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Abstract

Imputation is a widely used method for handling missing data. It consists in the replacement of missing values with plausible
ones. Parametric and nonparametric techniques are generally adopted for modelling incomplete data. Both of them have advantages
and drawbacks. Parametric techniques are parsimonious but depend on the model assumed, while nonparametric techniques are
more flexible but require a high amount of observations. The use of finite mixture of multivariate Gaussian distributions for handling
missing data is proposed. The main reason is that it allows to control the trade-off between parsimony and flexibility. An experimental
comparison with the widely used imputation nearest neighbour donor is illustrated.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The presence of missing values in statistical survey data is an important issue to deal with (Little and Rubin, 2002).
Imputation is commonly used for the treatment of missing items: it consists in the replacement of the missing values
with plausible ones. As stated by Marker et al. (2002), the main challenges in the field of imputation are: (1) to maximise
the use of available data in order to minimise the mean square error for univariate statistics and to preserve covariance
structures in multivariate data sets; (2) to include in the variance estimates the uncertainty caused by the use of imputed
data, i.e. synthetic (not really observed) data (Rubin, 1987). In fact, imputation may seriously affect the statistical
properties of both univariate and joint data distributions and lead to severe underestimation of the variance of the target
estimates, if standard methods are used for variance estimation considering imputed data as they were really observed.

In the area of imputation, several parametric and nonparametric techniques have been proposed for modelling
incomplete data and compensating for nonresponse. Both approaches have advantages and drawbacks. Parametric
techniques are parsimonious but depend on the model assumed, while nonparametric techniques are more flexible
since they do not require model fitting, but, being generally justified by asymptotic arguments, they require a high
amount of observations.

These reasons suggest exploring semiparametric imputation methods. One possible approach is based on the use of
finite Gaussian mixture models (McLachlan and Peel, 2000). Finite mixtures of Gaussian distributions are a powerful
tool for statistical modelling in a wide variety of situations, as shown in Fraley and Raftery (2002) and in Marron and
Wand (1992) where the authors show that many probability distributions may be well approximated by finite mixture
models. The mixtures combine the advantages of both parametric and nonparametric methods. As already mentioned,
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they do not restrict to a specific functional form, allowing to model a large class of distributions. However, by contrast
to the nonparametric case, the complexity of the model grows only with the complexity of the data structure, instead
of merely of the data set size. For instance, in Priebe (1994) it is shown how, with 10000 observations, a lognormal
density may be well approximated by a mixture of 30 Gaussian components.

In this paper, the use of finite mixtures of multivariate Gaussian distributions for imputation is proposed. In particular,
we investigate their performance in terms of preservation of mean and variance—covariance structure of the observed
data. The evaluation is performed through a comparison with one of the most commonly used nonparametric imputation
techniques, the nearest neighbour donor method (NND). The NND belongs to the class of hot-deck methods, which
have long been used at statistical agencies to impute missing data in statistical surveys (Kalton and Kasprzyk, 1986).
The comparative evaluation is carried out through iterative simulation experiments on both artificial and real data.

The paper is structured as follows. In Section 2 the finite mixture models and the algorithm used to estimate the
parameters in the presence of missing data are introduced. The use of finite mixture models for imputation is illustrated
in Section 3. In Section 4 the simulation experiments on artificial data are described, while the results are discussed
in Section 5. Section 6 is devoted to the description of the results of an application to real data. Finally, concluding
remarks about benefits, limits, and open problems are provided in Section 7.

2. Finite mixture models for missing data

The use of mixture models for imputation requires the estimation of model parameters in presence of missing data.
The algorithm proposed for the estimation is that of Hunt and Jorgensen (2003), and is based on the maximum-likelihood
estimates (MLE) via EM algorithm. The algorithm is detailed in the following.

Let yi,...,y, be a random sample from the p-dimensional r.v. Y distributed as a finite mixture of K Gaussian
distributions

K
@i ®) =Y mNelyi: 0p),
k=1

where >,y =1, ;e >0 fork=1,..., K, and 0 = (g, ). Note that @ denotes the full set of parameters of the
mixture model: ® = (x1, ...7g; 01, ..., 0g). Let us introduce the vector of indicator variables z; = (z;1, ..., zik)’
where z;; is 1 if the ith individual belongs to group k, and O otherwise.

In case of partially incomplete data, for each unit i it results y; = (Ymis.i, Yobs.i)» Where (Yobs.;) are the observed
variables, and (Ymis,;) the missing ones.

The EM algorithm consists in defining some initial guess for the parameters to be estimated, and iteratively applying
until convergence the Expectation step (E-step) and the Maximisation step (M-step) described in the following.

2.1. E-step

This step consists, at each iteration #, in computing the expectation of the complete data likelihood conditional on
the observed data, using the current estimates of the parameters ®"). This requires the computation of the following
expected values:

~(t ot

7'El(c)]\[k(yobs,iQ ol(c)) .

K A AN’
S Ni(Yobs.is 0F)

1 = E(zik|yobs.i; D) =

E(ZikyijlYobs,is (A?,(f)), E(zikYijYij'|Yobs,is 9;(67)).
Note that the first expected value %g() is the estimated posterior probability (at iteration #) that the ith observation belongs
to the kth group. It corresponds to the usual E-step in the EM algorithm for Gaussian mixture models with complete
data, provided that the full vector y; is replaced by the observed data yops, ;. The other two expectations are analogous
to those required in the standard EM algorithm for incomplete normal data and can be easily computed using the sweep
operator (Schafer, 1997).
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2.2. M-step

In this step new parameter estimates @D are obtained by maximizing the expected likelihood estimated in the
E-step.
The mixing proportions are given by

1 n
A(t+1) _ A1) _
T —;Zrik, k=1,..., K.
i=1
The multivariate normal parameters are obtained through

n
~(t+1) 1 A1) o)
Hj = A(t+1)E<2:Tikyij|y°bs’i’0k )
l’lTEk i=1

n
Zz(fjj’l) = A(1+1) E (Z 20 v i Yobs,i» 0/(5)) - /3/(<3'+1)/A‘1E;'TI)'
N i=1
The algorithm so far described concerns the estimation of an heteroscedastic mixture model with a given number
K of components. This is the most complex model in the set of Gaussian mixture models. Simpler models (e.g.,
homoscedastic mixture models) could be obtained by introducing suitable constraints on the covariance structure.
There is a trade off between the number of components K and the complexity of the model: the more complex is the
model, the lower is the number of components that are needed to provide a good representation of the data. In this paper,
only heteroscedastic mixture models are considered, thus the model selection reduces to the choice of the number of
components. Our approach to this problem is based on the maximisation of the Bayesian posterior model probability
through the BIC (Bayesian Information Criterion) approximation (Schwarz, 1978). Given the MLE of the parameters
of a K-component model, BIC is defined as 2L(<i) k) — vk logn, where L is the log-likelihood function based on n
observations, ®x are the MLEs for the K-component model, and vk is the number of independent parameters to be
estimated.

3. Imputation

Various ways of using models for imputation are described in Little and Rubin (2002). Among them, the most relevant
are Conditional mean imputation and Random draws imputation.

Conditional mean imputation consists in imputing predictions from a very general regression on observed values.
For instance, this group of methods includes the linear regression imputation, and imputation with means within cells.
In the latter case, the dummy indicator variables for the imputation cells can be considered as regressor variables.
Concerning random draws, missing values are replaced by predicted values drawn from the probability distribution
of the missing items given the observed ones. Conditional mean imputation techniques have been developed in both
parametric and nonparametric contexts. Among the others, a nonparametric conditional mean imputation method is
proposed in Nielsen (2001). Despite of its good performances when the target of the survey is the estimation of linear
statistics such as means or totals, conditional mean imputation can determine serious bias in estimating non-linear
quantities and, even more, multivariate distributions. In order to preserve the distributional features, imputation by
random draws from the estimated distribution is commonly used.

According to these general practices, we propose the following imputation strategies.

First, estimate the mixture model parameters obtaining

K
Fli ®) =" 7uNi(yi: 00).
k=1

Then, impute missing data by means of the two alternatives described in the following.

e Conditional mean imputation. Impute each missing vector ymis; Wwith the conditional expectation of the
. s K A A . . .
r.V. Ymis,i| Yobs,i» fori =1,...,n wrt. f(Ymis,i [Yobs.i» @) = Zk:l'fika (Ymis,i [Yobs,i s 0y), i.e., with the weighted
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sum Z,le Tik Ex (Ymis.i |Yobs.i 9k) of the predictions Ex (Ymis,i|Yobs.i» 9k) from each multivariate conditional normal
distribution Nk (Ymis,i [Yobs.i» Ok)-

e Random draw. Draw a value ypis; from the distribution of f (Ymis.i|Yobs.i» (i)) = Zle%ika (Ymis.i |Yobs.i » ék), for
i=1,...,n.

In practice this is accomplished by drawing a value k from the multinomial distribution Mulrg (1; 7;1, ..., Tix) and
then, given k, generating from the multivariate conditional normal distribution Ng (¥mis,i |Yobs,is @)k).Hereafter, for the
sake of simplicity, the imputation by conditional expectation and random draw through mixture models will be referred
to as MCM and MRD, respectively.

Imputation method based on mixtures is compared with the NND method which is the most frequently used technique
in the practice of Statistical Institutes. The NND technique belongs to the wide family of the so-called hot-deck
methods. These methods consist in matching completely observed units (donors) with units having some missing items
(recipients), and transferring values from donors to recipients.

The match can be either random or based on some distance function computed on some set of covariates (matching
variables). In the latter case the method is the NND. Hot-deck methods are generally preferred to other imputation
techniques because of low operational cost, reduced nonresponse bias on univariate statistics, univariate plausibility
(i.e., use of ‘live’ values). On the other hand, donor-based imputation can produce attenuation of associations (Kalton
and Kasprzyk, 1986).

In order to assess the performance of MCM, MRD and NND, an empirical evaluation has been carried out analysing
their behaviour in simulative contexts based on artificial data and on a real data set.

4. Experiments on artificial data

In this section the simulation study carried out in order to evaluate the performance of finite Gaussian mixture models
for dealing with partially incomplete data is described.

The objective of the experiments is to evaluate the performance of the mixture model approach in terms of preservation
of univariate statistics and covariance structure of the data. To this aim a comparison between imputation based on
mixture models and NND is performed. The donors are chosen among observations without any missing items, and
the similarity is evaluated according to a distance measure computed considering only the variables that are observed
in the recipient. The adopted distance is the Euclidean one, and the variables are standardised in order to avoid scale
problems.

The considered imputation methods are evaluated in several simulative contexts differing with respect to data gen-
erating distribution (Gaussian and non-Gaussian), sample size, and missing data mechanism, i.e., missing completely
at random (MCAR) and missing at random (MAR) (Little and Rubin, 2002).

For each experimental setting, 1000 simulations have been performed consisting of the following steps: (1) artificial
generation of a sample from a given multivariate data distribution; (2) artificial generation of missing values in the
sample; (3) estimation and imputation; (4) evaluation of the imputation by comparing the imputed data with the original
ones. All the experiments have been developed using SAS/IML software, Version 8.2 of the SAS System for Windows.

As far as the Gaussian experiments are concerned, two different cases are considered. In the first, data are
characterised by medium and high correlation, while in the second an extreme situation is considered where the
variables are grouped in two blocks, independent one of each other, but with high correlation within the blocks.
Since in the MAR experiment the missing values are generated depending on an always observed variable, the
second framework allows to have in the same data set some variables with MCAR mechanism and other affected
by MAR mechanism. In both settings, the numerical values of the parameters are obtained by means of real data
sets.

As far as the non-Gaussian experiments are concerned, the generating distribution is a multivariate Gamma with
correlation structure similar to the one used in the second Gaussian framework, i.e., two blocks (almost uncorrelated)
with high correlation within them.

In the following, it is given a detailed description of the four steps referring to the sample data generation, the
nonresponse simulation, the estimation and imputation, and the evaluation.
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(1) Sample data generation:

(i) Normal case (first experiment—G1). Data are drawn from a 5-variate Gaussian random vector (Y7, ..., Ys) with
mean vector

p=16,3,2,2,6),

and covariance matrix

80 45 35 35 4.0
45 84 46 4.0 45
2=135 46 37 3.0 35
35 40 3.0 67 32
40 45 35 32 40

(i) Normal case (second experiment—G@G?2). Data are drawn from a 5-variate Gaussian random vector (Y7, ..., Ys)
having the sub-vectors of the first two components (Y7, Y>) and the last three (Y3, Y4, Y5) independent and normally
distributed with parameters (g¢(}y, X(1)) and (pe(2), 2(2)) respectively, where

may = (=2.5,-2.6), pg =(=55,-7.6,-6.0),
3.1 24 24
3.1 27
’ ' 24 2.1 3.0

(iii) Non-normal case (multivariate Gamma distribution—NG). Data are drawn through a slight modification of the
Cheriyan and Ramabhadran’s multivariate Gamma distribution described in Kotz et al. (2000) pp. 454-456. In

order to draw a sample of a S5-variate random vector (Y1, ..., Y5) from such a distribution the following procedure
is adopted. First, 7 independent random variables X; for i = 1, ..., 7 are considered distributed according to
Gamma distributions characterised by different parameters 0;. Then, the 5-variate random vector (Yy, ..., ¥s) is

obtained combining the X; in the following way:
NN=X1+X3; Nnh=X1+Xs Y¥=X1+X2+Xs;
Yi=Xo+ Xe¢; Y5=Xo+ X7.

Following Kotz et al. (2000), it is easy to compute the expected value and the correlation matrix of the r.v.s ¥;.
The parameters 0; are chosen to obtain a correlation structure similar to that of the first Gaussian experiment, i.e.,
two independent or weakly correlated blocks of variables with high correlation within the blocks. The values of
the parameters are

0=(1,2,0.2,0.2,0.4,0.2,0.1).

A plot of a sample of 1000 observations from this distribution is shown in Fig. 1.

Finally, samples of 300 and 1000 units have been generated for both the normal and non-normal settings.

(2) Nonresponse simulation. Once a sample of complete data is generated, item nonresponse is simulated according
to both MCAR and MAR mechanisms. In the MCAR simulations, sub-samples of values are randomly selected and
dropped for the variables (Y1, Y2, Y3, Y4) according to the percentages 20%, 25%, 30%, 40% respectively.

In the MAR experiments, missing items are introduced for the variables (Y7, Y2, Y3, Y4) depending on the observed
values ys5 of the variable Y5 under the assumption that the higher is the value of Y5, the higher is the nonresponse
propensity. More in detail, denoting by g; the ith quartile of the empirical distribution of Y5, the nonresponse probabilities
for (Y2, Y3, Y4) are 0.1 if y5 < gy, 0.2 if y5 € [q1, q2), 0.5 if y5 € [¢2, g3) and 0.6 if ys > g3. For the variable Y| a
more critical situation in terms of response rate has been chosen. Nonresponse probabilities are 0.1 if y5 < gp, 0.2 if
¥s € [q1,42), 0.4if ys € [g2, g3) and 0.9 if y5 >g3.

(3) Estimation and imputation. The incomplete sample of data is imputed by using MCM, MRD and NND. Concerning
finite mixtures, models with different number of components have been estimated and used for imputation following
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Fig. 1. The scatter-plot matrix of a sample of 1000 observations drawn from the multivariate Gamma NG.

the algorithm described in Section 2. Starting points for the EM algorithm have been identified by clustering data by
means of the k-means algorithm, and considering as starting parameters the sample means and the sample covariance
matrix within the clusters. For the parameter 7, the starting point is the relative frequency of the kth cluster.

The stopping rule is based on a threshold for the relative increase of the likelihood in two consecutive iterations.
In order to avoid singularities due to the unboundness of the likelihood function for heteroscedastic mixture models
(McLachlan and Peel, 2000), the EM runs have been discarded whenever any matrix involved in the estimation algorithm
had determinant below a prefixed threshold. Once the parameters have been estimated for all the models, the ‘best model’
is chosen based on BIC, and the selected model is used to impute missing values following the two methods described
in Section 2.

(4) Evaluation. As already stated, the performance of the different imputation methods is measured in terms of
preservation of means and covariance structure. The evaluation is based on the comparison of the original sample data
and the imputed ones. In order to perform this comparison, for each iteration of the simulation experiments, sample
means and sample covariance matrices are computed for both original and imputed data. Differences between these
statistics are then used to build the performance indicators described in the following.

Let yi1, ..., yip (i=1,...,n)bethe original ‘true’ values of the p-dimensional r.v. Y in the ith unit. Let 7, ..., y;"p

be the corresponding imputed values, i.e., the values of variables after imputation. Also, let m(.[), s(.[k) be the sample
means and the elements of the sample covariance matrix respectively, computed on original data at the tth simulation,

(j,k=1,..., p). Finally, denote by m;f(t), s;f,?) the corresponding quantities referred to the imputed data set.
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The preservation of the mean is evaluated in terms of both relative bias (Bm/.) and relative root mean squared error
(Rm ;) defined as follows:

| 1000 m O ©

— J J P —
Bm/_IOOOZ (I) ’ ]_1""7p7

t=1 |mj |

1000 (, *(0) _ (1)32
R, — || 3 my = m;7) ji=1 p
m;j 1000 po m(jz)z ’ s ey P

The preservation of the covariance structure is measured by computing for each pair of variables Y; and Y the
quantities

1000 () _ *()32
1 (sjx —Sjx ) .
9k = | To00 2 o j=L..op k=1....p

t=1

and building the overall evaluation indices

The last indices provide measures for the variance and covariance preservation, respectively.

A further index for the evaluation of covariance structure is obtained by counting, over the 1000 simulations, the
number of times that each method gives the best (the lowest) value of Dy + Dc. The corresponding index is denoted
by %(Ds).

5. Results

The experiments described in the previous section allow us to analyse different aspects concerning the use of mixture
models for imputation. An important issue is the comparison of mixture models with NND. Moreover, the two alternative
ways of using mixture for imputation, MCM and MRD, can be comparatively evaluated. The comparison is done by
assessing the performances with respect to the preservation of means and covariance matrix. The evaluation of these
aspects is enriched by the fact that the experiments have been performed varying also the sample size and the missing
mechanism. The results are shown in Tables 1-6.

Each table shows the results for the two different missing mechanism, MCAR and MAR.

Table 1 refers to the Gaussian experiment G1 with sample size 300. Table 2 is the same as the previous but with
sample size 1000. Tables 3 and 4 concern the Gaussian experiment G2 with sample size 300 and 1000, respectively.

Table 1

Results for the experiment G1, sample size 300

Imp Bm1 Bmz Bm3 Bm4 le Rmz ng Rm4 Dy Dc %(DS)
MCAR

NND —0.001 0.000 0.000 0.000 0.018 0.019 0.010 0.010 0.776 1.514 18.5
MCM 0.000 0.000 0.000 0.000 0.012 0.011 0.006 0.007 1.269 0.922 33
MRD —0.001 —0.001 0.000 0.000 0.016 0.016 0.008 0.008 0.584 1.059 78.2
MAR

NND —0.004 —0.004 0.026 0.015 0.105 0.082 0.037 0.026 2.243 4.920 0.5
MCM —0.002 —0.001 0.000 0.000 0.029 0.024 0.008 0.007 2.152 1.687 0.2

MRD —0.003 —0.002 0.000 0.000 0.036 0.030 0.010 0.009 0.744 1.565 99.3
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Table 2

Results for the experiment G1, sample size 1000

Imp B, By, Bm3 By, R, R, R1713 R, Dy D¢ %(Ds)
MCAR

NND —0.001 0.000 0.000 0.000 0.010 0.010 0.005 0.005 0.429 0.790 21.7
MCM 0.000 0.000 0.000 0.000 0.006 0.006 0.003 0.004 1.216 0.584 0.0
MRD 0.000 0.000 0.000 0.000 0.009 0.009 0.004 0.005 0.318 0.578 78.3
MAR

NND —0.001 0.000 0.017 0.009 0.071 0.057 0.025 0.018 1.600 3.578 0.1
MCM —0.001 —0.001 0.000 0.000 0.016 0.013 0.004 0.004 2.114 1.192 0.0
MRD —0.001 —0.001 0.000 0.000 0.019 0.016 0.005 0.005 0.414 0.844 99.9
Table 3

Results for the experiment G2, sample size 300

Imp Bm] Bmz Bm3 Bm4 Rm] Rmy_ Rm3 Rm4 Dy Dc %(DS)
MCAR

NND 0.000 0.000 0.000 0.002 0.015 0.029 0.023 0.075 1.744 3.049 30.5
MCM 0.000 0.000 0.000 0.000 0.010 0.019 0.014 0.049 3.432 1.789 0.8
MRD 0.000 0.001 0.000 0.002 0.012 0.025 0.018 0.061 1.421 2.340 68.7
MAR

NND —0.047 —0.069 —0.092 —0.064 0.077 0.113 0.112 0.155 5.729 11.594 0.9
MCM 0.001 —0.001 —0.001 0.003 0.021 0.028 0.018 0.049 4.443 2.501 35
MRD 0.001 0.000 —0.001 0.001 0.024 0.034 0.022 0.060 1.877 3.018 95.6
Table 4

Results for the experiment G2, sample size 1000

Imp Bml Bmz Bm3 Bm4 le Rmz ng Rm4 DV DC %(DS)
MCAR

NND 0.000 0.000 0.000 0.002 0.008 0.016 0.011 0.038 0.930 1.619 31.3
MCM 0.000 0.000 0.000 0.001 0.005 0.010 0.007 0.025 3.312 1.002 0.0
MRD 0.000 0.001 0.000 0.000 0.007 0.014 0.010 0.033 0.775 1.274 68.7
MAR

NND —0.034 —0.042 —0.056 —0.044 0.058 0.073 0.071 0.114 4.444 8.724 0.3
MCM 0.000 0.000 0.000 0.000 0.011 0.015 0.010 0.026 4.327 1.414 0.0
MRD 0.000 0.000 0.000 0.000 0.013 0.019 0.012 0.032 1.43 1.680 99.7
Table 5

Results for the experiment NG, sample size 300

Il’Ilp Bm] Bmz Bm3 Bm4 le Rmz ng Rm4 DV DC %(DS)
MCAR

NND —0.004 —0.002 0.000 —0.002 0.025 0.027 0.014 0.019 0.678 1.091 13.7
MCM 0.001 0.003 0.001 0.001 0.017 0.019 0.009 0.014 0.566 0.598 314
MRD 0.002 0.004 0.001 0.002 0.022 0.024 0.011 0.016 0.469 0.701 54.9
MAR

NND 0.005 0.006 —0.054 —0.084 0.165 0.126 0.077 0.099 2.491 4.700 2.9
MCM 0.008 0.001 0.002 0.000 0.065 0.036 0.016 0.015 1.074 1.615 29.7
MRD 0.009 0.000 0.002 0.000 0.069 0.043 0.018 0.018 0.878 1.638 67.4
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Table 6

Results for the experiment NG, sample size 1000

Imp Bm] Bmz Bm3 Bm4 le Rmz Rm3 Rm4 DV DC %(DS)
MCAR

NND 0.000 0.000 0.002 0.001 0.013 0.015 0.007 0.010 0.341 0.522 24.1
MCM 0.000 0.000 0.000 0.000 0.009 0.010 0.005 0.007 0.482 0.294 2.4
MRD 0.000 0.000 0.000 0.000 0.012 0.013 0.007 0.008 0.236 0.349 735
MAR

NND 0.006 0.002 —0.031 —0.052 0.119 0.088 0.052 0.063 1.892 3.641 0.7
MCM 0.006 0.001 0.001 0.000 0.029 0.018 0.008 0.008 0.952 0.893 8.3
MRD 0.006 0.002 0.001 0.000 0.032 0.022 0.010 0.009 0.441 0.820 91.0

Finally Tables 5 and 6 show results concerning the experiment in a non-Gaussian case (NG) described in detail in
Section 4. Also in this case the two tables refer to the two different sample sizes.

As far as the preservation of the sample mean is concerned, the By, ; and R, indicators show that the methods provide
similar results in the MCAR setting. All the methods are unbiased, and show similar values for the R;,;. Despite the
small differences, it is possible to observe that the behaviour of the MCM is always preferable to the others, while the
worst is that of NND.

Under the MAR mechanism, the gain obtained by using the mixtures is apparent in particular for MCM. Analysing
Tables 1, 2, 5 and 6 MCM and MRD outperform NND especially on the variables (Y3 and Y4) that are correlated with
the variable used to build the MAR mechanism (Y5). In fact, the other variables (¥ and Y7) could be considered as
affected only by an MCAR mechanism (see Section 4). Also in this case, MCM has the best performances while NND
is the worst method.

The other results are interesting in order to analyse a characteristic referring to bivariate distributions, and in particular
to the covariance matrix.

Analysing the %(Ds) indicator, MRD is always the best method, and in particular, differences are more appreciable
when the mechanism is MAR. It is interesting to note that in the non-Gaussian experiment under the MAR setting,
NND is almost never chosen as the best method.

Hence, the results show that under the MCAR mechanism there is a small advantage in the use of mixture models
with respect to the NND. However, when MAR mechanism affects data, the imputation through mixture models provide
remarkably better results than NND.

Among the mixture models methods, when the main objective of the survey is the estimation of mean or total,
MCM is the most appropriate. On the other hand, when also covariance structure must be preserved, MRD seems to be
preferable. In fact it outperforms MCM for the preservation of the covariance matrix while its performances, in terms
of mean preservation, are close to those of MCM.

A final consideration concerns the use of the BIC score for choosing the best model. In the Gaussian experiments,
BIC works satisfactorily, in fact the chosen model is always the multinormal one (1 component) for both the sample
sizes. In the multivariate Gamma experiments the most frequently chosen model is the mixture of three components.
When the sample size is 300, this model is chosen 82% of times in MCAR case, and 90% in MAR case. When sample
size is 1000, the frequency is 99% of times in both the missing data mechanisms.

6. Application to real data

In order to illustrate the effectiveness and test the performance of our proposal, we carry out also an experiment on
a subset of the 1997 Italian Labour Cost Survey (LCS).

The LCS is a periodic sample survey that collects information on employment, hours worked, wages, salaries and
labour cost on about 12.000 firms with more than 10 employees. The survey is subject to a specific European Regulation
requiring all the European Community Member States to collect every four years detailed information about the labour
cost and employment structure in some specific Industries.

Our data set consists of 1000 units that belong to the metallurgic economic activity sector.
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Fig. 2. The scatter-plot matrix of the 1000 units that belong to the metallurgic economic activity sector in the LCS.

In particular, we analyze four main variables measuring the total number of employees (X1), the total number of
hours worked (X3), the wages and salaries (X3), and the total labour cost (X4). The values of the variables are obtained
by means of a logarithmic transformation of the original data. Fig. 2 shows the scatter-plot matrix of the data used for
the experiments .

In this situation, since the random generating mechanism of the r.v.s is unknown, a resampling approach has been
adopted. The resampling scheme consists in sampling 1000 observations (through a simple random sampling with
replacement) x1 | ..., x1900) (pootstrap sample) from the initial sample, where x) represents the ith unit where the
variables (X1, X2, X3, X4) are observed. The bootstrap sample can be thought of as generated from the estimated
empirical distribution of (X1, X2, X3, X4). Similarly to the previous experiments (described in Section 4), missing
values have been introduced only on the first three variables according to the MCAR and MAR mechanisms.

In particular, as far as the MCAR mechanism is concerned, the variables X1, X2, X3 are affected by missing values
with probabilities 0.25, 0.30 and 0.40, respectively. For the MAR mechanism, the missing items in the variables
(X1, X2, X3) are introduced according to the observed values x4.

More in detail, denoting by ¢; the ith quartile of the empirical distribution of X4, the nonresponse probabilities for
(X3, X3)are0.1if x4 <q1,0.2if x4 € [q1, q2),0.51f x4 € [q2, ¢3) and 0.6 if x4 > ¢g3. For the variable X| a more critical
situation in terms of response rate has been chosen. Nonresponse probabilities are 0.1 if x4 < g1, 0.2 if x4 € [q1, ¢2),
0.4if x4 € [g2, g3) and 0.9 if x4 > g3. Once the missing values are introduced in the bootstrap sample, they are imputed
by means of NND and the proposed methods based on mixtures.
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Table 7
Results for the experiment LCS with sample size 1000

Imp Bm] Bmz B))13 le Rmz Rm3 DV DC %(DS)
MCAR

NND 0.000 0.000 0.000 0.001 0.001 0.001 0.025 0.036 212
MCM 0.000 0.000 0.000 0.001 0.001 0.000 0.020 0.018 24.5
MRD 0.000 0.000 0.000 0.001 0.001 0.001 0.015 0.021 543
MAR

NND —0.020 —0.012 —0.008 0.029 0.017 0.011 0.563 1.206 3.0
MCM —0.002 —0.002 0.000 0.005 0.003 0.003 0.092 0.222 37.0
MRD —0.002 —0.002 0.000 0.005 0.003 0.003 0.101 0.223 60.0

The results of the imputations are evaluated using the indices illustrated in Section 4. This procedure has been
repeated 1000 times, and the results are averaged over them. The results are shown in Table 7.

They confirm the results obtained via the experiments illustrated in Section 5. When the missing data are MCAR, the
performances of the three methods are similar, with a slight preference for MRD. When the missing data are MAR, the
mixture methods outperform NND, both in preservation of sample means and sample covariance matrix. In particular,
MRD is preferable to MCM because of its performances in the preservation of the covariance structure, and because
its behaviour concerning the mean preservation is very close to that of MCM (indeed almost equal in this case).

It is worthwhile noting that, the model chosen by the BIC is almost always the one with 2 components.

7. Concluding remarks

The results discussed in the previous sections show that mixture models are an appealing method for imputing
missing data and a valuable alternative to the NND. In particular imputation by random drawing (MRD) from a finite
Gaussian mixture model is the best choice because it preserves better than the others both sample mean and covariance.

Although the experiments have produced satisfactory results, a number of important problems still remains open.

The NND technique has some properties that make it still a valid competitor. In fact, it allows the researcher to deal,
at least from an operational point of view, with semicontinuous variables, i.e., variables whose probability distribution
has a mass concentration at some points, for instance zero. This is a frequent case in the surveys carried out by Statistical
Institutes, and further studies should be devoted to this topic.

Another important remark is about the indicators used in the experiments. They focus on some aspects, as the mean
and the covariance matrix, that are extremely important in statistics. Actually, they are the quantities suggested to be
taken into account by Marker et al. (2002) when they discuss about the main objectives of an imputation procedure. In
fact, in the context of official statistics, means or totals and linear relationships between variables are often the main
target quantities to be estimated. However, analysts might also be interested in other population characteristics such as
quantiles or non-linear relationships involving moments of higher order of the data distributions. Thus, especially in a
non-Gaussian context, other measures should be adopted. Further studies should be done also for this topic.

The last consideration is about the goal of this paper and future research direction. This paper is devoted to the study
of a new imputation method. The assessment of its performance is carried out having as target the first issue of the
main two challenges stated by Marker et al. (2002) and introduced in Section 1: “to maximize the use of available data
in order to minimise the mean square error for univariate statistics and to preserve covariance structures in multivariate
data sets”. The second issue, “to include in the variance estimates the uncertainty caused by the use of imputed data”,
still remains an open problem. In fact, if the variance of the estimator is computed on the imputed data set, considering
the imputed values as they were really observed, the source of uncertainty due to the fact that the values are artificial
and not really observed is neglected. This leads to underestimate the variance and thus to p-values that are too high.
Different approaches have been introduced for dealing with this problem. The main are multiple imputation (Rubin,
1987), and methods based on resampling techniques (Rao, 1996). The study of how to adapt mixture models as used
in this paper to include this further source of randomness in variance estimation is an important issue to consider in the
next studies.
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