
Clustering Binary Fingerprint Vectors with Missing Values
for DNA Array Data Analysis

Andres Figueroa
Dept of Comp. Sci.

Univ. of Calif., Riverside
andres@cs.ucr.edu

James Borneman
Dept of Plant Pathology
Univ. of Calif., Riverside

borneman@ucrac1.ucr.edu

Tao Jiang
Dept of Comp. Sci.

Univ. of Calif., Riverside
jiang@cs.ucr.edu

Abstract

Oligonucleotide fingerprinting is a powerful DNA array
based method to characterize cDNA and ribosomal RNA
gene (rDNA) libraries and has many applications includ-
ing gene expression profiling and DNA clone classification.
We are especially interested in the latter application. A
key step in the method is the cluster analysis of fingerprint
data obtained from DNA array hybridization experiments.
Most of the existing approaches to clustering use (normal-
ized) real intensity values and thus do not treat positive and
negative hybridization signals equally (positive signals are
much more emphasized). In this paper, we consider a dis-
crete approach. Fingerprint data are first normalized and
binarized using control DNA clones. Because there may
exist unresolved (or missing) values in this binarization
process, we formulate the clustering of (binary) oligonu-
cleotide fingerprints as a combinatorial optimization prob-
lem that attempts to identify clusters and resolve the miss-
ing values in the fingerprints simultaneously. We study the
computational complexity of this clustering problem and
a natural parameterized version, and present an efficient
greedy algorithm based on MINIMUM CLIQUE PARTITION

on graphs. The algorithm takes advantage of some unique
properties of the graphs considered here, which allow us to
efficiently find the maximum cliques as well as some special
maximal cliques. Our experimental results on simulated
and real data demonstrate that the algorithm runs faster
and performs better than some popular hierarchical and
graph-based clustering methods. The results on real data
from DNA clone classification also suggest that this dis-
crete approach is more accurate than clustering methods
based on real intensity values, in terms of separating clones
that have different characteristics with respect to the given
oligonucleotide probes.

Keywords: oligonucleotide fingerprinting, cluster analysis, DNA
clone classification, algorithm, DNA array

1. Introduction

A DNA array is an orderly arrangement of DNA sam-
ples on a single chip. It provides a medium for match-
ing DNA samples based on Watson-Crick base-pairing
rules. There are various designs of DNA arrays depend-
ing on the application. In oligonucleotide fingerprinting
(e.g. [9, 16, 27, 28]), a DNA array consists of thousands
of spots, each of which may hold a different type of DNA
sequences (also called clones). To perform a hybridiza-
tion experiment, a drop of each type of DNA in solution is
placed in a unique spot of the array and a (short) DNA se-
quence (i.e. an oligonucleotide, usually 8-50 bases), called
a probe, is applied to hybridize with all the clones on the
array. If the probe occurs as a substring of the clone in a
spot, it will hybridize to the spot. Once the probe has been
hybridized to the array and all unbound oligonucleotides
have been washed off, the array is scanned to determine
how much probe is bound to each spot. The experiment is
then repeated for a set of probes to create fingerprints of
the clones, where the fingerprint of a clone is simply a vec-
tor consisting of the hybridization intensity values between
the clone and each probe. We observe that obtaining ac-
curate fingerprint data can be challenging. Quantization of
the intensities on each spot is subject to noise from irreg-
ular spots, dust on the chip, and nonspecific hybridization.
Deciding the intensity threshold between spots and back-
ground can also be difficult, especially when the spots fade
gradually around their edges (see e.g. [4]).

Oligonucleotide fingerprinting makes use of DNA ar-
rays, and is one of the most efficient methods to character-
ize DNA clone libraries. It has many applications including
gene expression profiling and classification of DNA clones
(see, e.g. [8, 9, 13, 16, 27, 28]. In this paper, we are espe-
cially interested in the latter application, which arises in the
classification of microorganisms. Here, to classify a com-
munity of microorganisms (extracted, e.g., from soil), a li-
brary of (randomly selected) ribosomal RNA genes (rDNA
clones) is created. These clones are then subjected to a

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

series of hybridization experiments, each of which uses a
single DNA oligonucleotide probe, resulting in a set of fin-
gerprints as mentioned above. Based on a cluster analysis
of these fingerprints, the rDNA clones are classified into
operational taxonomic units (OTUs) to reflect their differ-
ent characteristics with respect to the probes (i.e. what
probes hybridized and what did not). Once classified, tax-
onomic descriptions of each OTU can be determined by
clustering them with fingerprints of known sequences or
by nucleotide sequence analyses of representative clones
from the OTUs. This has already proven to be a pow-
erful high-throughput technique for studying microorgan-
isms [27, 28].

A crucial step in the above analysis is the clustering of
clone fingerprints. Ideally, we would like to translate hy-
bridization intensity values into binary values where � in-
dicates hybridization and � indicates the opposite. Unfor-
tunately, given the intensity values provided by the scanned
array, it is not always easy to determine which clones hy-
bridized and which did not due to the problems mentioned
above. Hence, most of the existing methods consider real
intensity values, normalize/rank them, and cluster the re-
sulting fingerprints based on some distance/similarity mea-
sures such as Euclidean distance, Minkowsky metrics, and
SIMILARITY FACTOR (SIM) for real vectors [9, 13, 19].
Although these clustering methods seem to work well in
gene expression profiling, they have an obvious drawback
in DNA clone classification because distance/similarity
measures for real vectors usually do not treat positive and
negative hybridization signals equally. Clustering results
obtained using such measures tend to be more sensitive to
positive signals than to negative ones.

We have recently proposed a discrete approach to the
above cluster analysis in the classification of microbial
rDNA clones [27, 28]. Control clones with known char-
acteristics with respect to the probes are included in DNA
array experiments to provide reference intensity values.
Oligonucleotide fingerprint data are normalized and bina-
rized using the reference values from the control DNA
clones. Here, each intensity value is classified into a �
(for hybridization) or a � (for no hybridization) or an �

(for unknown, which is also called a missing value). More
precisely, for each probe, let �� denote the lowest (normal-
ized) intensity value of any control clone that is expected
to hybridize to the probe and �� the highest intensity value
of any control clone that is not expected to hybridize with
the probe. Then, clones whose intensity values are greater
than or equal to ������ � �� ��� are given a � classifica-
tion, where � is a small constant. Clones whose intensity
values are less than or equal to ��	���� �� � �� are given
a � classification. All others clones are given an � clas-
sification. Then, a distance/similarity measure, e.g. Ham-
ming distance (ignoring positions containing � ’s), is used

in combination with some distance/similarity based clus-
tering method, e.g. the well known unweighted pair group
method with arithmetic mean (UPGMA) [24]. Although
this approach treats positive and negative hybridization sig-
nals equally, it may still potentially cluster (binarized) fin-
gerprint vectors that conflict with each other at some po-
sitions because (i) it only considers the distance between
the fingerprints and (ii) the missing values are completely
ignored.

In this paper, we formulate the clustering of (binarized)
oligonucleotide fingerprints as a combinatorial optimiza-
tion problem that attempts to identify clusters and resolve
the missing values in the fingerprints simultaneously. We
study the computational complexity of this formulation and
its parameterized version where the maximum number of
� ’s in a fingerprint vector is bounded by a parameter �.
Our results show that the problem and the parameterized
variant (for � �
) are NP-hard. However, the problem is
polynomial-time solvable when � � �. The problem can
be naturally represented as finding a minimum clique par-
tition on graphs. We present an efficient greedy algorithm
based on MINIMUM CLIQUE PARTITION. The algorithm
takes advantage of some unique properties of the graphs
(defined from fingerprints) considered here. These prop-
erties allow us to efficiently find the maximum cliques as
well as some special maximal cliques efficiently. Our ex-
perimental results on simulated and real data demonstrate
that the algorithm runs faster and performs better (in the
context of DNA clone classification) than popular cluster-
ing methods such as UPGMA (which was used in [27, 28]),
CLUSTER [10] and CLICK [20]. The results on real data
from the classification of microbial rDNA clones suggest
that this discrete approach is more accurate than clustering
methods based on real intensity values, in terms of separat-
ing clones that have different characteristics with respect to
the given probes.

The rest of the paper is organized as follows. Before
leaving this section, we include a brief review of recent
work on clustering DNA array data, highlighting the ones
that are most related to our approach. In Section 2, we
give a mathematical formulation of the problem of cluster-
ing binary fingerprint vectors that takes into account miss-
ing values. We also study the computational complexity
of the problem and a parameterized version in terms of the
maximum number of missing values in a fingerprint vector.
Section 3 presents the greedy clustering algorithm based on
MINIMUM CLIQUE PARTITION and some implementation
details (in order to make the algorithm as efficient as possi-
ble). Section 4 gives some experimental results concerning
the performance of the greedy algorithm. Some conclusion
remarks are provided in Section 5. Due to the page limit,
all proofs are omitted in the extended abstract but can be
found in the full version of the paper.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

1.1. Previous Related Work on Clustering Finger-
print Data

As mentioned above, many clustering methods for DNA
array data have been studied, including hierarchical meth-
ods [8, 9, 10, 22], K-means [13], greedy methods [17, 16],
graph partitioning [7, 12, 20, 29], probabilistic meth-
ods [3, 5, 15, 18], and self-organizing maps [25, 26]. A
recent comprehensive survey can be found in [19].

In terms of the technique involved, our new clustering
algorithm is perhaps most related to the algorithms based
on graph partitioning. Given a set of fingerprints and some
distance/similarity measure between the fingerprints, one
can define a graph whose vertices represent the fingerprints
and edges are weighted with the distance/similarity val-
ues between corresponding fingerprints [7, 20, 29]. The
fingerprint clustering problem then becomes the problem
of partitioning the graph into a (specific) number of sub-
graphs with the smallest total distance (or the largest total
similarity). [12] uses a similar graph model but its edges
are unweighted and two vertices are connected by an edge
if their similarity value is above some fixed threshold. In
some applications such as DNA clone classification, it is
often difficult to decide the best distance/similarity mea-
sure to use. It could be even harder to determine the most
effective threshold. Both of these decisions have strong im-
pact on the resulting clusters and yet in practice they are
usually addressed in an ad hoc manner [21]. In contrast,
our definition of the graph only concerns the compatibility
between binarized fingerprint vectors and thus completely
avoids these hard decisions. Moreover, as we will see later,
we can find the maximum cliques and some special max-
imal cliques (the so called unique maximal cliques, which
contain vertices that belongs to only one maximal clique)
in such compatibility graphs efficiently. This special prop-
erty serves as the basis of our greedy strategy for minimum
clique partition. Another advantage of our method is that
we do not need to make assumptions about the intensity
data like those made, for example, in [20] where the dis-
tributions of inter- and intra-cluster pairwise sample cor-
relations are well separated and Gaussian. Xing and Karp
recently demonstrated that such assumptions do not always
hold [29].

As mentioned before, most approaches to cluster
analysis of array data employ real intensity values. Our
approach employs binary interpretations of the intensity
values, with possible uncertainties. An important advan-
tage of this discrete approach is that binarized fingerprints
are essentially reproducible whereas (normalized) real
intensity values are generally not. This gives another
motivation for binarizing fingerprints in oligonucleotide
fingerprinting. Binary (and ternary) fingerprint vectors
are also used in papers such as [12, 14]. (The approach

in [12] also works for non-binary fingerprints because
its clustering is based on similarity as mentioned above.)
But these papers do not attempt to directly address the
reliability of the deduced binary (and ternary) values,
although [14] takes a conservative approach in using
these values. A recent work advocating the binarization
of fingerprint vectors is presented in [21]. It presents a
rigorous procedure to convert real gene expression data
into binary values. However, the procedure may not
be suitable for applications such as DNA classification
because the binarized values may not directly correspond
to the occurrence of hybridization between clones and
probes. Furthermore, it also does not address the reliability
of the binarized values.

In [13], the reliability of hybridization intensities are
evaluated using clones spotted twice. The ratio between the
larger and the smaller intensity values is computed for each
clone. If the ratio is above some pre-specified threshold,
the intensity of the clone is considered as a missing value.
However, these missing values are simply ignored in the
analysis. Our approach considers missing values as part of
the clustering problem, and tries to resolve them in a rigor-
ous way. We note in passing that the idea of using control
(or housekeeping) clones to help normalize and interpret
DNA array data has also been used before in, e.g. [14].

2. The Binary Clustering Problem and Com-
putational Complexity

As mentioned above, we consider binarized fingerprints
obtained from hybridization intensity data, which are
vectors of � (hybridization), � (no hybridization), or �

(unknown) classifications. For convenience, call such a
binarized vector a 0-1-� vector. Suppose that there are
totally � clones and � probes. Then each fingerprint vector
has length �. The set of all such (binarized) fingerprint
vectors will be denoted by � � ���� ��� � � � � ���, for
� � � � �, where �� is a 0-1-� vector of length � corre-
sponding to some clone. Two 0-1-� fingerprint vectors ��
and �� are compatible if they do not differ at any position
or at any position that they differ, say ����� �� �� ���, where
� � � � �, we have ����� � � or �� ��� � � . Here, �����
denotes the �-th component of vector ��. A 0-1 vetcor
	 is a resolved vector of a 0-1-� fingerprint vector � if
	��� � � ��� for all � � � � � such that � ��� � � or � ��� � �.

We will be interested in identifying clusters consisting
of mutually compatible 0-1-� fingerprint vectors. Each of
these clusters should potentially correspond to clones that
have the same characteristics with respect to the given set
of probes. Indeed, clones in such a cluster could even cor-
respond to the same gene or genes from the same family in

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

microbial rDNA clone classification. 1 Following the min-
imum description length (MDL) principle (or Occam’s ra-
zor), it is natural to consider the problem of partitioning the
set � into the smallest number of clusters, each consisting
of mutually compatible fingerprint vectors. 2 Since a set
of mutually compatible vectors can always be resolved in
the same way, this problem is in fact equivalent to resolv-
ing the � ’s in the fingerprint vectors such that the number
of distinct resulting (resolved) vectors is minimized. The
problem is formally defined below.

BINARY CLUSTERING WITH MISSING VALUES (BCMV)
Instance: a set � of 0-1-� fingerprint vectors.
Feasible solution: a partition of � into disjoint subsets

��� � � � � �� such that for each � � � � �, any two
vectors in �� are compatible.

Measure: Cardinality of the partition, to be minimized.

In practice, the number of � ’s in a binarized finger-
print vector is often upper bounded by a small constant, de-
pending on the quality of hybridization intensity values and
choice of control clones. It is thus interesting to consider
the following parameterized version of BCMV, denoted as
BCMV(�), where each input fingerprint vector is assumed
to have at most � � ’s. Unfortunately, we can show that
BCMV is NP-hard. In fact, we can prove a stronger re-
sult: BCMV(�) is NP-hard for any � � �. The following
definition will be useful.

Definition 2.1 Given a set of 0-1-� fingerprint vectors � ,
define a graph �� � ����� � where two vertices (finger-
prints) are adjacent if and only if they are compatible. The
graph �� will be called the compatibility graph of � .

Clearly, solving BCMV for � is equivalent to the prob-
lem of finding a minimum clique partition (MCP) on �� .
Hence, the NP-hardness of MCP [2] implies immediately
the NP-hardness of BCMV. The proof can be strengthened
to show the NP-hardness of BCMV(�), for any � � �.

Theorem 2.2 The problem BCMV(�) is NP-hard, for any
� � �.

Interestingly, we can show that BCMV(�) has a poly-
nomial time solution by reducing it to VERTEX COVER

1In microbial rDNA clone classification, a gene may be represented
multiple times in the clones due to random sampling. Note that, our no-
tion of clustering differs slightly in some sense from the conventional def-
inition that aims at grouping similar fingerprints according to some homo-
geneity measure. Our objective is to distinguish fingerprints that illustrate
any difference, because they correspond to different genes or gene fami-
lies.

2This is also consistent with the hypothesis that biomolecular diversity
is a precious resource.

on bipartite graphs, which is known to have polynomial
time algorithms (see e.g. [1]). Presently, we do not know if
BCMV(�) has a polynomial time algorithm.

Theorem 2.3 The problem BCMV(�) can be solved in
polynomial time.

Next we consider the approximability of BCMV. Since
BCMV is equivalent to MCP in general and MCP is hard
to approximate, it is unlikely for BCMV to have good
approximation algorithms. However, we can show that
BCMV(�) has constant ratio polynomial-time approxima-
tion algorithms.

Theorem 2.4 For any �, BCMV(�) can be approximated in
polynomial time with ratio ��.

3. A Greedy Algorithm Based on Clique Parti-
tion

In this section, we present a greedy algorithm for
BCMV(�) that runs in time 	����
��. Since � is usually
pretty small compared with
 in practice, 3 the algorithm is
very efficient. We will first outline the algorithm and then
show how to implement the algorithm carefully to achieve
the desired efficiency.

3.1. An Outline of the Algorithm

Let � be a set of
 0-1-� fingerprint vectors of length
�. Define the sets �, ���, and � ��� as in the proof of
Theorem 2.4, i.e. ��� is the set of resolved vectors of
fingerprint vector , � �

�
��� ���, and � ��� � � �

� � � � ����. We will consider the compatibility graph
�� and design an algorithm to partition �� into a small
set of cliques. Our algorithm is based on repeatedly finding
maximal cliques in �� . The following lemma provides an
efficient way to identify maximal cliques in �� .

Lemma 3.1 For each maximal clique �, there exists a re-
solved vector � � � such that � ��� induces � in the graph
�� .

Note that the converse of Lemma 3.1 is not true, i.e.
for some �, � ��� may induce a clique that is not maxi-
mal. However, a set � ��� with the maximum size always
induces a maximum clique in �� , and we can thus find a
maximum clique in 	����
� time. A pseudocode for find-
ing a maximum clique is given in Figure 1.

Call a maximal clique in �� unique if it contains at least
a vertex that belongs to only one maximal clique. Clearly,

3In our microbial rDNA clone classification project, � is usually a few
thousand and � is around �, as given in Table 2.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

Procedure FINDMAXIMUMCLIQUE �� �
let ���� be the resolved vector such that

� � ������ �� �������� � ��� ��;
return(� ������)

end

Figure 1. Procedure FINDMAXIMUMCLIQUE.

it is always optimal to include unique maximal cliques in a
clique partition. A straightforward algorithm for finding a
unique maximal clique in a general graph might take�����
time, using the property that vertex � is belong only one
maximal clique if and only if all its neighbors form a clique.
However, by taking advantage of the special construction
of �� and the connection between resolved vectors and
maximal cliques as given in Lemma 3.1, we are able to
find a unique maximal clique much more quickly, as illus-
trated in Figure 2. The function FINDUNIQUEMAXIMAL-
CLIQUE��� ��� finds a unique maximal clique in �� and
records the clique in ��. A straightforward implementation
of FINDUNIQUEMAXIMALCLIQUE would take �������
time. In the next subsection, we will give an implementa-
tion that requiems only ������� time.

Function FINDUNIQUEMAXIMALCLIQUE ��� ���
for each � � � do

if �� � ���� such that � ��� � � ��� � � � ���� then
�� � � ���; return(true);

return(false)
end

Figure 2. Procedure FINDUNIQUEMAXIMAL-
CLIQUE.

Our algorithm for finding a small clique partition of ��

first looks for a unique maximal clique and removes it from
the graph (and updates � accordingly). We keep finding
and removing such unique maximal cliques until no unique
maximal cliques can be found. Then, a greedy action takes
place by removing a maximum clique from the graph. We
repeat this process until all vertices of �� have been in-
cluded in some clique. A pseudocode of the algorithm,
called GREEDY CLIQUE PARTITION (GCP) is given in Fig-
ure 3. We will give an implementation of GCP in the next
subsection that runs in �������� time.

3.2. Efficient Implementation of the Algorithm

Our implementation keeps the 0-1-� fingerprint vectors
	 � � on a list. For each vector 	 , let ��	� denote the

Algorithm: GCP ��� ��
� � � ; � � �;
repeat

while FINDUNIQUEMAXIMALCLIQUE������ do
� � � 	 ��;

�� � FINDMAXIMUMCLIQUE�� �; � � � 	 ��;
until � �
;
� � ��� � � � �� �� 	 	 	 � ��;
return(�)

end

Figure 3. The algorithm GCP for finding a
small clique partition of �� .

positions of 	 that contain � values. Clearly, we can com-
pute all ��	�’s in ���
� time. Each node of the list for
� contains a set of addresses, one for each resolved vector
� � ��	�. Each address corresponds to a cell of a hash
table . Each cell of contains four data types: (1) the
size of � ���, denoted by ����, (2) the set � ���, (3) a vector
of size
, denoted by ����, and (4) the set of the positions
of � values in vector ����, denoted by ����. An open ad-
dressing with double hashing method is used for the hash
table . Under the assumption of uniformly random hash-
ing, each hashing operation runs in time ���� on average,
where the value of the constant depends on the load factor
�, which is defined as the size of divided by the number
of elements stored in . We always choose the size of ,
denoted as �, such that the load factor � is at least 2. More
precisely, let � � ���� ���. We set � as the smallest prime
number greater than ������.

Double hashing uses a hash function of the form
���� �� � ������ � � � ������ mod �, where � is a resolved
vector, � is the size of , and �� and �� are auxiliary hash
functions, 	 � � � � � �. For a given resolved vector
�, ����� is the binary number formed by ��� � � vector
positions of �. To choose those positions, let ������� and
������ be the total number of 0 and 1 values, respectively,
in all fingerprint vectors at position 	 � � �
. For each
position �, a ratio ���� � �����������	�
�����

�	
��������	�
����� is computed.
Note that ���� � �. We define ����� as the binary num-
ber formed by the ��� � � positions in � with the high-
est ���� values, and, ����� simply as the binary number
formed by all the bits in �. The hash table is filled up as
follows. For each fingerprint vector 	 � � , the set ��	� of
resolved vectors is inserted into . When a resolved vec-
tor � of some fingerprint vector 	 is inserted for the first
time, ���� is set to one, � ��� is initialized to the element
	 , 	 is copied to ����, and, ��	� is copied to ����. For
example, if 	 � �	� �� �� 	� �� �� and � � �	� �� 	� 	� �� ��
is the resolved vector to be inserted into , then ���� � �,

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

� ��� � ���, ���� � ��� �� �� �� �� ��, and ���� � ���.
The next time that the same resolved vector � is inserted for
another fingerprint vector � (say, � � ��� �� �� �� �� ��), we
increment the counter ���� by one, add � to � ���, copy the
0 and 1 values in � at positions ���� into the vector ���� at
the same positions, and update ���� accordingly. Hence,
now ���� � �, � ��� � ��� ��, ���� � ��� �� �� �� �� ��,
and, ���� � ��. We keep repeating this process until all
resolved vectors in � are inserted into 	 . Clearly, at most
��
 insertion operation will be performed on 	 . Since
each insertion takes at most ���� time, the total time to
fill up 	 is bounded by �����
�.

To look for a maximum clique in � , we just need to
search for the biggest number ���� in 	 . The correspond-
ing set � ��� will be a maximum clique in � . This takes
����
� time. To identify a unique maximal clique, we
checks if any vertex � belongs to only one maximal as out-
lined in Figure 2 as follows. For each fingerprint vector � ,
we test if for all resolved vectors � � ����, the vectors
���� restricted to positions ���� are compatible with each
other. It is easy to show that � belongs to only one max-
imal clique if and only if all the vectors ����, � � ����,
restricted to positions ���� are mutually compatible. And
if � belongs to only one maximal clique, the set � ��� with
the biggest ���� defines the maximal clique. Checking if
a fingerprint vector � has the above property takes ������
time, since � can have at most �� resolved vectors. Thus,
this process takes at most �����
� time totally.

In the worst case, we are able to remove only one fin-
gerprint vector in each iteration of GCP. Hence, GCP takes
��
� iterations and, the overall running time of GCP is
�����
��. In practice, much fewer of iterations are usually
needed and the time for finding a unique maximal clique is
bounded by �������
�, where �� denotes the average number
of � ’s in each fingerprint vector.

GCP has been implemented in C++ and tested on a
Pentium III with a 500Mhz CPU and 512MB RAM. Fig-
ure 4(A) shows the average execution times of GCP on dif-
ferent parameters. For each combination of parameters, the
average was taken from 10 runs. As a comparison, we have
also included the running times of two popular hierarchical
clustering methods: UPGMA from PAUP [24] (which was
used in [27, 28]) and CLUSTER [10]. Note that, CLUS-
TER offers hierarchical clustering with four linkage op-
tions: centroid, single, complete, and average. We used the
centroid linkage method, denoted as CLUSTERc. (CLUS-
TER with average linkage corresponds to UPGMA.) GCP
is clearly much faster than UPGMA and slightly faster than
CLUSTERc, especially when the number of � ’s is small.

4. Experimental Results

We have tested the algorithm GCP on both simulated
and real 0-1-� fingerprint data and compared its perfor-
mance with UPGMA and CLUSTERc. 4 We first describe
the simulation test.

Define a cluster structure as a real vector � �
���� � � � � ���, where �� � � and

�
�� � �. We say that

a set of
 0-1-� fingerprint vectors has a cluster struc-
ture � � ���� � � � � ��� if it can be partitioned into � clus-
ters of sizes ��
� � � � � ��
 consisting of mutually compat-
ible fingerprints. Our simulation program receives as in-
put the number of 0-1-� fingerprint vectors, denoted by

, the length of the vectors, denoted by �, a cluster struc-
ture � � ���� ��� � � � � ���, and a mutation rate � � � � �.
First, the program generates randomly � seed 0-1-� finger-
print vectors of length �, with � � �� expected � values
in each vector. We make sure that no two of these vec-
tors are compatible. For each seed vector, the � values are
switched to � or � with equal probability. These resolved
vectors represent the target clustering solution. We then
make ��
� � copies of the �-th resolved vector. Finally, �
vector positions are randomly selected from each copy and
their bits are switched to � ’s. The seed fingerprint vectors
and their randomly mutated copies form the input finger-
print vectors � .

We use the Minkowski measure (see e.g. [23]) and the
Jaccard’s coefficient (see e.g. [11]) to measure the qual-
ity of a clustering solution by comparing to target cluster-
ing. Any clustering solution for � can be represented as
a binary
 �
 matrix � (which is in fact a submatrix of
the adjacency matrix of �). Let � and � be the matri-
ces for the target solution and a computed solution, respec-
tively. Let
�� be the number of entries on which � and �
have values � and �, respectively. Thus,
�� is the number
of mates that are detected by the suggested solution,
��
is the number of non-mates identified, while
�� and
��
count the disagreements between the true and suggested so-

lution. The Minkowski measure is defined as
�

�������
�������

�

Hence, it measures the proportion of disagreements to the
total number of mates in the target solution. A perfect so-
lution should have score zero. The Jaccard’s coefficient is
defined as ���

�����������
� It represents the proportion of the

correctly identified mates to the sum of the correctly identi-
fied mates plus the total number of disagreements. Hence,
a perfect solution should score one.

Table 1 reports some results of the algorithm GCP on
simulated 0-1-� fingerprint data. For the purpose of com-
parison, we have also included the results of UPGMA and

4We will not include comparisons with CLICK here because its cur-
rent version does not allow the user to adjust the homogeneity parame-
ter on distance data (derived from 0-1-� vectors), although the option is
available for intensity data.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

0

2

4

6

8

10

12

200 700 1200 1700

number of clones (n)

ti
m

e
(m

in
)

GCP (5 N's) GCP (10 N's)
UPGMA CLUSTERc

(A)

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11

number of N values

fr
eq

u
en

cy
(%

)

bacteria fungi

(B)

Figure 4. (A) Average execution times of GCP, UPGMA and CLUSTERc on a Pentium III in the sim-
ulations. The length of the fingerprint vectors is 25. (B) Distribution of frequencies of � ’s in the
binarized bacterial and fungal data sets.

 GCP UPGMA CLUSTERc

n L d p
Jaccard’s

coefficient
Minkowski

measure
Number of

clusters
Jaccard’s

coefficient
Minkowski

measure
Number of

clusters
Jaccard’s

coefficient
Minkowski

measure
Number of

clusters
2000 25 500 5 0.99965 0.00836 500 0.99665 0.04922 501.6 0.75497 0.49502 872.2
2000 25 500 10 0.98512 0.11789 500 0.85452 0.38725 575.6 0.35392 0.80838 1618.8
2000 25 551 5 1.0 0.0 551 0.99950 0.01976 551.8 0.85467 0.37718 892.2
2000 25 551 10 0.99388 0.07591 551 0.94449 0.23706 626.4 0.35756 0.80039 1548.2
2000 25 800 5 0.99999 0.00241 800 0.99990 0.01000 802.4 0.95228 0.21103 1176
2000 25 800 10 0.99902 0.03092 800 0.99002 0.09444 891 0.34841 0.80321 1510
2000 25 807 5 0.99944 0.01776 807 0.99847 0.03839 808.4 0.79545 0.45023 1164.8
2000 25 807 10 0.95944 0.20245 807 0.87338 0.36088 872.8 0.33675 0.81796 1643.8

Table 1. Performance of algorithms GCP, UPGMA and CLUSTERc on simulated data.

CLUSTERc on the same data sets using Hamming dis-
tance. 5 In the test, we simulated the fingerprints with
different parameters. For each set of parameters, we ran
GCP, UPGMA and CLUSTERc �� times on randomly gen-
erated data and report the average Jaccard’s coefficient,
Minkowski measure, and the number of clusters. GCP
clearly outperformed both UPGMA and CLUSTERc on
all these measures of quality, especially when the num-
ber of � ’s becomes relatively large. It is worth observ-
ing that in all cases GCP was able to find the minimum
number of clusters, and its solution always closely resem-
bled the target solution (according to Jaccard’s coefficient
and Minkowski measure). We conjecture that GCP finds a
minimum clique partition for most practical compatibility
graphs �� .

We have also compared the performance of GCP, UP-
GMA and CLUSTERc on two sets of real fingerprint data.
The first data set is a collection of 1491 bacterial small sub-
unit rRNA genes analyzed in [28]. The second one is a set
of 1507 fungal small subunit rRNA genes studied in [27].
Two sets of 27 and 26 probes were designed based on the
algorithm in [6] to hybridize the bacterial rDNA clones and

5UPGMA as well as CLUSTERc actually produce clustering trees,
but we can easily extract clusters (i.e. subtrees) consisting of mutually
compatible fingerprints from the trees.

the fungal rDNA clones, respectively. The DNA array ex-
periment for the bacterial clones used 26 control clones and
the one for the fungal clones used 29 control clones. The
hybridization intensities were normalized and binarized as
described above. The binarized fingerprint vectors have an
average of ���� � ’s per vector in the case of bacteria and
����� ’s per vector in the case of fungi, as shown in Table 2
(column ��). Figure 4(B) shows the frequency distributions
of � ’s in the bacterial and fungal data sets.

Number of Clusters

Data set n L GCP UPGMA CLUSTERc

Bacteria 1491 27 3.84 769 773 991
Fungi 1507 26 4.54 556 566 870

p

Table 2. The numbers of clusters found by
GCP, UPGMA and CLUSTERc for the bacte-
rial and fungal data sets.

Since we do not know the true clustering solution, we
could only compare the numbers of clusters (which is the
object of BCMV) obtained by GCP, UPGMA and CLUS-
TERc. In both cases, GCP did better than UPGMA and
CLUSTERc, as shown in Table 2.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

Since both real intensities and binarized fingerprints are
available for the two real data sets, we have also compared
the results of methods based on binarized values and those
based on real values. We normalized and ranked the real
intensity values for the bacterial and fungal data sets given
in [27, 28], using the method described in [9]. We then
calculated the similarity between each pair of fingerprints
using SIMILARITY FACTOR (SIM) [9]. Seven methods
have been compared: GCP, UPGMA and CLUSTERc on
binarized fingerprints, the clustering algorithm given in [9]
(denoted as DRMANAC), UPGMA on real intensities with
similarity measure SIM (denoted as R-UPGMA, to avoid
confusion), CLUSTERc on real intensities (denoted as R-
CLUSTERc), and the CLICK on real intensities. To be
fair, we adjusted the parameters (generally thresholds) in
DRMANAC, R-UPGMA, R-CLUSTERc, and CLICK so
that they output roughly the same number of clusters (or
fewer) as GCP and their solutions were the best possible
in terms of the measures considered below. 6 Although
the true clustering solutions are not known for the two real
data sets, we considered the quality of the clustering solu-
tions found by the seven algorithms in both the real domain
and the binary domain. In the real domain, we measured
the quality of a clustering solution as the average similar-
ity (in terms of SIM) between fingerprint vectors contained
in the same cluster [19]. In the binary domain, we con-
sidered the average number of pairs of incompatible fin-
gerprint vectors contained in the same cluster and the aver-
age number of incompatible positions between fingerprint
vectors in the same cluster. Observe that these numbers
are all � for the solutions found by the binary methods
(GCP, UPGMA and CLUSTERc). The results are sum-
marized in Tables 3 and 4. These results show that in the
real domain, DRMANAC, R-UPGMA and R-CLUSTERc
did very well in terms of average similarity, but GCP, UP-
GMA and CLUSTERc were not too bad either. However,
DRMANAC, R-UPGMA and R-CLUSTERc, surprisingly,
failed considerably in the binary domain. Namely, their
clusters mostly consist of fingerprints that have different
characteristics with respect to the given probes. This kind
of solutions would clearly not be satisfactory for applica-
tions like DNA clone classification. CLICK did poorly in
the above comparisons mostly because that it was designed
to only look for large clusters of sizes at least ��. Note
that, for the fungal data set, the largest number of clusters
output by CLICK (by trying different homogeneity values)
was ���, which is much fewer than the number of clusters
found by GCP.

Table 5 illustrates that the solutions found by the binary

6Note that, it is trivial to produce solutions with a large number of
clusters that are good under these measures. However, the objective of
BCMV is to minimize the number of output clusters. So, constraining
all the algorithms to output roughly the same number of clusters in the
following comparisons is fair to everybody.

 DRMANAC R-UPGMA R-CLUSTERc CLICK
Bacteria 0.7542 2.59 0.8064 2.75 0.7041 1.97 0.9310 4.13
Fungi 0.8315 2.21 0.6666 1.31 0.6809 1.53 0.9184 2.94

Table 4. Average incompatibility in a cluster-
ing solution. The first column is the average
number of pairs of incompatible fingerprints
and the 2nd column is the average number
of incompatible positions between two fin-
gerprints.

methods (GCP, UPGMA and CLUSTERc) and the real
value methods (DRMANAC, R-UPGMA, R-CLUSTERc,
and CLICK) on the bacterial and fungal data sets are
largely different, as measured by Jaccard’s coefficient and
Minkowski measure. Moreover, the solutions found by
the real value methods are also significantly different from
each other, compared to the difference between the solu-
tions of the binary methods. This suggests that the exist-
ing methods for cluster analysis may not be as accurate (or
mature) as people might have thought (at least as far as
DNA clone classification is concerned), and perhaps more
research is needed.

5. Concluding Remarks

The above experimental results clearly demonstrate that
our discrete approach to cluster analysis is potentially a
very effectively method for analyzing oligonucleotide fin-
gerprints, especially in applications such as DNA clone
classification. Since some hybridization intensity data may
provide reliable detection of the number of occurrences of a
probe in a clone up to a certain range [6], it would be inter-
esting to extend the discrete approach to non-binary ranges
��� ��, where � is an integer and each missing value possibly
represents a subrange of ��� ��. Another interesting open
problem is whether BCMV(�) can be solved in polynomial
time.

Acknowledgement. We would like to thank Lea Valin-
sky for many valuable discussions on the experimental
data. The research was partially supported by a UC
MEXUS/CONACYT doctoral fellowship to A.F., NSF
Grant DBI-0133265 to J.B and T.J., and NSF Grants CCR-
9988353 and ITR-0085910 to T.J.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network
flows: theory, algorithms, and applications. Prentice
Hall, Englewood Cliffs, N.J., 1993.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

 GCP UPGMA CLUSTERc DRMANAC R-UPGMA R-CLUSTERc CLICK
Bacteria 769(0.5643) 773(0.5610) 991(0.6118) 749(0.8073) 751(0.8108) 794(0.6960) 639(0.4831)
Fungi 556(0.5395) 566(0.5503) 870(0.5632) 581(0.6303) 580(0.6822) 555(0.6285) 133(0.4933)

Table 3. Average similarity in a clustering solution.

 GCP UPGMA CLUSTERc DRMANAC R-UPGMA R-CLUSTERc CLICK
 Jaccard Minkowski Jaccard Minkowski Jaccard Minkowski Jaccard Minkowski Jaccard Minkowski Jaccard Minkowski Jaccard Minkowski

GCP * * 0.3221 1.1012 0.2430 0.9421 0.0491 3.0131 0.0407 1.8178 0.0897 1.03 0.0495 3.8879
UPGMA 0.7296 0.5788 * * 0.2652 0.8806 0.0613 2.5934 0.0393 1.6354 0.0714 1.0189 0.0684 3.3005

CLUSTER 0.2212 0.9196 0.2011 0.9245 * * 0.0266 0.9981 0.0319 1.0507 0.1293 1.1073 0.0246 5.7974
DRMANAC 0.0846 1.5622 0.0872 1.4927 0.0637 1.0159 * * 0.0224 2.0716 0.0148 0.9999 0.2196 1.3242
R-UPGMA 0.0996 1.0893 0.0919 1.0762 0.1706 1.1058 0.1713 0.9356 * * 0.0466 1.0031 0.1046 2.3941

R-CLUSTER 0.1103 0.9933 0.0983 0.9935 0.2546 1.0078 0.0705 0.9871 0.2416 0.9619 * * 0.0131 7.5881
R-CLICK 0.0581 3.9048 0.0677 3.6318 0.0185 6.9744 0.0994 2.7936 0.0232 5.9367 0.0101 8.3262 * *

f
u
n
g
i

b a c t e r i a

Table 5. Similarity between the clustering solutions found by GCP, UPGMA, CLUSTERc, DRMANAC,
R-UPGMA, R-CLUSTERc, and CLICK.

[2] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann,
A. Marchetti-Spaccamela, and M. Protasi. Com-
plexity and Approximation. Springer-Verlag, Berlin,
1999.

[3] Y. Barash and N. Friedman. Context-specific
bayesian clustering for gene expression data. Proc.
RECOMB 2001, pages 12–21, 2001.

[4] T. Beissbarth, K. Fellenberg, B. Brors, R. Arribas-
Prat, J. M. Boer, N. C. Hauser, M. Scheideler, J. D.
Hoheisel, G. Schütz, A. Poustka, and M. Vingron.
Processing and quality control of dna array hybridiza-
tion data. Bioinformatics, 16:1014–1022, 2000.

[5] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering
gene expression patterns. J. Computational Biology,
6:281–297, 1999.

[6] J. Borneman, M. Chrobak, G. Della Vedova,
A. Figueroa, and T. Jiang. Probe selection algorithms
with applications in analysis of microbial communi-
ties. Bioinformatics, 17(Suppl. 1):S39–S48, 2001.

[7] C. Ding. Analysis of gene expression profiles: class
discovery and leaf ordering. Proc. RECOMB 2002,
pages 127–136, 2002.

[8] R. Drmanac and S. Drmanac. cdna screening by array
hybridization. Methods in Enzymology, 303:165–178,
1999.

[9] S. Drmanac, N. Stavropoulos, I. Labat, J. Vonau,
B. Hauser, M. Soares, and R. Drmanac. Gene rep-
resenting cdna clusters defined by hybridization of
57,419 clones from infant brain libraries with short
oligonucleotide probes. Genomics, 37:29–40, 1996.

[10] M. Eisen, P. Spellman, P. Brown, and D. Botstein.
Cluster analysis and display of genome-wide expres-
sion patterns. Proc. Nat’l Acad Sci USA, 95:14863–
14868, 1998.

[11] B. Everitt. Cluster analysis, page 41. Edward Arnold,
London, 3rd edition, 1993.

[12] E. Hartuv, A. Schmitt, J. Lange, S. Meier-Ewert,
H. Lehrach, and R. Shamir. An algorithm for clus-
tering cdna fingerprints. Genomics, 66(3):249–256,
2000.

[13] R. Herwig, A. Poustka, C. Müller, C. Bull,
H. Lehrach, and J. O’Brien. Large-scale cluster-
ing of cdna-fingerprinting data. Genome Research,
9(11):1093–1105, 1999.

[14] S. Kim, E. Rougherty, Y. Chen, K. Sivakumar,
P. Meltzer, J. Trent, and M. Bittner. Multivariate mea-
surement of gene expression relationships. Genomics,
67:201–209, 2000.

[15] G. McLachlan, R. Bean, and D. Peel. A mixture
model-based approach to the clustering of microar-
ray expression data. Bioinformatics, 18(3):413–422,
2002.

[16] S. Meier-Ewert, J. Lange, H. Gerts, R. Herwig,
A. Schmitt, J. Freund, T. Elge, R. Mott, B. Herrmann,
and L. H. Comparative gene expression profiling
by oligonucleotide fingerprinting. Nucleic Acids Re-
search, 26(9):2216–2223, May 1 1998.

[17] A. Milosavljević, Z. Strezosca, M. Zeremski,
D. Grujić, T. Paunesku, and R. Crkvenjakov. Clone
clustering by hybridization. Genomics, 27:83–89,
1995.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

[18] W. Pan, J. Lin, and C. Le. Model-based cluster anal-
ysis of microarray gene-expression data. Genome Bi-
ology, 3(2):research0009.1–0009.8, 2002.

[19] R. Shamir and R. Sharan. Algorithmic approaches
to clustering gene expression data. Current Topics in
Computational Molecular Biology (eds. T. Jiang, Y.
Xu and M. Zhang), pages 269–300, 2002.

[20] R. Sharan and R. Shamir. Click: A clustering algo-
rithm with applications to gene expression analysis.
Proc. ISMB 2000, pages 307–316, 2000.

[21] I. Shmulevich and W. Zhang. Binary analyis and
optimization-based normalization of gene expression
data. Bioinformatics, 18(4):555–565, 2002.

[22] P. Sneath and R. Sokal. Numerical Taxonomy, pages
230–234. W.K. Freeman and Company, San Fran-
cisco, CA, 1973.

[23] R. Sokal. Clustering and classification: Background
and current directions, pages 1–15. In Classifica-
tion and clustering Edited by J. Van Ryzin, Academic
Press, 1977.

[24] D. Swofford. PAUP: Phylogenetic Analysis Using
Parsimony version 4.0 beta 10. Sinauer Associates,
Sunderland, Massachusetts, 2002.

[25] P. Tamayo, J. Slonim, D. Mesirov, J. Zhu, S. Kita-
reewan, E. Dmitrovsky, E. Lander, and T. Golub.
Interpreting patterns of gene expression with self-
organizing maps: Methods and applications to
hematopoietic differention. PNAS, 96:2907–2912,
1999.

[26] P. Toronen, M. Kolehmainen, G. Wong, and E. Cas-
tren. Analysis of gene expression data using self-
organizing maps. FEBS Letters, 451:142–146, 1999.

[27] L. Valinsky, G. Della Vedova, T. Jiang, and J. Borne-
man. Oligonucleotide fingerprinting of ribosomal rna
genes for analysis of fungal community composition.
Applied and Environmental Microbiology, to appear,
2002.

[28] L. Valinsky, G. Della Vedova, A. Scupham, S. Alvey,
A. Figueroa, B. Yin, R. Hartin, M. Chrobak, D. Crow-
ley, T. Jiang, and J. Borneman. Analysis of bacte-
rial community composition by oligonucleotide fin-
gerprinting of rrna genes. Applied and Environmental
Microbiology, 68(7):3243–3250, 2002.

[29] E. Xing and R. Karp. Cliff: Clustering of high-
dimensional microarray data via iterative feature
filtering using normalized cuts. Bioinformatics,
17:S306–S315, 2001.

Proceedings of the Computational Systems Bioinformatics (CSB’03)

0-7695-2000-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

