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Abstract

Random k-nearest-neighbour (RKNN) imputation is an established algorithm for filling in missing values in data sets. Assume
that data are missing in a random way, so that missingness is independent of unobserved values (MAR), and assume there is a
minimum positive probability of a response vector being complete. Then RKNN, with k equal to the square root of the sample size,
asymptotically produces independent values with the correct probability distribution for the ones that are missing. An experiment
illustrates two different distance functions for a synthetic data set.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Our setting is this: we have a sample of multivariate, independent, identically distributed data, with missing values.
We would like to fix the data set by reconstructing valid data values for the ones that are missing, a task commonly
referred to as imputation. The most common application of imputation is with statistical survey data (Rubin, 2004), but
it is also relevant in other fields, such as DNA micro array analysis (Troyanskaya et al., 2001). Applying imputation
to a data set before analysing it may seem dubious from a scientific perspective, analysing computer-generated values
as if they were real data. However, there have been computer simulation studies, e.g. Twisk and de Vente (2002) or
Hawthorne and Elliott (2005) showing that, under suitable conditions, inference from imputed data sets is robust. Also,
the alternative approach of deleting records with missing values may also introduce bias. Imputation is most appropriate
when we plan to build complex statistical models with several independent variables. In this case the alternative of
deleting all records where one of the values is missing may reduce the data set substantially, even though each univariate
variable has few missing values.

Deterministic approaches to imputation treats each missing value as a problem of prediction, where the task is
to reconstruct the most likely value for the ones that are missing. These include simple averaging procedures and
more advanced model-based approaches like linear regression and EM-algorithms. In principle, any prediction method
from statistical learning (Hastie et al., 2001) can be used for this purpose. Although deterministic imputation works
reasonably well in many cases, it will tend to reinforce trends in the data set, resulting in falsely precise inference. To
eliminate this bias, random imputation methods (Rubin, 2004) instead seek to predict the conditional distribution of
the missing values, given the non-missing ones, and draw random values accordingly.

E-mail address: fredrik.dahl@ahus.no.

0167-9473/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2006.11.007

http://www.elsevier.com/locate/csda
mailto:fredrik.dahl@ahus.no


5914 F.A. Dahl / Computational Statistics & Data Analysis 51 (2007) 5913–5917

A popular class of imputation methods is so-called hot deck imputation (Reilly, 1993). For a given missing value,
this algorithm searches the data set for records that are similar for the non-missing values. One of these records is
chosen as a donor, and the donor’s value is used for imputing the missing one. In random hot deck methods, the donor
is chosen at random among a suitable set of donors. In the present paper we analyse a random hot deck algorithm that
draws a donor from a set of k neighbours, defined by a metric. To our knowledge, this algorithm was first described by
Little (1988).

In Section 2 we briefly review established definitions of how data can be missing. In Section 3 we prove asymptotic
properties of the random k-nearest-neighbour (RKNN) algorithm under suitable conditions. Section 4 gives a discussion
of the theoretical results, with emphasis on distance functions, and this issue is investigated further by an experiment
in Section 5. Section 6 concludes the article.

2. Ways in which data can be missing

When imputing missing values, one has to make assumptions about their true distribution. The most favourable
form of missingness is missing completely at random (MCAR), which means that the probability of a value missing
is independent of all values in the data set, observed and unobserved. Missing at random (MAR) is less restrictive, as
it allows the mechanism that produces missing values to depend on observed values, but not on unobserved ones. The
most severe form of missingness is missing not at random (MNAR), which allows missingness to depend on missing
values. If a data set is MNAR, one must include knowledge of the mechanism generating the missing values, in order
to produce sound imputation. Note that it is impossible to test whether a data set is MNAR through the data set itself.
These are established definitions, which have been attributed to Rubin.

3. RKNN imputation

Let {Zi}, i = 0, . . . , n be a sequence of independent identically distributed random variables, of dimension m,
with missing values. Note that the independence assumption states that Zi is independent of Zi′ , when i �= i′. The
multidimensional distribution, which is common to all Zi , may of course have dependent components. (In a statistical
survey setting, the index i refers to a record of the data set, typically associated with a subject, and m gives the number
of different questions, so that Zi,j represents subject i’s response to question j.) Hence, different subject are assumed to
give independent identically distributed responses, while a subject’s responses to different questions may be dependent.
For analytical clarity we assume that we start with a complete data set, where after missing values are deleted. We let
l < m be the number of missing values for Z0, and without loss of generality we take these to be the first l components.

The task is to impute these l values. For convenience, we split Zi =
(

Yi

Xi

)
, where Yi ∈ Rl and Xi ∈ Rm−l , so that Y0 are

the missing values of Z0. We write Y = [Y1 . . . Yn] , X = [X1 . . . Xn], and Z =
(

Y
X

)
. Note that the index 0 is excluded

from these definitions. We let d : R2(m−l) → R denote the metric, so that d(X, X′) gives the distance between X and
X′. If X or X′ has missing values, we let d(X, X′) assume the largest possible d-value one can get by completing X
and X′ with values from their domains. We otherwise assume that d is topologically equivalent to Euclidean distance.

Our version of the RKNN procedure can be formalized like this:

Let k = √
n (rounded upward).

For each i ∈ {1, . . . , n}
Let di = d(X0, Xi) + M� (Yi has a missing value).

Let � ⊂ {1, . . . , n} so that |�| = k and (i ∈ �, j /∈ �) ⇒ di �dj .
Let I be a random element of �.
Let the imputed value be YI .

In the definition of di , � is the indicator function, returning 1 if the argument is true, and 0 otherwise, while M is a
(large or even infinite) penalty for Yi having missing values. The computation of � must have some way of breaking
ties, which may e.g. be a randomisation procedure.

In the following theorems we treat X0 as given data, while Y0, X, and Y are random. We assume that the missing
values are MAR, and assume that there exists a p > 0, so that P(Zi has no missing value) > p, for each i.



F.A. Dahl / Computational Statistics & Data Analysis 51 (2007) 5913–5917 5915

Theorem 1. (YI |X0) →
n→∞(Y0|X0) in distribution.

Proof. The fraction of the points belonging to the k-neighbourhood, k/n, approaches zero. Because P(Zi has no
missing value) > p for each i, we have limn→∞ maxi∈�(d(X0, Xi)) = 0 in probability. (We notation-wise suppress
the fact that the set � varies with n.) This implies that XI →

n→∞ X0 in distribution. Also, with probability 1, � will for

sufficiently large n only contain indexes of points Zi without missing values. Because the data set is MAR, the fact that
the values of Y0 are missing is independent of the observed values of XI . It follows that when n increases, YI converges
in distribution toward Y0. �

The assumption that d be topologically equivalent to Euclidean distance is mild. For categorical data, this implies
that the distance between two persons is zero if, and only if, their values are identical for all components.

In the next theorem we show that YI , the imputed value for Y0, is close to independent of the rest of the data set,
Z. We do this by giving an upper bound on the correlation between YI and any measurable function f of Z. (Readers
unfamiliar with probability theory should not worry about the measurability condition, as this is a very mild assumption
needed only to assure that f (Z) is a random variable.)

Theorem 2. Let f : Rn×m → R be measurable, with V ar(f (Z)) < ∞ and j ∈ {1, . . . , l}. Then
|cor(YI,j , f (Z))|�n−1/4.

Proof. The function f that maximizes the correlation is the conditional expectation of YI,j given Z:
argmaxf (Z)(cor(YI,j , f (Z)) = E(YI,j |Z) = (1/k)

∑
i∈�Yi,j = Ȳj . (In order to make the proof more readable, we

notation-wise suppress the index j for all Y-variables, from here on.) We decompose YI = ∑
i∈�Yi�i , where �i is an

indicator variable of the event I = i. This gives

Cov(YI , Ȳ ) = 1

k

∑
i,i′∈�

Cov(Yi�i , Yi′) = 1

k

∑
i∈�

Cov(Yi�i , Yi) = 1

k2

∑
i∈�

V ar(Yi).

We also have V ar(Ȳ ) = (1/k2)
∑

i∈�V ar(Yi), and by a conditional variance argument

V ar(YI ) = 1

k

∑
i∈�

(V ar(Yi) + V ar(E(Yi))) � 1

k

∑
i∈�

V ar(Yi).

Piecing this together gives

cor(YI , Ȳ ) = Cov(YI , Ȳ )√
V ar(YI )V ar(Ȳ )

� 1√
k

.

Because we have k�√
n, it follows that cor(YI , f (Y))�n−1/4.

The inequality cor(YI , f (Y))� − n−1/4 follows by repeating the argument after inverting the sign of f. �

Before the missing values were deleted, the data set was a sequence of independent identically distributed ran-
dom variables. Our theorems state that the algorithm asymptotically produces data sets with the same properties of
independence (Theorem 2) and identical distributions (Theorem 1).

4. Discussion

Concerning our choice of neighbourhood size function k(n) = √
n, the proof of Theorem 1 works for any function

k(n) such that k(n)/n tends to zero. The proof of Theorem 2, on the other hand, shows that limn→∞|cor(YI , f (Z))|=0,
provided k(n) tends to infinity. Therefore, the favourable asymptotic properties hold for any neighbourhood size function
of the form k(n)=nr , where r ∈ (0, 1). Our choice of k(n)=√

n is canonical in the sense of representing the mid-point
of this interval.
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Table 1
Estimated variances of the difference between actual and imputed values by sample size, for Euclidean and regression-based distance

n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256 n = 512 n = 1024

dE 14.00 9.14 5.02 4.54 3.68 3.36 3.04 2.86 2.70 2.60
dR 14.00 8.37 3.96 3.51 2.70 2.47 2.27 2.18 2.10 2.07

Note that our assumption of a probability p > 0 of a data vector being complete cannot be discarded, as the MAR
condition by itself is not sufficient to guarantee existence of Xi close to X0, even asymptotically.

The formal conditions on the distance function are very mild, in the sense that virtually any choice will work,
asymptotically. However, the choice of distance measure may be important in practice, where n is fixed. For numerical
variables, it would make sense to choose a scale invariant measure, possibly adjusting for correlations by using the
Mahalanobis distance. It may also be a good idea to adjust the weights of the different components according to their
correlation with the target variable (assuming only one value is missing), so that components that carry little information
are given lower weights. If the missing value is real valued, one could even build a linear regression model for it, and
use the size of the regression weights � = (�1, . . . , �m−1)

T in the distance computation. If we had firm belief in the
accuracy of such a linear model, we would use d(X, X′) = |�T(X − X′)| for our distance function. This d, however,
violates our assumptions, as it is not topologically equivalent to Euclidean distance, because d(X, X′) can be zero,
even for X �= X′. Also, if we had this firm belief, we would use the linear model for imputation directly. A possible
compromise would be to use the distance measure d(X, X′)=|�T||(X−X′)|=∑

i |(Xi −X′
i )�i |, which penalizes each

component’s deviation by multiplying it with the size of the corresponding regression weight. This d is topologically
equivalent to Euclidean distance, provided all �’s are nonzero. Similar regression procedures could be defined for
ordinal or even nominal data.

Clearly, finding an optimal distance function is a complex problem by itself. From our point of view, a strong point
of the RKNN algorithm is its simplicity, together with favourable asymptotic properties, and in practice it may not be
worthwhile to build complex regression models in order to optimise the distance measure.

5. Experiment

To shed some light on the issues of convergence speed and distance functions, we present a simulation experiment.
Let �1, . . . , �7 ≈ N(0, 1) be independent standard normal variables, and let Z1, . . . , Z7 be a random walk defined

by Z1 = �1 and Zj = Zj−1 + �j , for j = 2, . . . , 7. For the experiment, we generate n independent data vectors, so
that Zi,j is the value of the ith simulated random walk, at step j. We let Z1,7 be the only missing value, and investigate
the algorithm’s ability to impute it, by estimating the variance of Z1,7 − ZI,7. (The mean of this difference is 0,
by construction.) To estimate the variance, we generate 10.000 such Z-matrices, and include all points within the
k-neighbourhood in the estimation.

For distance measurements we test Euclidean distance dE, as well as a regression-based distance dR. For this random
walk Z6 is a sufficient statistic for Z7 and dR is given by dR(X, X′) = |X6 − X′

6|. Table 1 gives the estimated variances
for the two distance functions, and different values of n.

The optimal variance value is 2, due to the randomness of the last step in the random walk, and the results appear to
confirm convergence toward this value. As we would expect, the optimal regression-based distance measure dR gives
faster convergence.

6. Conclusion

We address the general problem of imputing missing values from a data set of multivariate independent identically
distributed variables. We follow the argument of Rubin (1996) that the goal should be to estimate the probability
distribution of the missing values, in such a way that the i.i.d. property of the data set is preserved. We prove that the
RKNN algorithm with k = √

n achieves this asymptotically, under the MAR assumption together with a minimum
probability of observations being complete. An experiment confirms the theoretical results, and illustrates how an
optimised distance function performs relative to an uninformed one.
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