sunny
humidity ≤ 75 (N = 2/E = (2; 0)/R = (0; 0))

humidity > 75 (3.25/(0.25; 3)/(0.375; 0))

For T2,

Y (e) p1 p2 R1 R2

e6 Play 0.375 0 0.2 0.33
e7 Play 1 0 0 0
e8 Play 1 0 0 0
e9 Play 1 0 0 0

sky = overcast (3.375/(3.375; 0)/(0.2; 0))

For T3,

X4(e) Y (e) p1 p2 R1 R2

e6 yes Play 0.375 0.4 0.29 0.4
e10 yes Don’t Play 0 1 0 0
e11 yes Don’t Play 0 1 0 0
e12 no Play 1 0 0 0
e13 no Play 1 0 0 0
e14 no Play 1 0 0 0

sky = rain
windy = yes (2.375/(0.375; 2)/(0.29; 0))

windy = no (3/(3; 0)/(0; 0))

The final Decision Tree is

outlook = sunny:
humidity ≤ 75: Play (N = 2/E = (2; 0)/R = (0; 0))

humidity > 75: Don’t Play (3.25/(0.25; 3)/(0.375; 0))
outlook = overcast: Play (3.375/(3.375; 0)/(0.2; 0)

outlook = rain:
windy = yes: Don’t Play (2.375/(0.375; 2)/(0.29; 0)

windy = no: Play (3/(3; 0)/(0; 0))

5. Prediction

The third aim is to predict the class of new observations. We explain how to predict the class of a b observation in
Decision Trees constructed from training cases with missing attribute values. In addition, we illustrate how to predict
the class of a b− observation in Decision Trees constructed either from training sets with missing attribute values in
the training cases or from training sets without unknown values.

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 801

5.1. How to predict the class of a new b observation in a decision tree constructed from e− training cases

Let us assume a new b observation with all known values. Then, b goes down the tree through a unique path. The
b observation arrives at a leaf t . In this leaf t , each training case has an associated class yi , i = 1, . . . , k. We select
the class that appears more times in the training cases; let us assume, for example, that it is y`. Thus, we predict that
b belongs to y`. This prediction is completed with a confidence parameter and an error parameter. Class y` has an
associated risk R` in the leaf t . The risk is interpreted as the error committed in the prediction of the b observation.

Therefore, we predict that b belongs to Y (b) = y` with probability p = (] training cases in t with associated class
y`/] training cases in t) and risk R`.

Example 5. We are going to predict the class of the observation

b = (sunny, 70, 80, no).

We have Y (b) = “Don’t Play” with probability 3/3.25 = 0.92 and risk zero.
For the case b = (rain, 68, 81, no), we have Y (b) = “Play” with probability one and risk zero.
Another example is that, if b = (overcast, 70, 65, no), then Y (b) = “Play” with probability one and risk 0.2.

5.2. How to predict the class of a new b− observation

The philosophy for the prediction of the class of the b− observation is the same in decision trees constructed from
training cases of type e or in decision trees constructed from training cases of type e−. The b− observation goes down
the tree. In a given moment, the b− observation arrives at a node. We assume that the attribute related to this node
is the missing value in b−. Then, b− is directed down all the branches. This causes the b− observation to appear in
several leaves of the decision tree. Friedman’s approach [36] assigns the b− observation to the class with the largest
representation in the union of these leaves. We follow [22].

In each node where the b− observation goes down all the branches, we calculate the ratio of training cases directed
to each branch from the totality of training cases in the node. (For example, if the node has s training cases and
three branches with s1, s2, s3 training cases, respectively, the proportion for each branch is si/s i = 1, . . . 3,
respectively.) The probabilities of each class appearing in the leaves are calculated. Finally, by computing the
conditional probabilities, the probability distribution over Y (b−) is calculated. We predict the class for b− with
maximum probability. In this case, the risks are not considered.

Example 6. We are going to predict the class of the observation

b− = (sunny, 70, ?, no).

X1(b−) = sunny and X3(b−) =? then

If humidity ≤75 then Y (b−) = “Play” with probability one.
If humidity > 75, then Y (b−) = “Don’t Play” with probability 3/3.25 and Y (b−) = “Play” with probability
0.25/3.25.
The training set was partitioned in 2 and 3.25 training cases for the values of X3 = humidity. Therefore
Y (b−) = “Play” with probability (2/5.25).1 + (3.25/5.25).(0.25/3.25) = 0.43
Y (b−) = “Don’t Play” with probability (3.25/5.25).(3/3.25) = 0.57
We choose Y (b−) = “Don’t Play”

Another example is b− = (?, 72, 90, yes)
If it is sunny, then Y (b−) = “Play” with probability 0.25/3.25 and Y (b−) = “Don’t Play” with probability 3/3.25.
If it is overcast, then Y (b−) = “Play” with probability one.
Then, Y (b−) = “Play” with probability 0.375/2.375 and Y (b−) = “Don’t Play” with probability 2/2.375.

The partition of the 14 training cases was 5.25, 3.375 and 5.375 for the values of X1 = sky. Then:

Y (b−) = “Play” with probability
(5.25/14).(0.25/3.25) + (3.375/14).1 + (5.375/14).(0.375/2.375) = 0.33
Y (b−) = “Don’t Play” with probability
(5.25/14).(3/3.25) + (3.375/14).0 + (5.375/14).(2/2.375) = 0.67
Therefore, we choose Y (b−) = “Don’t Play”

802 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

Table 6
Datasets

Prob Size Missing Ex.maj.class Continuous Nom No. class

BC 286 9 70.3 0 9 2
CH 3196 0 52.2 0 36 2
GL 214 0 35.3 9 0 7
G2 163 0 53.4 9 0 2
HD 303 7 54.5 5 8 2
HE 155 167 79.4 6 13 2
HO 368 1927 63.0 7 15 2
HY 3163 5329 95.2 7 18 2
IR 150 0 33.3 4 0 3
LA 57 326 64.9 8 8 2
LY 148 0 56.7 2 16 4
MU 8124 2480 51.8 0 22 2
SE 3163 5329 90.7 7 18 2
SO 47 0 36.2 0 35 4
VO 435 381 61.4 0 16 2
V1 435 392 61.4 0 16 2

6. Experimental results

We have implemented our algorithm and used standard datasets to obtain experimental results. We have collected
the usual and known datasets from Holte [37]. The 16 problems that Holte used to compare his 1R method with the
C4.5 method of Quinlan [22] were used in our work. This set of problems aims to represent all real-life problems.
Holte claimed that the experimental results obtained for these problems by learning systems could shed light on
the performance of each learning system in a real situation. All the selected problems comply with two conditions:
representing a real-life problem that has not been constructed artificially; and the examples are described by means
of attributes used naturally in real life. The only dataset that complies with the second condition is CH. This dataset
represents the endgames in chess. According to Holte, this dataset is designed to fit well in Quinlan’s ID3.

As mentioned in the introduction, the supervised imputation method based on C4.5 has the best overall
performance, as indicated in [23] with several examples. This is the main reason that we compare our method with
C4.5. We also use the same database as in [23], in addition to some other databases not considered in that work.

6.1. Description of datasets

There are several versions of Holte’s problems. Basically, there are changes in the number of training cases or
attributes used. Here we have used the version stored in the UCI Repository of Automated Learning Repository in
California University, Irvine [38].

In Table 6, we present a brief summary of the characteristics of these datasets: the first column shows the code of
the dataset, the second shows the number of training cases, the third includes the number of missing values, the fourth
shows the percentage of occurrence of the most frequent value of the class, the fifth and sixth show the number of
continuous and discrete attributes, respectively, and the last column shows the number of different values for the class.

For the experiment, two algorithms were implemented to build decision trees. In the first algorithm, the training
cases with missing values are distributed following the approach of C4.5; that is, the probability distribution function
of the attribute under consideration is used to distribute the cases with missing values in this attribute. In the second
algorithm (our method), the cases with missing values are distributed taking into account the probability distribution
obtained using the attribute and the class.

Our method is associated with the total percentage of missing attribute values in the training cases, and these
missing values are distributed in a random way among the attributes. The method works independently of the number
of attributes with missing values, that is, missing values can appear in any attribute. We have checked that the proposed
model does not fail when we increase the number of attributes with missing values and the total percentage of missing
values holds.

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 803

Table 7
Results

Code Original 10% 20% 30%
C4.5–PostP C4.5–PostP C4.5–PostP C4.5–PostP

BC (error) 12.24–11.54 9.16–8.64 12.97–11.50 15.87–13.95
(std d) 0.0–0.0 1.17–1.14 0.86–1.22 1.33–1.37

CH (error) 0.38–0.38 3.00–2.84 6.74–5.45 11.92–9.27
(std d) 0.0–0.0 0.18–0.17 0.31–0.25 0.40–.023

GL (error) 6.07–6.07 11.78–10.14 17.24–13.55 28.08–18.64
(std d) 0.0–0.0 2.70–2.29 2.12–1.77 1.54–2.90

G2 (error) 7.97–7.97 11.41–10.61 15.77–12.82 18.83–14.48
(std d) 0.0–0.0 1.68–1.45 2.69–2.15 2.26–2.07

HD (error) 4.29–3.63 7.03–6.53 10.33–8.15 12.61–10.66
(std d) 0.0–0.0 0.77–1.18 1.84–1.43 1.40–1.63

HE (error) 1.94–2.58 6.84–4.84 7.48–5.55 10.32–7.55
(std d) 0.0–0.0 1.79–0.88 0.76–1.09 1.09–1.52

HO (error) 9.24–5.98 10.22–7.55 11.85–9.27 13.64–12.04
(std d) 0.0–0.0 1.29–0.65 1.00–1.01 0.92–0.97

HY (error) 0.35–0.35 0.74–0.65 1.13–0.94 1.62–1.19
(std d) 0.0–0.0 0.08–0.06 0.12–0.11 0.16–0.11

IR (error) 2.67–2.67 3.80–3.67 4.80–4.00 9.27–6.00
(std d) 0.0–0.0 0.73–0.77 1.52–0.98 1.48–1.69

LA (error) 3.51–1.75 9.65–4.03 21.93–3.86 24.21–7.72
(std d) 0.0–0.0 8.14–2.14 7.03–0.96 6.66–2.51

LY (error) 6.08–6.08 4.86–4.32 6.82–4.86 10.74–6.62
(std d) 0.0–0.0 1.17–1.14 1.78–1.14 2.05–1.59

MU (error) 0.0–0.0 0.17–0.21 0.65–0.40 1.55–0.78
(std d) 0.0–0.0 0.05–0.02 0.06–0.05 0.12–0.05

SE (error) 1.01–1.01 2.24–2.10 3.64–3.32 4.75–4.39
(std d) 0.0–0.0 0.23–0.21 0.22–0.26 0.30–0.34

SO (error) 0.0–0.0 2.55–1.06 5.53–0.64 10.0–1.91
(std d) 0.0–0.0 1.43–1.35 3.14–0.94 3.36–1.21

VO (error) 1.84–2.30 2.62–2.62 3.77–3.22 5.70–4.18
(std d) 0.0–0.0 0.46–0.51 0.46–0.48 0.48–0.45

V1 (error) 4.60–4.37 4.71–4.07 6.23–5.03 7.56–5.77
(std d) 0.0–0.0 0.65–0.46 0.57–0.28 0.85–0.76

During the first stage, the original datasets were used; subsequently, we randomly introduced a percentage of
missing values in the original training cases (10%, 20%, and 30%, respectively). This process of introducing missing
values was done again ten times for each percentage. In this way, the possibility of bias is minimized. Thus, 31
experiments were performed for each dataset. The classification error has been calculated for the 31 estimated decision
trees. For each group of decision trees belonging to the same percentage of missing values, mean errors and standard
deviations were calculated.

6.2. Results

The results obtained are shown in Table 7. The first column shows the dataset code, the second the error in the
sample using C4.5 (first value) and the error using our approach PostP (second value). In columns 3, 4, and 5,
the results obtained for the dataset with 10%, 20%, and 30% of missing values, respectively, are shown. For each
percentage, the mean error of the experiments is shown in the first row of each dataset, and the standard deviation of
this error appears in the second row.

There are no essential differences between decision trees generated with complete data and those with missing
values; only one more branch could appear in each level but, in general, the size of the trees in both methods is similar.

804 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

Table 8
Other datasets

Prob Size Missing Continuous Nom No. Class

Adult 3000 759 6 8 2
Bands 400 986 20 17 2
Dermatology 250 1 34 2 6
Horse colic 250 67 10 17 2
House-votes 315 395 0 17 2
Post-operative 70 3 0 9 3

Table 9
More results

Code Original 10% 20% 30%
C4.5–PostP C4.5–PostP C4.5–PostP C4.5–PostP

Adult (error) 7.00–7.23 9.25–8.72 11.43–10.33 13.88–12.57
(std d) 0.00–0.00 0.37–0.28 0.62–0.39 0.32–0.36

Bands (error) 4.25–4.25 5.95–5.10 10.42–8.40 15.47–12.22
(std d) 0.00–0.00 0.63–0.63 0.97–1.24 0.77–0.82

Dermatology (error) 2.00–2.00 2.68–2.64 4.96–4.32 9.00–5.36
(std d) 0.00–0.00 0.57–1.35 0.76–1.08 1.22–1.31

Horse colic (error) 6.05–6.85 13.87–8.31 18.47–12.06 23.27–15.93
(std d) 0.00–0.00 2.04–1.33 2.89–1.84 3.78–1.15

House-votes (error) 1.90–1.90 2.29–1.94 3.56–2.57 4.70–3.27
(std d) 0.00–0.00 0.55–0.31 0.59–0.25 0.68–0.63

Post-operative (error) 14.29–14.29 15.29–15.57 18.86–17.57 21.43–20.00
(std d) 0.00–0.00 2.05–2.86 1.32–1.65 2.41–2.41

If the rate of missing values is large (30%), the trees from PostP are a little larger than the trees from C4.5; this result
is reasonable, because the PostP method distributes the training cases using the attribute values and classes. However,
in the case of large trees obtained with PostP, the error is substantially less. The mean error for all experiments
with 30% of missing values with C4.5 is 11.67, and with PostP it is 7.82. Thus, our method is 33% better than the
C4.5.

We can conclude that the results are appreciably better in most cases when the PostP algorithm is used. For several
datasets, the error decreases to 80% (for example, with the dataset SO, the mean error with C4.5 is 4.52 and with our
method it is 0.90).

We note that the experiments with the dataset LA give very good results: in the experiments with 30% missing
values, the error is reduced by more than 69%. The best result with the PostP algorithm, compared to C4.5, is obtained
with the dataset SO.

To sum up, C4.5 obtains better results only in 6% of all experiments. In 3% of the cases, the results are similar
for both methods, and in 82% our method improves the classification; the remaining 15% belong to the experiments
without missing values.

6.3. Other datasets

We have carried out some experiments with other datasets (see Table 8) such as standard datasets obtained from
the MLRepository [38]. Datasets with original missing attribute values were chosen. The table is a brief summary of
their characteristics.

Similar results to the previous datasets are obtained (see Table 9). In all cases with missing values, the error with
PostP is less than the error with C4.5. In addition, with a higher percentage of missing values, the error with PostP
decreases faster than in C4.5. Furthermore, the standard deviation with our method is less than with C4.5.

I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806 805

7. Conclusions and future work

A new approach to working with missing attribute values has been presented. All stages of the TDIDT algorithms
where the attribute value is necessary have been adapted to work with missing attribute values. The concept of the
splitting criterion is formally defined and adapted to work with missing attribute values. We have developed a new
approach to tackle the problem of assigning values to unknown values of an attribute from a Decision Theory point
of view. This approach takes into account more information (attribute values and class values) than C4.5 and other
analogous algorithms. This is the philosophy that underlies Bayes’ Theorem. The attribute values are strongly related
to the value class of a training case.

Every training case with a missing attribute value has two associated parameters: confidence and error.
When we apply Decision Trees to Data Mining, the ultimate aim is to make good predictions of the class of

new observations. In this paper, we have developed a way to predict the class for new b and b− observations in
all Decision Tree variants. Therefore, we have presented a way to work with missing attribute values that includes
statistical concepts in inductive learning algorithms.

Future work includes the analysis of the missing treatment methods in other data sets. In this work, missing values
were inserted completely at random (MCAR), whereas in forthcoming work we will analyze the behavior of this
method when missing values are not randomly distributed. In this case, there is a possibility of creating invalid
knowledge. For an effective analysis, we will have to study not only the error rate, but also the quality of the knowledge
induced by the learning system.

Other future research based on the inductive learning approach will take into account at least three aspects:
risk, pruning, and boosting. Risk closely focuses on improving prediction (as an independent parameter or as a
function with other parameters). We will investigate pruning to simplify the trees, using, in particular, the CIDIM
method [31,32]. This method carries out pruning and looks at the best pair (attribute, splitting) from the point of view
of information gain. Finally, we propose adapting other methods to obtain decision trees (by means of voting [39] and
sampling [40]) for our case: missing attribute values.

It is worth mentioning that future work, from the statistical point of view of this approach, focuses on generalization
taking into account two or more attributes. These attributes will be chosen according to their inter-relationships with
the class value. These inter-relationships can be detected by linear regression or high correlation between the attributes.
If the probability distribution of the attribute with missing attribute values and that of the class are known, following
Little and Rubin [1], a further study of the attribute values can be made.

Acknowledgments

The authors would like to thank the anonymous referees whose comments greatly improved the readability of the
paper.

References

[1] R.J.A. Little, D.B. Rubin, Statistical Analysis with Missing Data, John Wiley & Sons Inc, 1987.
[2] T.M. Mitchell, Machine Learning, MacGraw-Hill, 1997.
[3] M. Kryszkiewicz, Rough set approach to incomplete information systems, Inform. Sci. 112 (1998) 39–49.
[4] M. Kryszkiewicz, Rules in incomplete information systems, Inform. Sci. 113 (1999) 271–292.
[5] M. Kryszkiewicz, Rough set approach to rules generation from incomplete information systems, Encyclopedia Comput. Sci. Technol. 44

(2001) 319–346.
[6] J.W. Grzymala-Busse, Rough set strategies to data with missing attribute values, in: Proceedings of the Workshop on Foundations and New

Directions in Data Mining, associated with the third IEEE International Conference on Data Mining, 19–22 November, Melbourne, FL, USA,
2003, pp. 56–63.

[7] J.W. Grzymala-Busse, S. Siddhaye, Rough set approaches to rule induction from incomplete data, in: Proceedings of the IPMU’2004, the
10th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, 4–9 July, Perugia,
Italy, vol. 2, 2004, pp. 923–930.

[8] J.W. Grzymala-Busse, Three approaches to missing attribute values. A rough set perspective, in: Workshop on Foundations of Data Mining,
associated with the fourth IEEE International Conference on Data Mining, 1–4 November, Brighton, UK, 2004.

[9] J.W. Grzymala-Busse, M. Hu, A comparison of several approaches to missing values in data mining, in: W. Ziarko, Y.Y. Yao (Eds.), Rough
Sets and Current Trends in Computing, in: Lecture Notes in Computer Science, vol. 2005, Springer, 2001.

806 I. Fortes et al. / Mathematical and Computer Modelling 44 (2006) 790–806

[10] M. Hu, S.M. Salvucci, M.P. Cohen, Evaluation of some popular imputation algorithms, in: Section on Survey Research Methods, American
Statistical Association, 2000.

[11] J. Scheffer, Dealing with missing data, Res. Lett. Inf. Math. Sci. 3 (2002) 153–160.
[12] J.L. Schafer, Analysis of Incomplete Multivariate Data, Chapman & Hall, London, 1997.
[13] W. Liu, A. White, S. Thompson, M. Bramer, Techniques for dealing with missing values in classification, in: International Symposium on

Intelligent Data Analysis, 1997.
[14] J. Quinlan, Unknown attribute values in induction, in: Proceedings of the Sixth International Machine Learning Workshop, Morgan Kaufmann,

San Mateo, CA, 1989, pp. 164–168.
[15] E.B. Hunt, J. Marin, P.J. Stone, Experiments in Induction, Academic Press, New York, 1966.
[16] J. Quinlan, Discovering rules by induction from large collections of examples, in: D. Michie (Ed.), Expert Systems in the Micro Electronic

Age, 1979.
[17] J. Quinlan, Learning efficient classification procedures, in: R.S. Michlaski, J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning: An

Artificial Intelligence Approach, Tioga Press, Palo Alto, CA, 1983.
[18] J. Quinlan, Induction of decision trees, Mach. Learn. 1 (1986) 81–106.
[19] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees, Wadsworth, Belmont, CA, 1984.
[20] J. Quinlan, The effect of noise on concept learning, in: R.S. Michlaski, J.G. Carbonell, T.M. Mitchell (Eds.), Machine Learning: An Artificial

Intelligence Approach, vol. 2, Morgan Kaufmann, San Mateo, CA, 1986.
[21] B. Cestnik, I. Kononenko, ASSISTANT 86: A knowledge-elicitation tool for sophisticated users, in: I. Bratko, N. Lavrac (Eds.), Progress in

Machine Learning, Sigma Press, Wilmslow, UK, 1987.
[22] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, Los Gatos, CA, 1992.
[23] A. Farhangfar, L. Kurgan, W. Pedrycz, Experimental analysis of methods for imputation of missing values in databases, in: L. Priddy Kevin

(Ed.), Intelligent Computing: Theory and Applications II, in: Proceedings of the SPIE, vol. 5421, 2004, pp. 172–182.
[24] K.J. Cios, L.A. Kurgan, Hybrid inductive machine learning: An overview of CLIP algorithms, in: L-C- Jain, J. Kacprzyk (Eds.), New Learning

Paradigms in Soft Computing, Physica-Verlag, Springer, 2001, pp. 276–322.
[25] K.J. Cios, L.A. Kurgan, CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules, Inform. Sci. 163 (1–3) (2004)

37–83.
[26] R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis, John Wiley, 1977.
[27] C.E. Shannon, A Mathematical theory of communication, Bell Syst. Tech. J. 27 (1948) 379–423.
[28] Z. Zheng, B.T. Low, Classifying unseen cases with many missing values, in: N. Zhong, L. Zhou (Eds.), PAKDD 99, in: LNAI, 1574, 1999,

pp. 370–375.
[29] I. Kononenko, I. Bratko, E. Rokar, Experiments in automatic learning of medical diagnostic rules, ISSEK Workshop, Bled, 1984.
[30] I. Fortes, R. Morales-Bueno, Ll. Mora, F. Triguero, A decision theory approach to work with missing attribute values in inductive learning

algorithms, in: Proc. of COMPSTAT2000 (14th Conference of the International Association for Statistical Computing), Utrecht, 2000.
[31] G. Ramos, R. Morales, Formalizacion de los Algoritmos TDIDT y CIDIM, Techn. Report LCC-ITI 99/01, Dept. Computer Science, Malaga

University, 1999.
[32] G. Ramos, R. Morales, A. Villalba, CIDIM. Control of Induction of Sample Division Method), Una mejora de los algoritmos TDIDT, Techn.

Report LCC-ITI 97/08, Dept. Computer Science, Malaga University, 2000.
[33] J.O. Berger, Statistical Decision Theory and Bayesian Analysis, Springer Verlag, New York, 1988.
[34] L. Hyalf, R.L. Rivest, Constructing optimal binary decision trees is NP-complete, Inf. Process. Lett. 5 (1) (1976) 15–17.
[35] D.R. Wilson, T.R. Martinez, Improved heterogeneous distance functions, J. Artificial Intelligence Res. 6 (1) (1997) 1–34.
[36] J.H. Friedman, A recursive partitioning decision rule for non-parametric classification, IEEE Trans. Comput. (1977) 404–408.
[37] R.C. Holte, Very simple classification rules perform well on most commonly used datasets, Mach. Learn. 11 (1993) 63–91.
[38] C. Blake, E. Keogh, C.J. Merz, UCI repository of machine learning databases, University of California, Irvine, Dept. of Information and

Computer Sciences, http://www.ics.uci.edu/mlearn/MLRepository.html, 1998.
[39] G. Ramos, Nuevos Desarrollos en Aprendizaje Inductivo, Tesis Doctoral, Departamento de Lenguajes y Ciencias de la Computación,

Universidad de Málaga, 2001.
[40] G. Ramos, R. Morales, A new method for induction decision trees by sampling, Neurocolt Workshop on Applications of Learning Theory

Bellaterra, Barcelona, 2000.

http://www.ics.uci.edu/mlearn/MLRepository.html

	Inductive learning models with missing values
	Introduction
	Our approach to working with missing attribute values
	Notation and previous concepts
	Decision Trees
	A Decision Theory problem with risk

	Building decision trees with missing attribute values
	Adapting a splitting criterion
	Assigning multiple values
	Allocate training cases and assign parameters

	Prediction
	How to predict the class of a new b observation in a decision tree constructed from e - training cases
	How to predict the class of a new b - observation

	Experimental results
	Description of datasets
	Results
	Other datasets

	Conclusions and future work
	Acknowledgments
	References

