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Abstract—Many of the industrial and research databases are
plagued by the problem of missing values. Some evident examples
include databases associated with instrument maintenance, med-
ical applications, and surveys. One of the common ways to cope
with missing values is to complete their imputation (filling in).
Given the rapid growth of sizes of databases, it becomes imper-
ative to come up with a new imputation methodology along with
efficient algorithms. The main objective of this paper is to develop
a unified framework supporting a host of imputation methods.
In the development of this framework, we require that its usage
should (on average) lead to the significant improvement of accu-
racy of imputation while maintaining the same asymptotic com-
putational complexity of the individual methods. Our intent is to
provide a comprehensive review of the representative imputation
techniques. It is noticeable that the use of the framework in the
case of a low-quality single-imputation method has resulted in the
imputation accuracy that is comparable to the one achieved when
dealing with some other advanced imputation techniques. We
also demonstrate, both theoretically and experimentally, that the
application of the proposed framework leads to a linear compu-
tational complexity and, therefore, does not affect the asymptotic
complexity of the associated imputation method.

Index Terms—Accuracy, databases, missing values, multiple
imputation (MI), single imputation.

I. INTRODUCTION

ANY of industrial and research databases are plagued by

an unavoidable problem of data incompleteness (miss-
ing values). Behind this serious deficiency, there are a number
of evident reasons, including imperfect procedures of manual
data entry, incorrect measurements, and equipment errors. In
many areas of application, it is not uncommon to encounter
databases that have up to or even more than 50% of their en-
tries being missing. For example, an industrial instrumentation
maintenance and test database maintained by Honeywell [31]
has more than 50% of missing data, despite the strict regulatory
requirements for data collection. Another application domain
overwhelmed by missing values arises in medicine; here, al-
most every patient record lacks some values, and almost every
attribute used to describe patient’s records is lacking values for
some patient’s record [17]. For example, a medical database of
patients with cystic fibrosis with more than 60% of its entries
missing was analyzed in [30]. One of the reasons why medical
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databases are so heavily exposed is that most medical data
are collected as a by-product of patient care activities, rather
than for an organized research protocol [17]. At the same time,
the majority of prior studies related to missing data concern
relatively low, usually below 20%, amounts of missing data
[1], [4], [41]. In contrast, in this paper, we are concerned with
databases with up to 50% of missing data.

Missing values make it difficult for analysts to realize data
analysis. Three types of problems are usually associated with
missing values: 1) loss of efficiency; 2) complications in
handling and analyzing the data; and 3) bias resulting from
differences between missing and complete data [3]. Although
some methods of data analysis can cope with missing values on
their own, many others require complete databases. Standard
statistical software works only with complete data or uses very
generic methods for filling in missing values [31]. Other data
processing packages that are used for visualization and mod-
eling often use and display only the complete records or map
missing values to an arbitrary fixed value, e.g., —1 or 999 999,
thus leading to distortion of the presented results. Hence, in all
such cases, imputation plays an important role. It could also
be invaluable in cases when the data needs to be shared, and
the individual users may not have resources to deal with their
incompleteness [33], [44].

There are two general approaches to deal with the problem
of missing values: They could be ignored (removed) or imputed
(filled in) with new values. The first solution is applicable only
when a small amount of data is missing. Since in many cases
databases contain relatively large amount of missing data, it is
more constructive and practically viable to consider imputation.
A number of different imputation methods have been reported
in the literature. Traditional imputation methods use statistics
and rely on some simple algorithms such as mean and hot-deck
imputation, as well as complex methods including regression-
based imputation and expectation—-maximization (EM) algo-
rithm. In recent years, a new family of imputation methods,
which uses machine learning (ML) algorithms, was proposed.
Another major development comes in the form of the multiple
imputations (MlIs) first described by Rubin in the 1970s [43].
In this case, each missing value is imputed m times (usually,
m is between 3 and 5) by the same imputation algorithm,
which uses a model that incorporates some randomness. As a
result, m “complete” databases are generated, and usually, the
average of the estimates across the samples is used to generate
the final imputed value. The development of such methods was
mainly driven by a need to improve accuracy of the imputation.
Early methods were very simple and computationally inex-
pensive. Newer methods use more complex procedures, which
could improve the quality of imputation, but come at a higher
computational effort. At the same time, we have witnessed a
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Fig. 1. Database containing missing values.

rapid growth of size of databases. Recently published results
of a 2003 survey on the largest and most heavily used com-
mercial databases show that the average size of Unix databases
experienced a 6-fold increase when compared to year 2001. For
Windows databases, this growth was 14-fold. Large commer-
cial databases now average ten billion data points [57].

The main objective of this paper is to build a new framework
aimed at the improvement of the quality of existing imputation
methods (we will be referring to them as base imputation
methods). The framework should meet three requirements.

1) It should improve accuracy of imputation when compared
to the accuracy resulting from the use of a single base
imputation method.

2) An application of the framework to a base imputation
method should not worsen its asymptotic computational
complexity.

3) It should be applicable to a wide range of generic
(base) imputation methods, including both statistical and
ML-based imputation techniques.

To meet these requirements, in the proposed framework, we
impute some of the missing values several times. Furthermore,
the overall environment is characterized by several important
features that clearly distinguish it from some other MI methods.

e It imputes only a subset of the missing values multiple
times. The imputation is executed in an iterative manner.
At each iteration, some high-quality imputed values are
accepted, and the remaining lower quality missing val-
ues are imputed again (multi-imputed). Assuming that at
each iteration half of the values are imputed (the frame-
work uses mean-based parameter to select imputed values,
which for data with normal distribution approximates to a
half of values) and that ten iterations are executed, then the
number of imputations becomes equal to
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where k is the number of missing values.

In contrast, in the case of MIs, every missing value is imputed
several times, and for the typical values of m, the number of
imputations is not less than 3%, but it can be as large as 10k [52].
Therefore, the framework is more efficient.

It uses the high-quality accepted imputed values from the

previous iterations to impute the remaining missing values.
In contrast, MIs use the original database containing all the
missing values and, thus, do not take advantage of already
imputed values. Therefore, the imputation procedure of the
proposed framework is possibly more accurate since, in
each iteration, more data are used to infer the imputation
model for imputing the remaining missing values. This
hypothesis was confirmed experimentally in this paper.

Extensive experimental results presented in this paper show
that the proposed imputation framework results in substantial
improvement of imputation accuracy. We show that using the
proposed framework with very simple imputation methods,
such as hot deck, produces accuracy of imputation that sur-
passes quality of results generated by advanced statistical and
MI methods while preserving low computational overhead.
This advantage is clearly demonstrated with the use of the
proposed framework to imputation technique of linear com-
plexity (i.e., an ML-based imputation using Naive Bayes). The
resulting imputation method was also linear, and its accuracy
is higher than that of any of several other imputation methods,
including complex statistical and MIs techniques.

This paper is organized in the following manner. We
first review a number of representative imputation methods
(Section II). Section III elaborates on the structure of the pro-
posed framework. In Section IV, we report on experimental re-
sults and offer an extensive comparative analysis. Conclusions
and recommendations are covered in Section V. Throughout the
text, the term database pertains to a relational data set.

II. BACKGROUND AND RELATED WORK
A. Background

In what follows, we are concerned with databases consisting
of one or multiple tables, where columns describe attributes
(features), and rows denote records (examples or data points).
Fig. 1 shows a typical database involving five attributes; note
that some of them have missing values denoted by “?”. In
general, the attributes can be numerical discrete, numerical con-
tinuous, and nominal. In this paper, we are dealing with impu-
tation procedures for discrete attributes, i.e., discrete numerical
and nominal. We note that the two main application areas of
missing data imputation procedures are concerned with equip-
ment maintenance databases [31] and survey data [23], [29],
[43], [45], both of which use discrete data.

Some of the missing data imputation algorithms are super-
vised; that is, they require some class attribute. They impute
missing values one attribute at a time by setting it to be the
class attribute and using data from the remaining attributes
to generate a classification model, which is used to perform
imputation.

The three different modes that lead to introduction of miss-
ing values are: 1) missing completely at random (MCAR);
2) missing at random (MAR); and 3) not missing at random
(NMAR) [31], [33]. The MCAR mode applies when the distri-
bution of a record having a missing value for an attribute does
not depend on either the complete data or the missing data.
This mode usually does not hold for nonartificial databases.
Its relaxed version, i.e., the MAR mode, where the distribution
depends on data but does not depend on the missing data itself,
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Fig. 2. Flow of operations in MI.

is assumed by most of the existing methods for imputation
of missing data [51], and therefore, it is also assumed in this
paper. In case of the MCAR mode, the assumption is that the
distribution of missing and complete data are the same, whereas
for the MAR mode, they are different, and the missing data can
be predicted by using the complete data [33]. The third mode,
i.e., the NMAR, where the distribution depends on the missing
values, is rarely used in practice.

B. Related Work

The existing methods for dealing with missing values can
be divided into two main categories: 1) missing data removal
and 2) missing data imputation. The removal of missing values
is concerned with discarding the records with missing values
or removing attributes that have missing entries. The latter can
be applied only when the removed attributes are not needed to
perform data analysis. Both removals of records and attributes
result in decreasing the information content of the data. They
are practical only when a database contains a small amount of
missing data and when the ensuing analysis of the remaining
complete records will not be biased by the removal [31]. They
are usually performed in the case when dealing with missing
data introduced in the MCAR mode. Another method belong-
ing to the same category proposes substituting missing values
for each attribute with an additional category. Although this
method provides a simple and easy-to-implement solution,
its usage results in substantial problems occurring during the
subsequent analysis of the resulting data [55].

The imputation of missing values uses a number of differ-
ent algorithms, which can be further subdivided into single-
imputation and MI methods. In the case of single-imputation
methods, a missing value is imputed by a single value, whereas
in the case of MI methods, several, usually likelihood ordered,
choices for imputing the missing value are computed [43].
Rubin defines Mls as a process where several complete data-
bases are created by imputing different values to reflect uncer-
tainty about the right values to impute. At the next step, each
of the databases is analyzed by standard procedures specific
for handling complete data. At the end, the analyses for each
database are combined into a final result [11], [44]. Fig. 2
illustrates the flow of operations in MI procedure.

Several approaches have been developed to perform MlIs.
Li [32] and Rubin and Schafer [42] use Bayesian algorithms
that support imputation by using posterior predictive distrib-
ution of the missing data based on the complete data. The
Rubin—Schafer method assumes the MAR mode, as well as
multivariate normal distribution for the data. Alzola and Harrell
introduce a method that imputes each incomplete attribute

by cubic spline regression given all other attributes, without
assuming that the data can be modeled by a multivariate distrib-
ution [2]. The MI methods are computationally more expensive
than the single-imputation techniques, but at the same time,
they better accommodate for sample variability of the imputed
value and uncertainty associated with a particular model used
for imputation [31]. Detailed description of MI algorithms can
be found in [45], [51], [52], and [59].

Both the single-imputation and MI methods can be divided
into three categories: 1) data driven; 2) model based; and 3) ML
based [31], [33], [38]. Data-driven methods use only the com-
plete data to compute imputed values. Model-based methods
use some data models to compute imputed values. They assume
that the data are generated by a model governed by unknown
parameters. Finally, ML-based methods use the entire available
data and consider some ML algorithm to perform imputation.

The data-driven methods include simple imputation proce-
dures such as mean, conditional mean, hot-deck, cold-deck,
and substitution imputation [31], [49]. The mean and hot-deck
methods are described in detail later in this paper, whereas the
remaining methods are only applicable to special cases. The
cold-deck imputation requires additional database, other than
the database with missing values, to perform imputation, which
is usually not available to data analyst. The substitution method
is applicable specifically to survey data, which significantly
narrows down its possible application domains.

Several model-based imputation algorithms are described
in [33]. The leading methods include regression-based,
likelihood-based, and linear discriminant analysis (LDA)-based
imputation. In regression-based methods, missing values for a
given record are imputed by a regression model based on com-
plete values of attributes for that record. The method requires
multiple regression equations, each for a different set of com-
plete attributes, which can lead to high computational cost.
Also, different regression models must be used for different
types of data; that is, linear or polynomial models can be used
for continuous attributes, whereas log—linear models are suit-
able for discrete attributes [31]. The likelihood-based methods
can be considered to impute values only for discrete attributes.
They assume that the data are described by a parameter-
ized model, where parameters are estimated by maximum-
likelihood or maximum a posteriori procedures, which use
different variants of the EM algorithm [18], [33].

Recently, several ML algorithms were applied to the design
and implementation of imputation methods. A probabilistic
imputation method that uses probability density estimates and
Bayesian approach was applied as a preprocessing step for
an independent module analysis system [13]. Neural networks
were used to implement missing data imputation methods
[26], [55]. An association rule algorithm, which belongs to the
category of algorithms encountered in data mining, was used
to perform MIs of discrete data [58]. Recently, algorithms of
supervised ML were used to implement imputation. In this
case, imputation is performed one attribute at a time, where the
selected attribute is used as a class attribute. An ML algorithm
is used to generate a data model from data associated with
complete portion of the class attribute, and the generated model
is used to perform classification to predict missing values of
the class attribute. Several different families of supervised ML
algorithms, such as decision trees, probabilistic, and decision
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Fig. 3. Structure of the proposed framework.

rules [18], can be used; however, the underlying methodology
remains the same. For example, a decision tree C4.5 [39], [40]
and a probabilistic algorithm Autoclass [14] were used in [31],
whereas a decision rule algorithm CLIP4 [15], [16] and a proba-
bilistic algorithm Naive Bayes were studied in [22]. A decision
tree along with an information retrieval framework was used
to develop incremental conditional mean imputation in [19].
In [4], a k-nearest neighbor algorithm was used. Statistical and
ML-based imputation methods are briefly compared in [23].
Also recently, ML-based imputation methods were experi-
mentally compared with data-driven imputation, showing their
superiority in terms of imputation accuracy [22].

The development of the new missing data imputation meth-
ods was mainly driven by the need to improve accuracy of
imputation. The simplest data-driven imputation methods were
followed by model-based methods and MI procedures. As a
result of this evolution, complex and computationally expensive
algorithms, such as MI logistic regression, were developed.
At the same time, because of recent rapid growth of database
sizes, researchers and practitioners require imputation methods
to be not only accurate but also scalable. MIs and ML-based
imputation methods are characterized by a relatively high
accuracy, but at the same time, they are often complex and
computationally too expensive to be used for real-time impu-
tation or for imputing in large databases [49]. We show, both
theoretically and experimentally, that the proposed framework
has linear asymptotic complexity with respect to the number
of records. Therefore, as long as the base imputation method
has linear or worse complexity (to the best of our knowledge,
there are no sublinear imputation methods), the application of
the framework does not worsen the base method’s complexity.
The proposed framework consists of three modules, which are
concerned with performing mean pre-imputation, using confi-
dence intervals, and applying boosting, respectively. Extensive
experimental tests show that the application of the proposed
framework improves accuracy of the base imputation method
and, at the same time, preserves its asymptotic complexity.
Applying the framework to a very simple imputation method,
such as hot deck, on average, improves its accuracy to match
accuracy of complex model-based imputation methods, such as
multiple polytomous logistic regression imputation, while at the
same time being significantly faster and easier to implement.

This paper concerns the imputation of discrete attributes.
This limitation is imposed by the considered base imputation
methods; that is, in the case of ML-based imputation, only
discrete attributes can be imputed. We note that the proposed
framework is applicable to imputation methods that handle
continuous attributes, and its extension to these methods will
be the subject of future work.

III. PROPOSED FRAMEWORK

The overall architecture of the proposed framework is visu-
alized in Fig. 3. It consists of three main functional modules:
1) mean pre-imputation; 2) application of confidence intervals;
and 3) boosting. All of those are visualized as shadowed
boxes.

Let us briefly discuss the functionality of each of these
modules. The missing values are first pre-imputed (module 1),
i.e., temporarily filled with a value that is used to perform impu-
tation, using a fast linear mean imputation method. Next, each
missing pre-imputed value is imputed using a base imputation
method, and the imputed value is filtered by using confidence
intervals (module 2). Confidence intervals are used to select the
most probable imputed values while rejecting possible outlier
imputations. Once all the values are imputed and filtered, each
of them is assigned with a value that quantifies its quality; that
is, it might be expressed as a probability or a distance. Based on
these values, the boosting module (module 3) accepts the best
high-quality imputed values, whereas the remaining imputed
values are rejected, and the process repeats with the new
partially imputed database. After ten iterations, all the remain-
ing imputed values are accepted, and the imputed database is
outputted. We note that any imputation method, i.e., data driven,
model based, or ML based, can be used as the base method.

A. Imputation Methods

This section provides a short description of several imputa-
tion methods being used in the proposed framework or in the
experimental section of this paper. A description of how the
selected methods are incorporated in the proposed framework
is also provided. The selection of the imputation methods was
driven by the following principles. The base methods that
will be tested with the proposed framework should be simple
enough to show that they can be improved by the application of
the framework to match or surpass the quality of complex high-
quality model-based imputation methods. They should also
represent both data-driven and ML-based categories. Therefore,
hot-deck imputation and ML-based imputation that use Naive
Bayes algorithms were selected.

To provide comprehensive evaluation, the framework with
the selected two base methods should be compared with ad-
vanced high-quality model-based imputation methods, as well
as fast data-driven methods. Therefore, two MI methods, i.e.,
LDA-based method and multivariate imputation that combines
logistic, polytomous, and linear regressions, and three data-
driven methods, i.e., mean, hot deck, and MI by sampling, are
used in the experimental section.
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TABLE 1

SUMMARY OF THE IMPUTATION METHODS USED IN THIS PAPER

. . Multiple/single Discrete Continuous L
Method name Imputation algorithm ll-lm ;)ut atio f data dat: b Abbreviation
Naive-Bayes Naive Bayes algorithm single Yes No NB
Hot deck nearest neighbor single Yes Yes HD
Mean attribute average (mode) single Yes Yes Mean
Polyreg polytomous regression multiple Yes No POLYLOGREG
LDA linear discriminant analysis multiple Yes No LDALOGREG
Logreg logistic regression multiple Yes (Binary) No -—-
Sampling random sampling multiple Yes Yes SAM
Framework with Proposed framework with .

. 1 Y N FNB

Naive-Bayes Naive-Bayes algorithm stgie e ©
Framework with | Proposed framework with Hot .
Hot deck deck algorithm single Yes Yes FHD

1) Single-Imputation Methods: In the mean imputation, the
mean of the values of an attribute that contains missing data is
used to fill in the missing values. In the case of a categorical
attribute, the mode, which is the most frequent value, is used
instead of the mean. The algorithm imputes missing values for
each attribute separately. Mean imputation can be conditional
or unconditional, i.e., not conditioned on the values of other
variables in the record. Conditional mean method imputes
a mean value, that depends on the values of the complete
attributes for the incomplete record [8]. In this paper, the un-
conditional mean, which is computationally faster and therefore
can be efficiently used with large data sets, is used both to
impute the missing values as a stand-alone method and to
perform pre-imputation of the missing values in the proposed
framework.

In the hot deck, for each record that contains missing values,
the most similar record is found, and the missing values are im-
puted from that record. If the most similar record also contains
missing information for the same attributes as in the original
record, then it is discarded, and another closest record is found.
The procedure is repeated until all the missing values are
successfully imputed or the entire database is searched. When
no similar record with the required values filled in is found, the
closest record with the minimum number of missing values is
chosen to impute the missing values. Several distance functions
can be used [23], [45], [48]. In this paper, a computationally
fast distance function is used, which assumes a distance of 0
between two attributes if both have the same numerical or
nominal value or, otherwise, assumes a distance of 1. A distance
of 1 is also assumed for an attribute for which any of the two
records has a missing value. In the case of supervised databases,
which are used in this paper, the hot-deck method takes ad-
vantage of the class information to lower computational time.
Since, usually, certain correlations exist between records in
the same class, the distance is computed only between records
within the same class.

In regression, imputation is performed by regression of the
missing values using complete values for a given record [26].
Several regression models can be used, including linear, lo-
gistic, polytomous, etc. Logistic regression applies maximum-
likelihood estimation after transforming the missing attribute
into a logit variable, which shows changes in natural log odds
of the missing attribute. Usually, logistic regression model is

applied for binary attributes, polytomous regression for discrete
attributes, and linear regression for numerical attributes.

Naive Bayes is an ML technique based on computing prob-
abilities [21]. The algorithm works with discrete data and
requires only one pass through the database to generate a clas-
sification model, which makes it very efficient, i.e., linear with
the number of records. Imputation based on the Naive Bayes
consists of two simple steps. Each attribute is treated as the class
attribute, and the data are divided into two parts: 1) training
database that includes all records for which class attribute is
complete and 2) testing database for which the records are
missing. First, prior probability of each non-class attribute value
and frequency of each nonclass attribute value in combination
with each class attribute value are computed on the basis of the
training database. The computed probabilities are then used to
perform prediction of class attribute for testing database, which
constitute the imputed values.

2) MI Methods: One of the most flexible and powerful MI
regression-based methods is the multivariate imputation by
chained equations (MICE) [9], [10]. The method provides a
full spectrum of conditional distributions and related regression
models. MICE incorporates logistic regression, polytomous
regression, linear regression and uses Gibbs sampler to generate
MI [12]. MICE is furnished with a comprehensive state-of-the-
art missing data imputation software package [28]. We will use
it in the experimental section of this paper. It provides Bayesian
linear regression for continuous attributes, logistic regression
for binary attributes, and polytomous logistic regression for
categorical data with more than two categories. MICE also
delivers a comprehensive library of nonregression imputation
methods, such as predictive mean, unconditional mean, multi-
ple random sample imputation that is suitable for the attributes
in the MCAR model, and LDA for categorical data with more
than two categories. LDA is a commonly used technique for
data classification and dimensionality reduction [34]. At the
same time, it serves as a statistical approach to classification-
based missing data imputation. The LDA method is particularly
suitable for data where within-class frequencies are unequal, as
it maximizes the ratio of between-class variance to the within-
class variance to assure best separations.

Table I summarizes all methods that are used in this pa-
per. Three single-imputation and four MI methods were used.
The methods include data-driven, model-based, and ML-based
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types. We also note that some of the considered imputation
methods work only with discrete attributes. The experimen-
tal section used the following imputation methods: random
sampling multiple imputation (SAM), mean single imputation
(Mean) and hot-deck single imputation (HD), regression im-
putation that uses polytomous and logit MI (POLYLOGREG),
LDA together with logit regression MI (LDALOGREG),
ML-based Naive Bayes single imputation (NB), and Naive
Bayes and hot-deck imputations combined with the proposed
framework (FNB and FHD, respectively).

B. Detailed Description of the Proposed Framework

In what follows, each module of the proposed framework
(see Fig. 3) is explained, and its role in the overall framework
and asymptotic complexity is described. We define n to be the
number of attributes, r denotes the number of records, m is the
maximal number of missing values for an attribute, and v is
the maximal number of values for an attribute. We also make
the following assumptions: » > n, r > v, and r > m, where n
and v are small integers. Therefore, computational complexity
is a function of r and m, and the remaining variables are not
included in the formation of the estimates.

1) Mean Pre-imputation Module: The mean pre-imputation
module was developed based on the premise that the base
imputation method would benefit, i.e., improve its accuracy, by
having a complete database to develop a model and impute the
missing data. Completion of the database enhances its infor-
mation contents, which, if done correctly, ultimately results in
the ability to generate a better imputation model. A simple and
efficient way of completing the database is to initially impute
the missing values and subsequently use the pre-imputed values
to perform the actual imputation. The pre-imputation should
not worsen the asymptotic complexity of the entire imputa-
tion procedure, and therefore, an efficient method should be
selected. Mean imputation was selected as the best candidate
for this purpose since it is computationally efficient, is sim-
ple, and performs imputation with a relatively high accuracy
[22], [37], [47]. The benefits of using mean pre-imputation were
experimentally verified by applying it to 15 databases when
using two imputation methods, i.e., NB and HD, which are
later combined with the proposed framework. The results
given in Section IV-B2 show that the application of mean
pre-imputations with some databases may result in worsening
the imputation accuracy, but for majority of them, it results
in improvements; that is, on average, 4.5% improvement in
accuracy was observed for the HD method and 3.5% for the
NB method. Also, since computing the mode or mean values
for each attribute from a given database requires one sweep
through the data (for computing the mode, the attribute values
should be encoded into consecutive integers to avoid searching
through all attribute values when computing frequencies), the
complexity of performing pre-imputation is linear with respect
to the number of records, i.e., O(r), and does not depend on m.

2) Confidence Interval Module: Confidence interval mod-
ule is used to filter out possible outlier imputation candidates
that are generated by the base imputation method. The filter is
based on the premise that imputed values, which are close to the
mean (for numerical attributes) or mode (for nominal attributes)
of an attribute, have the highest probability of being cor-

rect. The filter is designed by computing confidence intervals.
Imputed values for a given attribute that fall within the in-
terval are kept, whereas the values outside of the interval are
discarded. The confidence intervals are defined as an interval
estimate for the mean of an attribute [54]. Confidence intervals,
which are related to Student’s ¢-test, define a lower limit and an
upper limit for the mean to be in the form

M—zoy <X <M+ zoy

where M is the sample mean, o)y = o /+/r is the standard error
of the mean, o is the standard deviation, and the value of z
depends on the assumed level of confidence.

This definition applies to numerical attributes. In the case of
nominal attributes, the mean is substituted by the modal value
(mode), and the frequency of values for an attribute is computed
and normalized as follows: A value of 1 is assigned to the most
frequent value for the attribute, O is assigned to the frequency
of zero, and the frequencies of the remaining attribute values
are assigned a normalized value within [0,1]. By analogy to
the confidence intervals for numerical attributes, the confidence
intervals for nominal attributes are defined as follows:

favg < X

where fue is the average value of the normalized frequencies
for all attribute values.

In other words, imputed values with a frequency lower than
the average will be filtered out. To further improve the quality of
the filter, for all supervised databases, the confidence intervals
are computed individually for each of the predefined classes;
that is, a confidence interval is computed for each subset
of the database that is associated with a given class value.
Section IV-B1 shows experimental validation for the selection
of the average value. Normalizing and computing the average
frequencies for all values for each attribute from a given data-
base require one sweep through the data (again, the attribute
values should be encoded), and therefore, the complexity of
computing confidence intervals is linear with respect to the
number of records, i.e., O(r), and does not depend on m.
Also, filtering the imputed values using the confidence intervals
requires O(n * m) time since filtering each missing value takes
O(1) time. The complexity of the confidence interval module
is O(r) + O(n * m) and is linear with respect to the number of
records and the total number of missing values. Computation
and application of confidence intervals for numerical attributes
also exhibit linear complexity.

C. Boosting

Boosting is an ML procedure for improving the accuracy of
classification algorithms [25], [50]; a comprehensive reference
list can be found at http://www.boosting.org/. In its original
version, boosting is a procedure where a set of data models
is iteratively generated from a given data set based on mod-
ification of weights associated with records. The weights are
modified to increase the focus of the next model on generating
correct model for records that were misclassified by the pre-
ceding models. Classification that is generated by individual
models is combined using a voting scheme. In general, both
theoretical and experimental studies show that boosting a weak
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TABLE 1I
DESCRIPTION OF THE DATABASES USED IN THE EXPERIMENTS

Name # Examples # Attributes # Classes Z)tt]?i(:)c:llfe asn Abbreviation
Soybean (small) 47 36 4 36.1 Soy
Postoperative Patient Data 87 9 3 11.1 Pos
Promoters 106 58 2 1.7 Pro
Monksl 432 7 2 43 Mk1
Monks2 432 7 2 43 Mk2
Monks3 432 7 2 43 Mk3
Balance 625 S 3 0 Bal
Tic-tac-toe 958 10 2 11.1 Tic
CMC 1473 10 3 30 Cme
Car 1728 7 4 0 Car
Splice 3190 61 3 0 Spl
Kr-vs-kp 3196 36 2 97.3 Krs
LED 6000 8 10 87.5 Led
Nursery 12960 9 5 11.1 Nrs
Kr-V-K 28056 7 17 0 Krv
Synt256 256000 21 10 0 Syn

classification algorithm, i.e., algorithms that generated models
whose performance is better than the one observed for a plain
random drawing, results in a classification that is more accurate
than a model that is generated by a single “strong” classification
algorithm.

Our framework uses a boosting-like technique. The ultimate
goal is to improve accuracy of the imputation by accepting only
high-quality imputed values and using them, i.e., additional and
reliable information, to impute the remaining values. In general,
the module works iteratively and is appended at the end of the
imputation process, when all imputed values have been already
filtered out. At each iteration, high-quality imputed values
are selected and accepted, whereas the remaining values are
rejected. In this way, a partially imputed database is created and
fed back to the base imputation algorithm. Next, the imputation
is repeated, but this time, the concentration is on imputing
the remaining values. The number of iterations is set to 10,
where all the remaining imputed values are accepted at the
last iteration. The number of iterations was established experi-
mentally in Section IV-B1 to balance imputation accuracy and
computational time. In general, this value gives, on average,
the best accuracy of imputation, whereas the application of
a higher number of iterations gives comparable results and
requires more computations. The imputed values are accepted
or rejected based on their weight and some threshold; that is,
all values with weights more than the threshold are accepted,
whereas the remaining values are rejected. The weights should
reflect the quality of imputation. Their values are dependent on
a particular base imputation method. In this paper, two base im-
putation methods, i.e., NB ML imputation and HD imputation,
are investigated. In the case of NB ML imputation, the weights
are defined as the probabilities of the selected class variables,
i.e., the probability of the predicted class that becomes the
imputed value. The threshold is set to be the mean value of
the selected class probability for all imputed values. Similarly,
for the HD imputation, the weights are defined as the distance
between the record with imputed values and the records from
which the imputed value was taken, i.e., the two records that are

used to perform imputation. The threshold is set as the average
distance between the records with missing data and their closest
records for all the imputed values. Since weight values are
taken directly and without additional computational cost from
the base imputation methods, computation of the threshold
requires O(n *m) time as it involves computing the mean
value among weights for all imputed values. The selection/
rejection of imputed values takes O(n * m) time since filtering
each imputed value takes O(1) time. Therefore, the complexity
of the boosting module is O(n * m). This complexity is not
dependent on the number of records and is linear with respect
to the total number of missing values.

The overall complexity of the proposed framework is
computed as the complexity of pre-imputation, i.e., O(r),
summed with the complexity of the confidence interval module
and boosting module multiplied by the number of boosting
iterations, i.e., 10 % (O(r) + O(n*m) + O(n * m)). There-
fore, the total complexity is O(r) + 10 % (O(r) + O(n * m) +
O(nxm)) =0(r)+ O(n+m) and is linear with respect to
both the number of records and the total number of missing
values. We note that the impact of the mean pre-imputation,
confidence intervals, and boosting on the quality of imputation
will be shown experimentally later in this paper.

IV. EXPERIMENTS AND RESULTS
A. Experimental Setup

The proposed framework was tested with a comprehensive
set of sixteen databases. The databases were chosen from the
University of California at Irvine ML repository [5] and the
Knowledge Discovery in Databases repository [27] to ensure
that full range of different characteristics, such as number and
types of attributes, number of records and classes, is cov-
ered. The selected databases include only discrete attributes,
as discussed earlier. The description of the selected data-
bases, which is ordered by the number of examples, is shown
in Table II.
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Fig. 4. Experimental evaluation of the proposed framework and its modules.

The syn is a synthetic data set being generated using a data
set generator published at http://www.datasetgenerator.com and
is used to evaluate complexity of the considered methods. The
data set was built using the following settings: Number of pre-
dicting attributes was set up as 20, domain size of the attributes
is equal to 20, number of rules is 10, and number of records
was taken as 256 000. The databases originally are complete,
and missing data were introduced randomly. This enables com-
puting performance index, in terms of accuracy of imputation,
which is defined as the number of correct imputations over
the total number of missing values, by comparing imputed
values with the original values. Missing values were introduced
uniformly into all attributes, except the class attribute. The
missing values were introduced at six different levels, i.e., 5%,
10%, 20%, 30%, 40%, and 50%, to demonstrate the impact of
the amount of missing data on the quality of imputation.

The experimental section is divided into three parts.

1) Framework module evaluation. The goal is to provide
motivation for the proposed design of the framework. The
effect of each of the three framework modules on the
accuracy of imputation improvement is experimentally
demonstrated. Fig. 4 shows how the experimental eval-
uation was performed for each of the modules and for the
entire framework.

2) Experimental comparison with other imputation methods.
The goal is to experimentally compare the quality of

imputation between the stand-alone base methods, i.e.,
NB ML-based imputation and hot deck, base methods
in the framework, and other state-of-the-art imputation
methods.

3) Experimental complexity analysis. The goal is to show
that the computational complexity of the application of
the proposed framework is linear and, therefore, does not
worsen complexity of the base method. Running times for
both base methods and base methods in the framework
are compared between each other and with the theoretical
complexity estimates.

B. Framework Module Evaluation and Design

This section summarizes experiments that apply the mean
pre-imputation, confidence intervals, and boosting modules of
the framework in separation to show accuracy gain that corre-
sponds to each of the modules. It also presents experimental
results to support selection of the confidence interval size and
number of boosting iterations.

1) Selection of Confidence Interval Size and Number of
Boosting Iterations: Before presenting the results related to
the application of individual modules, the confidence interval
size and the number of boosting iterations are experimentally
determined. The results are computed using 11 databases and
both FHD and FNB imputation methods (the HD and NB
methods in the proposed framework) since the impact of the
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parameters on quality of the final imputation system is consid-
ered. Databases with large number of attributes and/or values,
i.e., Spl, Krv, Nrs, and Krs, were not used due to the large
number of performed experiments (more than 1700) and, thus,
very high computational cost.

As shown in Section III-B2, the most appropriate interval
size is based on the mean value for continuous or mode value
for discrete values. Selecting mean and mode values results in
filtering out about half of the imputed values (given that their
values are normally distributed), which have relatively high
probability of being incorrect when compared to the other half
that is kept. This way, the number of accepted values grows
relatively fast with the subsequent imputation iterations, and
at the same time, high-quality imputed values are accepted.
To validate this claim, several other interval sizes based on the
mean/mode value are also examined. The selected sizes are k *
mean(k * mode) where k = 0.4,0.6,0.7,0.8,0.9, 1, and 1.05.

Figs. 5 and 6 illustrate the average accuracy of imputation
for different amounts of missing values (x-axis) and differ-
ent confidence interval sizes for FHD and FNB, respectively,
over 11 databases. The results for FHD methods show aver-
age accuracies of 46.1%, 45.8%, 46.0%, 46.2%, 46.3%, and
46.7% for k =0.4,0.6,0.7,0.8,0.9, and 1, respectively, over
all databases and different amounts of missing data. For k =
1.05, the imputation could be completed only for four data-
bases, i.e., Bal, Car, Cmc, and Pro, whereas for the remaining
databases, too many values were filtered out to complete the
imputation process. The results show that slightly better results
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Fig. 7. Imputation accuracy of FHD for different number of boosting

iterations.
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iterations.

are achieved with larger value of k, and the best accuracy
is achieved for £ = 1. The results for FNB show average
accuracies of 48.5%, 48.6%, 48.6%, 48.9%, 48.4%, and 48.6%
for the increasing values of k, whereas again for k = 1.05,
imputation could be completed only for four databases, i.e., Bal,
Cmec, Led, and Krv. Best results were achieved for k£ = 0.8, but
results for other interval sizes are very close. We note that, in
general, framework with both HD and NB exhibits marginal
sensitivity to the interval size setting, as long as the value of k&
is between 0.4 and 1.0. In general, between FHD and FNB, the
best average accuracy of 47.6% was achieved for £k = 1, and
thus, the mean for continuous values or the mode for discrete
values is the best setting for the confidence interval size.

The selection of number of boosting iterations is based on
comparison of results when both FNB and FHD imputation
methods are boosted at different number of times. In general,
increasing the number of iterations should result in improving
imputation accuracy, but at the same time, more computations
are required. The selected number of iterations should be the
minimal that gives relatively high accuracy, i.e., accuracy that
either does not improve or improves very little when higher
number of iterations is used. The experiments apply k iter-
ations, where k = 1 (no boosting), 2, 3,5, 10, and 15, to select
the best value.

Figs. 7 and 8 present the average accuracy of imputation
for different amounts of missing values (z-axis) and different
number of boosting iterations for FHD and FNB, respectively,
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Improvement in the imputation accuracy for the HD base imputation method. (a) Improvement by using the confidence interval module. (b) Improvement

by using the mean pre-imputation module. (c) Improvement by using the boosting module. (d) Improvement by using the entire framework.

over 11 databases. The results for FHD method show that, on
average, over all databases and different amounts of missing
data, 28.6% accuracy is achieved when no boosting is applied,
and with the increasing number of iterations, accuracies of
38.6%, 44.8%, 46.4%, 46.7%, and 45.9% are achieved. The
best accuracy is achieved for ten iterations. The results for FNB
method show average accuracy of 48.3% for no boosting and
two iterations, 48.4% for three and five iterations, and 48.6%
and 48.5% for ten and fifteen iterations. Again, the application
of ten iterations gives slightly better accuracy, whereas the
application of the larger number of fifteen iterations results in
comparable results. We note that FHD is sensitive to a different
number of iterations, whereas FNB is relatively insensitive.
Based on the completed experiments, ten boosting iterations are
chosen to be implemented in the framework.

The confidence interval size and the number of boosting
iterations are determined separately; that is, we have not inves-
tigated the impact of one parameter on the other. While this en
block treatment could be potentially beneficial, there are two
main reasons to consider them separately: 1) Each module is
independent, and the user can consider either all or some of
them to implement the framework, which means that a modular
design could be well preserved in this manner. 2) The results
show that the modules are not sensitive with respect to the
specific parameter settings; that is, any confidence interval size
between 0.4k and k and any number of boosting iteration more
than ten can be used. This suggests that when considering both
parameters at the same time, the framework is likely to be not
sensitive to the optimal combined setting.

2) Evaluation of the Individual Framework Modules: The
experiments compare the accuracy of imputation of the two
base methods under consideration (i.e., HD and NB), the base
methods with each of the framework’s modules in separation,
and, finally, the base methods combined with the entire frame-
work. The mean interval size and ten boosting iterations are
used. They are performed on 15 databases (syn database is
omitted) with six different levels of missing values. The results
report an average (over all databases) imputation accuracy gain,
which is defined as the difference between the imputation
accuracy of base method with one of the framework’s modules
or the entire framework and the imputation accuracy of the base
method, for all considered levels of missing data.

Fig. 9 presents results for the HD imputation treated as
the base imputation method. Fig. 9(a) illustrates that applying
confidence intervals results in the average imputation accuracy
gain of up to 4%. Fig. 9(b) shows that using mean pre-
imputation results in the imputation accuracy gain by up to
4.5% and that the improvements are larger for larger amounts of
missing data. This is related to poorer imputation accuracy of
the base method with the increasing amount of missing data,
which is compensated by better effectiveness of the frame-
work’s module. Fig. 9(c) shows the impact of boosting, which
improves imputation by up to 2.5% and is also characterized by
an increasing trend. Finally, the average imputation accuracy
gain for the entire framework is shown in Fig. 9(d). It is
evident that the use of the proposed framework results, on
average, in the increase of the accuracy of imputation by up
to 9%, which is a significant improvement. We note that the
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individual effects of all modules are not cumulative, but the
overall improvement shown by the framework is significantly
larger than the improvements generated by each of the modules.
In addition, the increasing trend in improvement associated
with the increasing amount of missing values shows that the
framework can effectively compensate for the degradation of
accuracy of the base method.

Fig. 10 shows detailed results concerning the difference
between imputation accuracy of the framework with HD
as the base method and stand-alone HD imputation for six
levels of missing values and 15 databases. The bars with
black ceiling represent negative values, which result from the
decrease of imputation accuracy related to the application of

the framework, whereas gray ceilings show improvement. It
is clear that for most databases and different levels of missing
data, the imputation accuracy was improved by applying the
framework: 13 times accuracy was worse, whereas 47 times
it was improved. We note that the highest improvements were
about 25%.

In the following graphs, a similar analysis is completed when
using NB ML imputation method as the base method. The
average improvement in accuracy of imputation is summarized
in Fig. 11. Fig. 11(a) shows the impact of confidence interval,
which results in the imputation accuracy gain by up to 3.5%.
Similarly, Fig. 11(b) and (c) shows the average improvement
of imputation accuracy due to applying mean pre-imputation
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and boosting modules, respectively. In both cases, the achieved
imputation accuracy gain ranges between 1% and 2.5%. Finally,
Fig. 11(d) shows that the application of all modules in tandem
results in the imputation accuracy gain up to 4%. Although the
effects of all modules are not cumulative, the overall improve-
ment is significantly larger than the improvement resulting from
the application of the best module.

Fig. 12 shows the difference in the imputation accuracy
between the NB ML imputation method with and without the
framework for six levels of missing values and for 15 databases.
Similarly to the results shown in Fig. 10, they show that
the majority of the values (53 out of 60) are positive, which
indicates an improvement in the accuracy of imputation that
comes from using the framework.

A detailed breakdown of results related to the effect of mean
pre-imputation on both HD [Fig. 9(b)] and NB [Fig. 11(b)]
imputation methods is shown in Figs. 13 and 14, respectively.
Positive values denote improvement, whereas negative values
show when the application of the pre-imputation worsens the
accuracy. The results show that for some databases like Car and
Led, mean pre-imputation improves the accuracy by about 30%
for the HD imputation method. However, for other databases
such as Mkl, Mk2, and Mk3 in case of the HD method, it
worsens the results. In general, improved accuracy is more
frequent for NB imputation method, although HD method is
characterized by much higher improvements for some data-
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Fig. 14. Difference between NB with and without mean pre-imputation.
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bases. On average, the mean pre-imputation improves the im-
putation accuracy by 4.5% for the HD method and by 3.5% for
the NB method. These relatively high average improvements
justify the use of the mean pre-imputation in the proposed
framework. As a future work, which is beyond the scope of
this paper, a criterion identifying the effectiveness of the mean
pre-imputation would be worth developing.

We conclude that the application of each of the framework’s
modules, in separation and together, always results in some
average improvement of imputation accuracy for both of the
considered base imputation methods. It can be expected that
the application of the framework should, on average, result in
the improvement of the imputation accuracy. The level of
improvement will be quantified and compared with the perfor-
mance of other imputation methods in Section IV-C. In general,
we note that the level of the imputation accuracy gain depends
on the performance of the base method; that is, it is larger for
low-quality imputation methods such as HD, whereas it gets
smaller for better-quality base methods such as the NB ML
algorithm.

Figs. 15 and 16 compare the average accuracy of imputation
of the HD and NB ML imputation methods with and without
the framework, respectively.

This comparison shows that the application of the framework
results in the flattening of the accuracy curve with respect
to the increasing amount of missing data, particularly for the
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HD imputation method (see Fig. 15). The application of the
proposed framework compensates for degradation of imputa-
tion accuracy of the base method caused by larger amounts of
missing values, which is particularly valuable when dealing
with sparse databases. We again note that the level of the re-
ported improvement depends on the quality of the base method.
For a high-quality method such as NB ML imputation, the
improvement is relatively small, i.e., 2%—4%, whereas the accu-
racy of the base method is, on average, about 44.5%. In the case
of HD imputation, the improvement ranges between 4% and
9%, whereas the accuracy of the base method is, on average,
about 42%. We note that the accuracies of both imputation
methods combined with the framework are very similar.

We stress that our recent study has shown that NB ML
method has superior accuracy when compared with HD imputa-
tion [22]. At the same time, the application of framework to HD
method results in imputation method that has a higher accuracy
than the accuracy of stand-alone NB ML-based imputation
method. This shows that the proposed framework provides a
solution that helps to develop relatively simple and efficient
imputation methods that are characterized by high imputation
accuracy.

C. Experimental Comparison With Other Imputation Methods

As described earlier, a representative imputation method
from the three categories is chosen for the experimental

part. They include data-driven methods such as SAM, Mean,
and HD, model-based methods such as POLYLOGREG and
LDALOGREG, and ML-based methods such as NB. These
methods are compared with FNB and FHD. Therefore, in
total, eight methods are compared on 15 databases. The MI
methods were set to five imputation rounds. The number of
rounds was established experimentally. More rounds resulted,
on average, in insignificant or no improvement in accuracy but
have worsened the running time.

Fig. 17 shows the average imputation accuracy using the
eight imputations and for all considered levels of missing
values, over 14 databases (syn database is omitted, and soy
database has not enough records to perform regression-based
imputation). The results show that the best results are achieved
by the FNB method. The method is consistently better con-
sidering the entire spectrum of the missing value levels. The
second best is the FHD imputation, which has superior accuracy
over more complex model-based imputation methods, such as
POLYLOGREG and LDALOGRED, and the ML-based NB
imputation, for larger amount of missing values, and similar
accuracy for small amounts. The least accurate are the data-
driven imputation methods, such as HD, Mean, and SAM. We
note that while the HD imputation has a poor performance,
applying the framework results in improving the accuracy to
be superior to, or at least as accurate as, the accuracy of
the advanced model-based methods. We also note that the
accuracy of some imputation methods, such as LDALOGREG,
POLYLOGREG, and SAM, deteriorates with the increasing
amount of missing data, whereas the methods that utilize the
framework perform with the same level of accuracy. The ex-
periments clearly demonstrate the effectiveness of the proposed
framework, which can be applied to any simple imputation
method.

In the scatter plot shown in Fig. 18, the accuracy of the
FNB imputation method is compared with the accuracy of all
methods that do not operate within the proposed framework.
The shown values are the average imputation accuracy for each
of the 14 databases, over the six levels of missing values. The
y-axis position is the accuracy of FNB, whereas the x-axis
is the accuracy of other imputation methods. Therefore, points
above the diagonal line correspond to databases for which FNB
achieves better average imputation accuracy. Visual inspection
confirms that the FNB imputation method performs better
than other imputation methods on the significant majority of
the databases. Similarly, a scatter plot of Fig. 19 compares
FHD method with other methods that do not utilize the pro-
posed framework. Again, since the majority of the points are
located above the diagonal line, we conclude that the FHD
method, on average, performs better than other imputation
methods.

In the nutshell, experimental results indicate that the applica-
tion of the proposed framework results in the improvement of
imputation accuracy when compared with the accuracy of the
stand-alone base imputation method and other state-of-the-art
single-imputation and MI methods. Applying the framework to
simple imputation methods such as HD results in an imputation
method that, on average, performs better than complex model-
based imputation methods. We also note that the application of
the framework makes the base method more robust to the larger
levels of missing data.
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Fig. 17. Summary of imputation accuracy results for the considered eight imputation methods.
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Fig. 19. Accuracy of imputation using the framework with HD against other
imputation methods.

D. Analysis of Experimental Complexity

The demonstrated experiments show that the application of
the proposed framework results in the improvement of the

imputation accuracy. However, the important question is con-
cerned with the computational effort that becomes necessary to
apply the framework. Even more importantly, we would like
to investigate whether the application of the framework could
worsen the computational complexity of the base imputation
method. Therefore, the conducted tests are aimed at testing the
computational complexity associated with the application of
the proposed framework to the base imputation methods. The
main goal is to experimentally assess theoretical estimate that
implies linear complexity with respect to the number of records.
Confirming this hypothesis implies that the application of the
framework does not worsen the asymptotic complexity of the
base imputation method since there is no imputation method
with sublinear complexity. For this purpose, the syn database
with 256-kB records was chosen to observe the steepness of
the running time curve with the increasing size of the database.
The syn database was used to randomly derive nine databases
of different sizes, including 1, 2, 4, 8, 16, 32, 64, and 128 kB
and, finally, the original database with 256-kB records. The
experiments record the running time on the databases with the
incrementally doubled size. Also, to investigate the effect of
the level of missing values on the asymptotic complexity of the
method, two levels of missing values, i.e., 10% and 60%, were
randomly introduced into the databases, and the experiments
were performed separately for both levels.

Fig. 20 shows the results of the run time versus the size of the
database in the log—log scale for the FNB and NB imputation
methods and the two levels of missing values used in the exper-
iments (FNB 10%, FNB 60%, NB 10%, and NB 60%) and for
the generated nine databases. Both linear and log—linear curves
were plotted on the same figure for the reader’s convenience.
The curves for the FNB and NB methods align in parallel to
the linear curves for both levels of missing data, which shows
that the linear asymptotic complexity of the NB ML-based
imputation method is preserved when applying the proposed
framework. We note that the corresponding curves for the
stand-alone and framework-based methods are shifted in paral-
lel. This indicates that additional computational work, which is
connected with the application of the framework, is performed,
but it does not change the type of asymptotic complexity.

Similar experiment was performed with FHD and HD impu-
tation methods, as summarized in Fig. 21. Closer analysis of
the figure shows that plots for both HD and FHD are parallel
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to the quadratic curve. This implies that the original complexity
of the stand-alone HD method, i.e., quadratic with the number
of data records, is preserved when the framework is applied.
The corresponding curves for the stand-alone and framework-
based method are shifted in parallel, which indicates identical
asymptotic complexity, but the results show that the application
of the framework actually shortens the running time when
compared to the running time of the stand-alone method. These
are the results of applying confidence intervals that filter out
less probable candidates for imputed values. Thus, the search
space of the HD imputation procedure to find the closest record
is reduced, resulting in a shorter running time. Therefore, in
case of the HD imputation, the application of the framework
results not only in improving the imputation accuracy but also
in lowering the running time of the method.

In short, the application of the framework does not change
the asymptotic complexity of the base method; however, it
results in the increasing accuracy of imputation.

The experimental complexity analysis is supplemented by
the running time of the eight considered missing data impu-
tation methods for the 14 databases and for the six levels of
missing values (see Table III). The first two rows for each of the
missing data levels show the results of imputation methods that
use the proposed framework, i.e., FNB and FHD; the next three
rows show the results for MI methods, i.e., LDALOGREG,
LDALOGREG, and SAM; and the last three rows show the
results for the single-imputation methods, i.e., NB, HD, and

10

100

Run time against the size of the database for HD imputation with and without the framework for 10% and 60% of missing values.

Mean. The values in boldface indicate the lowest run time for a
given database for a given level of missing data.

As expected, the mean imputation is the fastest imputation
method. At the same time, Fig. 17 shows that its imputation
accuracy, on average, is better than the accuracy of SAM and
HD methods. We note that while, in general, high amounts
of missing values result in lowering the imputation accuracy,
the mean imputation method is robust to the large amount of
missing values [22]. Analysis of Table III reveals the following.

* The running time of the most accurate FNB method,
which uses the proposed framework, is always signifi-
cantly shorter than the running time of the considered MI
methods, with exception of results for the krs database for
large amounts of missing data that are a bit higher than the
poorly performing SAM method.

* The application of the proposed framework to NB method
results, on average, through all experiments, in 3.7 times
increase of running time when compared with running
time of the stand-alone method. Similarly for the HD
method, 1.6 times increase is observed.

* The application of the framework to the HD imputation
method may result in the decrease of the running time
when compared with the running time of the stand-alone
method. It can be observed for the krs database and for
small amount of missing data for the pro, bal, tic, car,
and led databases. This is attributed to the filtering of less
probable candidate imputed values by the confidence
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TABLE III
RUNNING TIME OF THE EIGHT IMPUTATION METHODS FOR THE 14 DATABASES AND THE S1X LEVELS OF MISSING VALUES
imputation .
methods Pos | Pro | Mkl | Mk2 |Mk3 | Bal | Tic |Cmc | Car | Spl | Krs | Led | Nrs | Krv
FNB 0.00 | 041 | 003 | 002 | 002 | 000 | 008 | 028 | 010 | 11.31 | 413 | 037 | 223 | 3.80
FHD 0.02 | 004 | 033 | 011 | 015 | 026 | 074 | 244 | 239 | 61650 | 40.56 | 45.55 |1351.11] 721.03
59 POLYLOGREG| 10.04 |1317.95| 12.54 13.42 13.27 22.97 99.99 [1201.94| 126.17 | 714.56 | 71.25 |62079.59(1312.23 |11887.99
LDALOGREG 5.32 306.96 6.42 6.11 6.11 6.49 99.99 | 117.29 | 28.77 | 707.00 | 20.47 | 3310.00 [ 301.47 | 1080.00
SAM 3.50 74.19 3.00 2.98 3.19 2.89 54.70 52.01 13.58 | 444.55 8.70 1978.00 | 177.73 | 371.00
NB 001 | 003 | 000 | 000 | 0.00 | 000 | 001 | 007 | 003 | 159 | 059 | 041 | 040 | 0.90
HD 001 | 015 | 025 | 015 | 014 | 029 | 1.83 | 217 | 396 | 364.60 | 130.75 | 58.12 | 907.67 | 490
Mean 0.00 | 0.02 | 000 | 002 | 000 | 000 | 000 | 002 | 000 | 028 | 014 | 006 | 013 | 0.28
FNB 0.01 0.20 0.04 0.04 0.03 0.03 0.11 0.36 0.19 14.95 5.00 0.48 2.71 4.54
FHD 003 | 009 | 025 | 028 | 032 | 044 | 1.90 | 1411 | 13.82 | 600.00 | 34.16 | 94.83 |152599| 961.00
POLYLOGREG| 870 |1374.00| 12.63 | 11.92 | 13.08 | 21.81 | 98.10 |1149.67 | 11504 | 699.72 | 7855 |50357.00| 1294.41 |12756.00
10%|CDALOGREG | 573 | 297.73 | 667 | 647 | 6.33 | 664 | 9810 | 11145 | 30.06 | 64930 | 21.14 |3218.00 | 273.40 | 1087.56
SAM 330 | 76.90 | 299 | 315 | 294 | 280 | 56.20 | 44.88 | 13.95 | 153.03 | 896 |1821.00 | 178.00 | 359.00
NB 0.00 | 004 | 002 | 0.00 | 000 | 001 | 003 | 041 | 004 | 203 | 075 | 016 | 052 | 150
HD 0.03 | 043 | 028 | 029 | 026 | 053 | 408 | 950 | 10.19 | 427.33 | 139.00 | 104.17 |1051.95 738
Mean 0.00 | 0.00 | 0.00 | 0.00 | 000 | 002 | 000 | 003 | 002 | 031 | 014 | 006 | 014 | 0.30
FNB 0.01 | 036 | 005 | 0.06 | 0.05 | 004 | 047 | 0.67 | 025 | 1959 | 688 | 0.69 | 347 | 6.39
FHD 0.06 0.19 0.44 0.46 0.30 1.12 4.14 12.61 6.73 439.37 | 86.71 104.34 | 975.95 | 1325.84
POLYLOGREG| 7.97 [1393.50| 13.49 11.92 12.48 20.88 97.47 [1064.78 | 112.00 | 620.36 | 59.11 |46806.00{1076.13 |11253.00
20% |LDALOGREG 3.92 270.83 7.03 6.47 6.27 6.59 97.47 | 101.72 | 28.97 | 599.12 21.51 |1607.00 | 250.57 | 1461.99
SAM 3.36 74.60 3.17 3.14 3.22 2.92 63.31 45.97 14.03 | 336.86 8.49 1955.00 | 192.55 | 416.95
NB 0.00 0.06 0.02 0.02 0.02 0.02 0.06 0.19 0.08 2.89 0.99 0.25 0.89 3.81
HD 0.03 0.09 0.35 0.34 0.31 0.75 6.72 8.08 6.78 378.25 | 140.74 | 103.64 | 1094.03 | 1136.00
Mean 0.00 | 0.00 | 001 | 0.00 | 000 | 000 | 000 | 0.04 | 000 | 029 | 016 | 006 | 013 | 0.31
FNB 0.02 | 050 | 006 | 0.08 | 0.06 | 008 | 024 | 1.03 | 035 | 2458 | 6.78 | 0.83 | 445 | 7.39
FHD 007 | 018 | 048 | 058 | 036 | 098 | 351 | 11.58 | 6.68 | 13542 | 86.22 | 10248 | 1165 | 5042.00
POLYLOGREG| 7.18 | 1467.91| 11.27 | 1140 | 11.66 | 18.36 | 95.01 | 932.04 | 102.24 | 563.49 | 51.50 |37999.71| 969.40 | 9648.00
300,[CDALOGREG | 385 | 24851 | 707 | 640 | 649 | 7.07 | 9501 | 86.05 | 29.34 | 52698 | 21.68 | 1844.00 | 258.19 | 973.45
SAM 335 | 7683 | 297 | 342 | 298 | 284 | 584 | 48.90 | 19.81 | 340.07 | 869 | 1844.00 | 185.33 | 384.00
NB 0.00 | 007 | 001 | 003 | 002 | 003 | 008 | 027 | 011 | 372 | 119 | 031 | 121 | 406
HD 0.02 | 041 | 032 | 033 | 028 | 082 | 2.84 | 520 | 553 | 170.95 | 131.11 | 78.40 |1165.00] 1585.00
Mean 0.00 | 0.00 | 0.00 | 0.00 | 000 | 002 | 000 | 0.03 | 000 | 029 | 018 | 007 | 014 | 0.31
FNB 0.02 | 062 | 007 | 008 | 0.06 | 011 | 033 | 1.26 | 041 | 3241 | 886 | 1.01 | 593 | 944
FHD 0.06 | 018 | 047 | 059 | 047 | 097 | 3.08 | 1864 | 621 | 303.77 | 98.52 | 96.01 |1057.00] 5521.00
POLYLOGREG| 6.34 |1456.96| 11.06 10.35 11.55 16.39 82.48 | 862.94 | 88.72 | 426.67 | 47.97 |32124.69| 852.56 | 8022.00
40% |LDALOGREG 3.89 232.92 7.02 6.61 6.64 7.47 82.48 58.81 30.46 | 474.25 24.08 | 1593.00 | 241.77 | 907.92
SAM 3.17 76.69 3.1 3.25 3.09 2.98 54.75 59.44 14.19 | 324.00 8.61 1593.00 | 172.81 | 321.49
NB 0.00 0.09 0.04 0.03 0.03 0.03 0.09 0.30 0.14 4.58 1.61 0.35 1.54 5.16
HD 0.02 0.12 0.26 0.25 0.26 0.55 1.7 3.26 4.99 176.22 | 287.75 | 56.05 [1057.00| 1203.00
Mean 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.31 0.16 0.07 0.16 0.32
FNB 0.02 0.75 0.11 0.10 0.09 0.17 0.40 1.54 0.52 37.05 9.42 1.14 3.75 12.11
FHD 0.04 | 019 | 062 | 047 | 046 | 095 | 2.91 | 17.31 | 641 | 19525 | 81.88 | 97.13 | 566.00 | 5923.00
POLYLOGREG| 661 |1210.97 | 10.29 | 10.64 | 1079 | 1563 | 8550 | 749 | 96.15 | 383.88 | 4547 |28000.00|1085.77 | 6069.00
50v[LDALOGREG | 310 | 23685 | 7.18 | 676 | 654 | 761 | 8550 | 51.68 | 30.05 | 380.00 | 2436 | 1689.00 | 263.15 | 858.40
SAM 319 | 69.02 | 3.08 | 3.39 | 306 | 288 | 6059 | 52.70 | 14.58 | 343.75 | 8.83 | 1689.00 | 176.84 | 318.65
NB 0.00 | 01 | 003 | 003 | 003 | 004 | 013 | 042 | 016 | 517 | 1.58 | 042 | 083 | 7.34
HD 0.02 | 043 | 024 | 025 | 047 | 039 | 1.87 | 361 | 346 | 170.52 | 354.00 | 41.84 | 566.00 | 791.00
Mean 0.00 | 0.01 | 000 | 0.00 | 000 | 000 | 000 | 003 | 002 | 032 | 018 | 0.06 | 014 | 0.34

intervals, which results in a shorter time to find the
closest record. Consequently, computational time may be

reduced.

* The regression-based MI method, i.e., POLYLOGREG,
is characterized by the longest running time. Its running
time is six orders of magnitude slower than the running
time of the fastest single mean imputation method and five
orders of magnitude slower than the running time of the
most accurate FNB single-imputation method (see results
for the led database). Although the experiments were
performed using the same hardware and different soft-
ware packages (the POLYLOGREG, LDALOGREG, and
SAM methods were executed using MICE package [28],
whereas the remaining methods were implemented in

C++ by the authors), which may result in some minor
distortion of running time results, the significance of the
difference cannot be disputed.

To summarize, the experiments demonstrate that each mod-
ule of the proposed framework, i.e., confidence intervals, mean
pre-imputation, and boosting, improves the imputation accu-
racy of the base imputation method. The proposed framework
can be successfully used to improve the imputation accuracy of
any base method, which can generate weights representing the
quality of each imputed value to perform boosting. In practice,
almost all existing imputation methods satisfy this requirement.
This paper demonstrates how to apply the framework with two
imputation methods: HD and NB ML-based imputation. The
use of the framework results, on average, in the significant gain
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of imputation accuracy when compared with the accuracy of
the base method. The results show that a poor-quality single-
imputation method such as HD can be improved with the use
of the framework to match the quality of the advanced MI
methods. The results also show that the NB ML-based im-
putation combined with the proposed framework achieved the
best imputation accuracy. It performed with a higher imputation
accuracy and in a lower running time than any of the considered
model-based and ML-based single and MI methods. Finally,
we have shown, both theoretically and experimentally, that
the proposed framework exhibits linear asymptotic complexity,
and therefore, its application does not worsen the asymptotic
computational complexity of the base method.

V. CONCLUSION

Most of the real-world industrial and research databases have
a shortcoming of containing missing values. In this paper, a
novel framework that aims to improve the accuracy of the
existing imputation methods is proposed. The new framework
consists of three modules, namely mean pre-imputation, confi-
dence intervals, and boosting, and can be applied to many of
the existing imputation methods, including data driven, model
based, and ML based. The framework is characterized by a
number of advantages. Its application to an imputation method
results, on average, in a significant improvement of imputation
accuracy while, at the same time, maintaining the same asymp-
totic computational complexity. For some imputation methods
such as hot deck, the application of the framework may even
result in lowering the running time, whereas, in general, the
computational cost of applying the framework is relatively low.

To demonstrate the advantages of the proposed framework,
it was used with two imputations methods: NB ML-based
imputation method and HD data-driven imputation method.
The two aforementioned imputation methods were experimen-
tally tested on 15 databases and compared with six other
popular imputation methods, including single-imputation mean
and hot-deck methods, MI random sample, regression, and
LDA methods, and ML-based single-imputation NB method.
The results show that a significant improvement of imputation
accuracy can be achieved by applying the proposed framework
and that the accuracy of the framework-based methods was,
on average, the highest among the considered methods. We
stress that combining the proposed framework with a simple
and low-quality single-imputation method, such as hot deck,
has resulted in a method that was characterized by the level of
the imputation accuracy that is comparable to the accuracy of
some advanced MI methods. At the same time, the application
of the framework to a better-quality single-imputation method,
such as the ML-based NB method, resulted in the imputation
accuracy that was superior with respect to the accuracy of other
single-imputation and MI techniques. We have also shown a
linear complexity of the framework and thus emphasized that
it does not change the asymptotic complexity of the associated
imputation method.

Finally, as mentioned in Section I, some databases may
include large amounts of missing data, i.e., more than 50%. In
this case, previous results suggest that unsupervised imputation
methods may provide more accurate imputation [22]. Super-
vised methods build data models, which quality is dependent

on the quality of the complete data, to perform imputation,
whereas unsupervised methods directly use the complete data.
As a result, unsupervised methods seem to be more robust to
large quantities of missing data. Our future work will concen-
trate on investigating the quality of imputation methods for
databases with more than 50% of missing data. This will natu-
rally focus our attention on various techniques of unsupervised
imputation.
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