Available online at www.sciencedirect.com Information Sciences 169 (2005) 47-69 www.elsevier.com/locate/ins # A new method to estimate null values in relational database systems based on automatic clustering techniques Shyi-Ming Chen a,*, Hsin-Ren Hsiao b Received 18 October 2003; received in revised form 4 February 2004; accepted 5 February 2004 #### Abstract In this paper, we present a new method for estimating null values in relational database systems based on automatic clustering techniques. The proposed method clusters data in advance, such that it only needs to process the most proper clusters instead of all the data in the relational database system for estimating null values. The average estimated accuracy rate of the proposed method is better than the existing methods for estimating null values in relational database systems. © 2004 Elsevier Inc. All rights reserved. Keywords: Automatic clustering algorithm; Fuzzy relation; Null values; Relational database systems #### 1. Introduction It is obvious that data processing is an important activity in business processing. A database system keeps a lot of information for an enterprise when business running. Relational database systems are most widely used in an enterprise. A database system will not operate properly if there exist some null E-mail address: smchen@et.ntust.edu.tw (S.-M. Chen). ^a Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC ^b Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC ^{*}Corresponding author. values of attributes in the system. In [4], Candan et al. provided a unified treatment of null values using constraints. In recent years, many researchers focused on the research topics of estimating null values in relational database systems [5,6,10–12]. In [5], Chen et al. presented a method to estimate null values in the distributed relational database environments. In [6], Chen and Yeh presented a method to generate fuzzy rules from relational database systems for estimating null values. In [10], Hsiao et al. presented a method to estimate null values in relational database systems. In [11], Huang and Chen presented a method to estimate null values in relational database systems using genetic algorithms. In [12], Huang and Chen presented a method to estimate null values in relational database systems with a negative dependency relationship between attributes. In this paper, we present a new method to estimate null values in relational database systems based on automatic clustering techniques. The proposed method clusters data in advance, such that it only needs to process the most proper clusters instead of the whole data in the relational database system for estimating null values. The average estimated accuracy rate of the proposed method is better than the methods presented in [5,6]. It can estimate null values in relational database systems more accurately. The rest of this paper is organized as follows. In Section 2, we briefly review an automatic clustering algorithm from [9]. In Section 3, we briefly review Chen-and-Chen's method for estimating null values in relational database systems from [5]. In Section 4, we present a new method for estimating null values in relational database systems. In Section 5, we use an example to illustrate the proposed method. Furthermore, we also compare the average estimated error rate of the proposed method with the existing methods. The conclusions are discussed in Section 6. ## 2. An automatic clustering algorithm In recent years, some methods have been proposed for information retrieval [2] and fuzzy query processing [13,16,19] based on clustering techniques. In [18], Selim presented a semi-fuzzy approach for clustering multi-dimensional data. In [3], Can et al. presented an incremental clustering method for document databases. In [7], Hirano et al. presented a comparison of clustering methods for clinical databases. In [9], we have presented an automatic clustering algorithm for fuzzy query processing for relational database systems. The automatic clustering algorithm is reviewed from [9] as follows: # **Automatic Clustering Algorithm** /* current: the numerical datum to be clustered; preceding: the numerical datum preceding current in the sequence; pre_preceding: the numerical datum preceding preceding in the numerical data sequence; average dist: the average distance between every pair of neighboring numerical data in the data sequence; cluster_average_dist: the average distance in a cluster. */ Step 1: Sort the numerical data in an ascending sequence using quick sort [8]. Step 2: Calculate the value of average_dist of the sorted data sequence; /* For example, assume that the sorted numerical data sequence is " $x_i = x_i < x_k < x_s = x_m < x_p$ ". Because there are only four different numerical data (i.e., x_i , x_k , x_s , and x_p) in the sorted data sequence, where the same numerical data (e.g., x_i and x_j are the same numerical data; x_s and x_m are the same numerical data) are only counted once, the value of average_dist is calculated as follows: average_dist = $$\frac{(x_k - x_j) + (x_s - x_k) + (x_p - x_m)}{3}$$. * / put the first numerical datum in the sorted numerical data sequence into the first cluster: let *current* be the second numerical datum in the sorted numerical data let preceding be the first numerical datum in the numerical data sequence; ``` let pre_preceding = preceding; ``` If current-preceding ≤ average_dist then put the numerical datum that *current* represents into the cluster; calculate cluster_average_dist of the cluster, where cluster_average_dist denotes the average distance of distances between every pair of neighboring elements in a cluster; let *preceding* = *current*; let current be the numerical datum next to preceding in the sorted numerical data sequence else put the numerical datum that *current* represents into a new cluster; let preceding = current: let current be the numerical datum next to preceding in the sorted numerical data sequence Step 3: If preceding is the first element in a cluster then if current-preceding ≤ average dist and current-preceding < preceding-pre_preceding ``` then put the numerical datum that current represents into the cluster; calcu- late the value of cluster average dist of the cluster, where cluster aver- age_dist denotes the average distance of distances between every pair of neighboring elements in a cluster; let pre_preceding = preceding; let preceding = current; let current be the numerical datum next to preceding in the sorted numerical data sequence else put the numerical datum that current represents into a new cluster; let pre_preceding = preceding; let preceding = current; let current be the numerical datum next to preceding in the sorted numerical data sequence else if current-preceding ≤ average_dist and current-preceding \le cluster average dist then put the numerical datum that current represents into the cluster; calcu- late the value of cluster_average_dist of the cluster, where cluster_aver- age_dist denotes the average distance of distances between every pair of neighboring elements in a cluster; let pre_preceding = preceding; let preceding = current: let current be the numerical datum next to preceding in the sorted numerical data sequence else put the numerical datum that current represents into a new cluster; let pre_preceding = preceding; let preceding = current; let current be the numerical datum next to preceding in the sorted numerical data sequence ``` Step 4: If no numerical data in the sorted numerical data sequence need to be clustered then Stop elsego to Step3. For more details, please refer to [9]. ## 3. A review of Chen-and-Chen's method to estimate null values In this section, we briefly review the method presented in [5] for estimating null values in relational databases, where a fuzzy similarity matrix [14] is used to represent fuzzy relations and the method is used to deal with one null value in an attribute. The method presented in [5] can be used to estimate one null value for an attribute at one time. Assume that there is a linguistic variable V which contains linguistic terms v_1, v_2, \ldots , and v_n . Fig. 1 shows a fuzzy relation, where u_{ij} denotes the closeness degree between v_i and v_j , $u_{ij} \in [0, 1]$, $1 \le i \le n$, and $1 \le j \le n$. The fuzzy relation shown in Fig. 1 is a symmetrical matrix, i.e., $u_{ii} = 1$, $u_{ij} = u_{ji}$, $1 \le i \le n$, and $1 \le j \le n$. For example, we can construct a fuzzy relation for the linguistic variable "Degree" as shown in Fig. 2. From Fig. 2, we can see that the linguistic terms of the linguistic variable "Degree" are Ph.D., Master and Bachelor. Let $CD_v(v_i, v_j)$ denote the closeness degree between v_i and v_j of the linguistic variable V. From Fig. 1, we can see that $CD_v(v_i, v_j) = u_{ij}$, where each value of | | \mathbf{v}_1 | \mathbf{v}_2 | | v _n | |----------------|-----------------|-----------------|-----|----------------| | \mathbf{v}_1 | 1 | u ₁₂ | ••• | u_{1n} | | \mathbf{v}_2 | u ₂₁ | 1 | ••• | u_{2n} | | ÷ | : | : | •• | : | | v _n | u_{n1} | u_{n2} | ••• | 1 | Fig. 1. A fuzzy relation for the linguistic variable V. | | Ph.D. | Master | Bachelor | |----------|-------|--------|----------| | Ph.D. | 1 | 0.6 | 0.4 | | Master | 0.6 | 1 | 0.6 | | Bachelor | 0.4 | 0.6 | 1 | Fig. 2. A fuzzy relation for the linguistic variable "Degree". u_{ij} in the fuzzy relation matrix is defined by an experienced database administrator. From Fig. 1, we can also see that $CD_v(v_i, v_i) = 1$, where $1 \le i \le n$, due to the fact that the degree of closeness between each v_i and itself is equal to 1. In [5], a fuzzy term ranking function can be defined to keep the rank of each fuzzy term in the same linguistic domain. Assume that the linguistic variable V contains fuzzy terms v_i and v_j , and fuzzy term v_i is prior to fuzzy term v_j , then the ranking order between v_i and v_j is defined as follows: $$Rank(v_i) > Rank(v_i)$$. In [5], a rule base is used to indicate the relationships in which some attributes determine other attributes, where all of the rules in a rule base, including the weights of the attributes, are given by domain experts. Table 1 shows a set of fuzzy rules, where the attributes A_1, A_2, \ldots , and A_n determine the attribute B, w_{ij} denotes the weight of attribute A_j appearing in the antecedent portion of rule R_i , $w_{ij} \in [0, 1]$, $\sum_{i=1}^n w_{ij} = 1$, $1 \le i \le m$, and $1 \le j \le n$. The basic idea of estimating null values in relational database systems presented in [5] is that we compare the tuple which has a null value to each rule in the rule base (i.e., Table 1) to see which one is the closest rule. Then, the null value can be estimated by their closeness degrees. Assume that relation R contains attributes A_1, A_2, \ldots, A_n and B, where attributes A_1, A_2, \ldots , and A_n determine attribute B. Let " $r_j.A_k$ " denote the value of attribute A_k appearing in the antecedent portion of rule r_j and let " $T_i.A_k$ " denote the value of attribute A_k of tuple T_i . If there is a null value in attribute B, then it can be estimated by the following method [5]. **Case 1.** First, each tuple T_i in relation R is scanned. Assume that attribute B in relation R is in a numerical domain and there exits a rule r_j in the rule base shown as follows: **IF** $$A_1 = A_{j1}(W = w_{j1})$$ **AND** $A_2 = A_{j2}(W = w_{j2})$ **AND** ... **AND** $A_n = A_{jn}(W = w_{jn})$ **THEN** $B = t_j$, Table 1 A set of fuzzy rules for determining attribute *B* [5] where $1 \le j \le m$. Since attribute A_k can be defined either in a numerical or a non-numerical domain, there are two cases to be considered to calculate the closeness degree between tuple T_i and rule r_j : (1) A_k is in a numerical domain: The closeness degree between $r_i.A_k$ and $T_i.A_k$ can be calculated as follows: $$CDv_{ji}(r_j.A_k, T_i.A_k) = \frac{T_i.A_k}{r_i.A_k}.$$ (2) A_k is in a non-numerical domain: First, check the ranking order of $T_i.A_k$ and $r_j.A_k$, respectively. Then, the closeness degree between $r_j.A_k$ and $T_i.A_k$ can be calculated as follows: $$CDv_{ji}(r_j.A_k, T_i.A_k) = \begin{cases} \frac{1}{R_{\text{domain}}[r_j.A_k, T_i.A_k]}, & \text{if } Rank(T_i.A_k) > Rank(r_j.A_k) \\ R_{\text{domain}}[r_j.A_k, T_i.A_k], & \text{if } Rank(T_i.A_k) \leqslant Rank(r_j.A_k), \end{cases}$$ where R is a fuzzy relation, the symbol "domain" denotes an attribute, and $r_j.A_k$ and $T_i.A_k$ are linguistic terms of the attribute "domain". The closeness degree between tuple T_i and rule r_j can be calculated as follows: $$CD(r_j, T_i) = \sum_{k=1}^{n} CDv_{ji}(r_j.A_i, T_k.A_k) * w_{jk},$$ where w_{jk} is the weight of attribute A_k of rule r_j and $1 \le k \le n$. After the closeness degree between tuple T_i and each rule r_j in the rule base has been calculated, where $1 \le j \le m$, the rule whose closeness degree with respect to tuple T_i is closest to 1 is chosen. If rule r_j is the closest one to tuple T_i , then the null value of attribute T_i can be estimated as follows: $$T_i.B = CD(r_i, T_i) * N_i.$$ Case 2. Assume that attribute B is in a non-numerical domain and there exits a rule r_j in the rule base shown as follows: **IF** $$A_1 = A_{j1}$$ $(W = w_{j1})$ **AND** $A_2 = A_{j2}(W = w_{j2})$ **AND** ··· **AND** $A_n = A_{jn}(W = w_{jn})$ **THEN** $B = W_j$. Because attribute A_k can be either a numerical or a non-numerical domain, where $1 \le k \le n$, there are two cases to be considered to calculate the closeness degree between tuple T_i and rule r_i : (1) A_k is in a numerical domain: The closeness degree between $r_i.A_k$ and $T_i.A_k$ can be calculated as follows: $$CDv_{ji}(r_j.A_k, T_i.A_k) = \frac{T_i.A_k}{r_j.A_k}.$$ # (2) A_k is in a non-numerical domain: First, check the ranking order of $T_i.A_k$ and $r_j.A_k$, respectively. Then, the closeness degree between $r_j.A_k$ and $T_i.A_k$ can be calculated as follows: $$CDv_{ji}(r_j.A_k, T_i.A_k) = \begin{cases} \frac{1}{R_{\text{domain}}[r_j.A_k, T_i.A_k]} & \text{if } \operatorname{Rank}(T_i.A_k) > \operatorname{Rank}(r_j.A_k), \\ R_{\text{domain}}[r_j.A_k, T_i.A_k] & \text{if } \operatorname{Rank}(T_i.A_k) \leqslant \operatorname{Rank}(r_j.A_k). \end{cases}$$ The closeness degree between tuple T_i and rule r_j can be calculated as follows: $$CD(r_j, T_i) = \sum_{k=1}^{n} CDv_{ji}(r_j.A_i, T_k.A_k) * w_{jk},$$ where w_{jk} is the weight of attribute A_k of rule r_j and $1 \le k \le n$. After the closeness degree between tuple T_i and each rule r_j in the rule base has been computed, where $1 \le j \le m$, the rule whose closeness degree with respect to tuple T_i closest to 1 is chosen. If rule r_j is the closest one to tuple T_i , then the value of attribute B can be estimated as follows: $$T_i.B = W_i.$$ For more details, please refer to [5]. #### 4. A new method for estimating null values in relational database systems In this section, we present a new method to estimate null values in relational database systems based on automatic clustering techniques. Table 2 shows a relation in a relational database system including four attributes: "W", "X", "Y" and "Z". In Table 2, the values of the attribute Z are dependent on the values of the attributes "X" and "Y" (i.e., the attribute "Z" is functional dependent on the attributes "X" and "Y"). That is, the attributes "X" and "Y" are called independent variables and the attribute "Z" is called a dependent variable. Thus, we can apply the concepts of "correlation" and "coefficient of determination" of the regression analysis of statistics [1,15,17] to represent the weights of attributes. The definitions are shown as follows. Table 2 A relation in a relational database system | W | X | Y | Z | | |-------|-------|-------|-------|--| | S_1 | D_1 | E_1 | N_1 | | | S_2 | D_2 | E_2 | N_2 | | | : | : | : | | | | S_m | D_m | E_m | N_m | | **Definition 1.** Assume that X is an independent variable and Y is a dependent variable, then the degree of correlation r(X,Y) between the variables X and Y is denoted by: $$r(X,Y) = \frac{\sum_{i} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{\sqrt{\sum_{i} (X_{i} - \overline{X})^{2}} \sqrt{\sum_{i} (Y_{i} - \overline{Y})^{2}}},$$ (1) where X_i and \overline{X} denote a possible value and the mean value of X, respectively, Y_i and \overline{Y} denote a possible value and the mean value of Y, respectively, and $r(X,Y) \in [-1,1]$. **Definition 2.** Assume that X is an independent variable and Y is a dependent variable, then the Coefficient of Determination COD(X, Y) from X to Y is $$COD(X, Y) = (r(X, Y))^{2},$$ (2) where r(X, Y) denotes the degree of correlation between the variables X and Y, and $COD(X, Y) \in [0, 1]$. If an attribute is in a non-numerical domain, we can assign a real value to each value of the attribute. Therefore, we can represent a tuple in a relation of a relational database system in terms of a vector. For example, the tuple whose EMP-ID is S_2 in Table 2 can be represented by (D_2, E_2, N_2) . According to the values of the attribute "Z", we can partition m tuples in a relation of a relational database system using the automatic clustering algorithm we presented in [9]. Assume that after applying the automatic clustering algorithm described previously, we obtain k clusters (i.e., cluster₁, cluster₂,..., and cluster_k), where $1 \le k \le m$, then we can derive some important information for estimating null values of the attribute "Z". This important information includes C_i , $COD_{i,d}$, $COD_{i,e}$, ΔDS_i , and ΔES_i , where C_i denotes the cluster center of cluster_i, $COD_{i,d}$ denotes the "normalized coefficient of determination" from the attribute "X" to the attribute "Z" of cluster_i, $COD_{i,e}$ denotes the "normalized coefficient of determination" from the attribute "Y" to the attribute "Z" for per unit of the value of the attribute "X" of cluster_i, and ΔES_i denotes the variation of the value of the attribute "Z" for per unit of the value of the attribute "Z" for per unit of the value of the attribute "Z" for per unit of the value of the attribute "Z" for per unit of the value of the attribute "Y" of cluster_i, and $1 \le i \le k$. The algorithm for estimating null values in relational database systems shown in Table 2 based on automatic clustering techniques is now presented as follows: Step 1: According to the values of the attribute "Z", partition the *m* tuples of a relation in a relational database system using the automatic clustering algorithm we presented in [9], where the automatic clustering algorithm builds clusters by using tuples which contain non-null values. Assume that we obtain k clusters (i.e., cluster₁, cluster₂,..., and cluster_k) shown as follows: $$\begin{aligned} \text{cluster}_1 &= \{N_{1,1}, N_{1,2}, \dots, N_{1,p_1}\}, \\ \text{cluster}_2 &= \{N_{2,1}, N_{2,2}, \dots, N_{2,p_2}\}, \\ & & \vdots \\ \text{cluster}_k &= \{N_{k,1}, N_{k,2}, \dots, N_{k,p_k}\}, \end{aligned}$$ where $1 \le k \le m$, $N_{i,j}$ denotes the *j*th element of cluster_i, p_i denotes the number of elements in cluster_i, and $1 \le i \le k$. Step 2: Calculate the cluster center C_i of cluster, where $1 \le i \le k$, shown as follows: $$C_{i} = \left(\frac{\sum_{j=1}^{p} D_{i,j}}{p}, \frac{\sum_{j=1}^{p} E_{i,j}}{p}, \frac{\sum_{j=1}^{p} N_{i,j}}{p}\right) = (D_{i_center}, E_{i_center}, N_{i_center}), \quad (3)$$ where p denotes the number of elements in cluster_i, $D_{i,j}$ denotes the attribute value of the attribute "X" of the jth element of cluster_i, $E_{i,j}$ denotes the attribute value of the attribute "Y" of the jth element of cluster_i, $N_{i,j}$ denotes the attribute value of the attribute "Z" of the jth element of cluster_i, D_{i_center} denotes the average attribute value of the attribute "Z" of cluster_i, E_{i_center} denotes the average attribute value of the attribute "Z" of cluster_i, N_{i_center} denotes the average attribute value of the attribute "Z" of cluster_i, $1 \le j \le p$, and $1 \le p \le m$. - Step 3: Based on formula (1), calculate the degree of correlation $r_i(X,Z)$ between the attributes "Z" and "Z", and the degree of correlation $r_i(Y,Z)$ between the attributes "Y" and "Z" of cluster $_i$, respectively, where $1 \le i \le k$. If there is only one element in cluster $_i$, then let $r_i(X,Z) = r_i(Y,Z) = 0.5000$. - Step 4: Based on formula (2), calculate the coefficient of determination from the attribute "X" to the attribute "Z" and the coefficient of determination from the attribute "Y" to the attribute "Z" of cluster, where $1 \le i \le k$, and then normalize them. The normalized coefficient of determination from the attribute "X" to the attribute "Z" of cluster, is denoted by $COD_{i,d}$ and the normalized coefficient of determination from the attribute "Y" to the attribute "Z" of cluster, is denoted by $COD_{i,e}$. - Step 5: Calculate the variation of the value of the attribute "Z" for per unit of the value of the attribute "X" of cluster_i (i.e., ΔDS_i) and the variation of the value of the attribute "Z" for per unit of the value of the attribute "Y" of cluster_i (i.e., ΔES_i). Assume that there are p elements in cluster_i, $1 \le p \le m$, and assume that the jth element of cluster_i is de- noted by $(D_{i,j}, E_{i,j}, N_{i,j})$, where $1 \le j \le p$, then ΔDS_i and ΔES_i are calculated as follows: $$\Delta DS_{i} = \begin{cases} 0, & \text{if } p = 1\\ \pm COD_{i,d} \times \frac{\sum_{j=1}^{p} \left| N_{i_center} - N_{i,j} \right|}{\sum_{j=1}^{p} \left| D_{i_center} - D_{i,j} \right|}, & \text{if } 2 \leqslant p \leqslant m \end{cases}$$ $$(4)$$ $$\Delta ES_{i} = \begin{cases} 0, & \text{if } p = 1\\ \pm COD_{i,e} \times \frac{\sum_{j=1}^{p} \left| N_{i_center} - N_{i,j} \right|}{\sum_{j=1}^{p} \left| E_{i_center} - E_{i,j} \right|}, & \text{if } 2 \leqslant p \leqslant m \end{cases}$$ $$(5)$$ The signs of ΔDS_i and ΔES_i are the same as the signs of correlation $r_i(X, Z)$ and $r_i(Y, Z)$, respectively. Step 6: Let $(d, e, N_{\text{estimated}})$ denote the tuple of an employee whose "X" is d, "Y" is e, and "Z" is a null value. Calculate the Euclidean Degree–Experience distance Dist_i between $(d, e, N_{\text{estimated}})$ and $(D_{i_\text{center}}, E_{i_\text{center}}, N_{i_\text{center}})$ shown as follows: $$Dist_i = \sqrt{(D_{i_center} - d)^2 + (E_{i_center} - e)^2},$$ (6) where $1 \le i \le k$. If $\mathrm{Dist}_p = \mathrm{Min}(\mathrm{Dist}_1, \mathrm{Dist}_2, \dots, \mathrm{Dist}_k)$, where $1 \le p \le k$, then we let $(d, e, N_{\mathrm{estimated}})$ be an element of cluster_p. Step 7: Calculate the estimated value $N_{\text{estimated}}$ of the attribute "Salary" as follows: $$N_{\text{estimated}} = N_{p_\text{center}} + \Delta DS_p \times (d - D_{p_\text{center}}) + \Delta ES_p \times (e - E_{p_\text{center}}),$$ (7) where $1 \le p \le k$, D_{p_center} denotes the average value of the attribute "X" of cluster_p, E_{p_center} denotes the average value of the attribute "Y" of cluster_p, and N_{p_center} denotes the average value of the attribute "Z" of cluster_p. After calculating the value of $N_{\text{estimated}}$, we can calculate the estimated error shown as follows: Estimated Error Rate = $$\frac{N_{\text{estimated}} - \text{Original Value}}{\text{Original Value}} \times 100\%$$. ## 5. An example to estimate null values in relational database systems Table 3 [6] shows a relation in a relational database in which the tuple whose "EMP-ID" is S_{23} has a null value in the attribute "Salary", where the attribute $S_{21} S_{22}$ S_{23} | EMP-ID | Degree | Experience | Salary | |----------|----------|------------|--------| | S_1 | Ph.D. | 7.200 | 63000 | | S_2 | Master | 2.000 | 37000 | | S_3 | Bachelor | 7.000 | 40000 | | S_4 | Ph.D. | 1.200 | 47000 | | S_5 | Master | 7.500 | 53000 | | S_6 | Bachelor | 1.500 | 26000 | | S_7 | Bachelor | 2.300 | 29000 | | S_8 | Ph.D. | 2.000 | 50000 | | S_9 | Ph.D. | 3.800 | 54000 | | S_{10} | Bachelor | 3.500 | 35000 | | S_{11} | Master | 3.500 | 40000 | | S_{12} | Master | 3.600 | 41000 | | S_{13} | Master | 10.000 | 68000 | | S_{14} | Ph.D. | 5.000 | 57000 | | S_{15} | Bachelor | 5.000 | 36000 | | S_{16} | Master | 6.200 | 50000 | | S_{17} | Bachelor | 0.500 | 23000 | | S_{18} | Master | 7.200 | 55000 | | S_{19} | Master | 6.500 | 51000 | | S_{20} | Ph.D. | 7.800 | 65000 | Table 3 A relation contains null values [6] "Salary" is functional dependent on the attributes "Degree" and "Experience". We can estimate this null value based on the proposed algorithm. Because the ranking order of the values of the attribute "Degree" is 8.100 8.500 4.500 64000 70000 NULL $$Rank(Ph.D.) > Rank(Master) > Rank(Bachelor),$$ Master Ph.D. Master "Bachelor" is assigned to 1.000, "Master" is assigned to 2.000, and "Ph.D." is assigned to 3.000, where these assignments can get the best estimated accuracy rate for estimating null values. Table 4 shows the results after assigning the real values to the attribute values of the attribute "Degree". The process of estimating null values in the relational database system is illustrated as follows: [Step 1] Based on the automatic clustering algorithm we presented in [9], we can cluster all of the tuples in Table 4 except the tuple whose EMP-ID is 4₂₃ according to the attribute values of "Salary" in Table 4. The cluster results are shown as follows: | Table 4 | | | | |------------------------------------|-------------------------|------------------------|----------| | A relation after assigning real va | lues to the attribute v | alues of the attribute | "Degree" | | EMP-ID | Degree | Experience | Salary | |----------|--------|------------|--------| | S_1 | 3.000 | 7.200 | 63000 | | S_2 | 2.000 | 2.000 | 37000 | | S_3 | 1.000 | 7.000 | 40000 | | S_4 | 3.000 | 1.200 | 47000 | | S_5 | 2.000 | 7.500 | 53000 | | S_6 | 1.000 | 1.500 | 26000 | | S_7 | 1.000 | 2.300 | 29000 | | S_8 | 3.000 | 2.000 | 50000 | | S_9 | 3.000 | 3.800 | 54000 | | S_{10} | 1.000 | 3.500 | 35000 | | S_{11} | 2.000 | 3.500 | 40000 | | S_{12} | 2.000 | 3.600 | 41000 | | S_{13} | 2.000 | 10.000 | 68000 | | S_{14} | 3.000 | 5.000 | 57000 | | S_{15} | 1.000 | 5.000 | 36000 | | S_{16} | 2.000 | 6.200 | 50000 | | S_{17} | 1.000 | 0.500 | 23000 | | S_{18} | 2.000 | 7.200 | 55000 | | S_{19} | 2.000 | 6.500 | 51000 | | S_{20} | 3.000 | 7.800 | 65000 | | S_{21} | 2.000 | 8.100 | 64000 | | S_{22} | 3.000 | 8.500 | 70000 | | S_{23} | 2.000 | 4.500 | NULL | Then, based on Table 4, we can get the EMP-ID of the elements of each cluster shown as follows: ``` cluster₁ = \{S_{17}\}, cluster₂ = \{S_6\}, cluster₃ = \{S_7\}, cluster₄ = \{S_2, S_{10}, S_{15}\}, cluster₅ = \{S_3, S_{11}, S_{12}\}, cluster₆ = \{S_4\}, cluster₇ = \{S_5, S_8, S_9, S_{14}, S_{16}, S_{18}, S_{19}\}, cluster₈ = \{S_1, S_{20}, S_{21}\}, cluster₉ = \{S_{13}, S_{22}\}. ``` [Step 2] Based on formula (2), we can calculate the cluster center C_i of each cluster, where $1 \le i \le 9$, shown as follows: ``` C_1 = (1.000, 0.500, 23000), C_2 = (1.000, 1.500, 26000), C_3 = (1.000, 2.300, 29000), C_4 = ((2.000 + 1.000 + 1.000)/3, (2.000 + 3.500 + 5.000)/3, (37000 + 35000 + 36000)/3) = (1.333, 3.500, 36000), C_5 = ((1.000 + 2.000 + 2.000)/3, (7.000 + 3.500 + 3.600)/3, (40000 + 40000 + 41000)/3) = (1.667, 4.700, 40333.333), C_6 = (3.000, 1.200, 47000), C_7 = ((2.000 + 3.000 + 3.000 + 3.000 + 2.000 + 2.000 + 2.000)/7, (7.500) +2.000+3.800+5.000+6.200+7.200+6.500)/7, (53000+ 50000 + 54000 + 57000 + 50000 + 55000 + 51000)/7 = (2.429, 5.457, 52857.143), C_8 = ((3.000 + 3.000 + 2.000)/3, (7.200 + 7.800 + 8.100)/3, (63000 + 65000 + 64000)/3) = (2.667, 7.700, 64000), C_9 = ((2.000 + 3.000)/2, (10.000 + 8.500)/2, (68000 + 70000)/2) = (2.500, 9.250, 69000). ``` Table 5 summarizes the results of the calculations. Fig. 3 shows each cluster center C_i , where $1 \le i \le 9$, where the symbol \bullet denotes a tuple | cluster _i | EMP-ID of each element | Cluster center C_i | |----------------------|-------------------------------------------------------------------|---------------------------| | cluster ₁ | S_{17} | (1.000, 0.500, 23000) | | cluster ₂ | S_6 | (1.000, 1.500, 26000) | | cluster ₃ | S_7 | (1.000, 2.300, 29000) | | cluster ₄ | S_2, S_{10}, S_{15} | (1.333, 3.500, 36000) | | cluster ₅ | S_3, S_{11}, S_{12} | (1.667, 4.700, 40333.333) | | cluster ₆ | S_4 | (3.000, 1.200, 47000) | | cluster7 | S_5 , S_8 , S_9 , S_{14} , S_{16} , S_{18} , S_{19} | (2.429, 5.457, 52857.143) | | cluster ₈ | S_1, S_{20}, S_{21} | (2.667, 7.700, 64000) | | cluster9 | S_{13}, S_{22} | (2.500, 9.250, 69000) | Table 5 The clustering results and each cluster center of the relation shown in Table 6 and the symbol ☆ denotes a cluster center. - [Step 3] Based on formula (1), we can calculate the degree of correlation r_i (Degree, Salary) between the attributes "Degree" and "Salary" and the degree of correlation r_i (Experience, Salary) between the attributes "Experience" and "Salary" of cluster_i, respectively, where $1 \le i \le 9$. For example, the degree of correlation r_4 (Degree, Salary) between the attributes "Degree" and "Salary" and the degree of correlation and r_4 (Experience, Salary) between the attributes "Experience" and "Salary" of cluster₄ are calculated as follows: - (a) Calculate the degree of correlation between the attributes "Degree" and "Salary": Because the values of the attribute "EMP-ID" of the tuples in cluster₄ are S_2 , S_{10} and S_{15} , from Table 4, we can see that - (i) The values of the attributes "Degree" and "Salary" of the tuple whose EMP-ID = S_2 are 2.000 and 37000, respectively. Thus, we let $X_1 = 2.000$ and $Y_1 = 37000$. - (ii) The values of the attributes "Degree" and "Salary" of the tuple whose EMP-ID = S_{10} are 1.000 and 35000, respectively. Thus, we let $X_2 = 1.000$ and $Y_2 = 35000$. - (iii) The values of the attributes "Degree" and "Salary" of the tuple whose EMP-ID = S_{15} are 1.000 and 36000, respectively. Thus, we let $X_3 = 1.000$ and $Y_3 = 360004$. Therefore, we can get $$\overline{X} = (2.000 + 1.000 + 1.000) / = 1.333,$$ $$\overline{Y} = (37000 + 35000 + 36000)/3 = 36000.$$ Based on formula (1), we can get the degree of correlation r_4 (Degree, Salary) between the attributes "Degree" and "Salary" of cluster₄ shown as follows: Fig. 3. Diagram representation of each cluster center. Table 6 The degree of correlation r_i (Degree, Salary) and r_i (Experience, Salary) | Cluster _i | r_i (Degree, Salary) | r_i (Experience, Salary) | |----------------------|------------------------|----------------------------| | cluster ₁ | 0.500 | 0.500 | | cluster ₂ | 0.500 | 0.500 | | cluster ₃ | 0.500 | 0.500 | | cluster ₄ | 0.866 | -0.500 | | cluster ₅ | 0.500 | -0.478 | | cluster ₆ | 0.500 | 0.500 | | cluster ₇ | 0.283 | 0.189 | | cluster ₈ | 0.000 | 0.655 | | cluster9 | 1.000 | -1.000 | $$r_4(\text{Degree}, \text{Salary}) = \frac{\sum_{i=1}^{3} (X_i - 1.333)(Y_i - 36000)}{\sqrt{\sum_{i=1}^{3} (X_i - 1.333)^2} \sqrt{\sum_{i=1}^{3} (Y_i - 36000)^2}} = 0.866.$$ - (b) Calculate the degree of correlation between the attributes "Experience" and "Salary": Because the values of the attribute "EMP-ID" of the tuples in cluster₄ are S_2 , S_{10} and S_{15} , from Table 4, we can see that - (i) The values of the attributes "Experience" and "Salary" of the tuple whose EMP-ID = S_2 are 2.000 and 37000, respectively. Thus, we let $X_1 = 2.000$ and $Y_1 = 37000$. - (ii) The values of the attributes "Experience" and "Salary" of the tuple whose EMP-ID = S_{10} are 3.500 and 35000, respectively. Thus, we let $X_2 = 3.500$ and $Y_2 = 35000$. - (iii) The values of the attributes "Experience" and "Salary" of the tuple whose EMP-ID = S_{15} are 5.000 and 36000, respectively. Thus, we let $X_3 = 5.000$ and $Y_3 = 36000$. Therefore, we can get: $$\overline{X} = (2.000 + 3.500 + 5.000)/3 = 3.500,$$ $\overline{Y} = (37000 + 35000 + 36000)/3 = 36000.$ Based on formula (1), we can get the degree of correlation r_4 (Experience, Salary) between the attributes "Degree" and "Salary" of cluster₄ shown as follows: $$r_4(\text{Experience, Salary}) = \frac{\sum_{i=1}^{3} (X_i - 3.500)(Y_i - 36000)}{\sqrt{\sum_{i=1}^{3} (X_i - 3.500)^2} \sqrt{\sum_{i=1}^{3} (Y_i - 36000)^2}}$$ $$= -0.500.$$ In the same way, we can obtain the degree of correlation r_i (Degree, Salary) between the attributes "Degree" and "Salary" and the degree of correlation r_i (Experience, Salary) between the attributes "Experience" and "Salary" of each cluster, where $1 \le i \le 9$, as shown in Table 6. - [Step 4] Based on formula (2), we can calculate the values of $COD_{i,d}$ and $COD_{i,e}$ of cluster_i, respectively, where $1 \le i \le 9$. For example, $COD_{4,d}$ and $COD_{4,e}$ are calculated as follows: - (a) Calculate the coefficient of determination from the attribute "Degree" to the attribute "Salary": $$COD_4(Degree, Salary) = (r_4(Degree, Salary))^2 = (0.866)^2 = 0.750.$$ (b) Calculate the coefficient of determination from the attribute "Experience" to the attribute "Salary": COD₄(Experience, Salary) = $$(r_4(\text{Experience}, \text{Salary}))^2 = (-0.500)^2$$ = 0.250. After normalizing the value of COD_4 (Degree, Salary) and COD_4 (Experience, Salary), we can get the normalized value of $COD_{4,d}$ and $COD_{4,e}$, respectively, shown as follows: $$\begin{split} COD_{4,d} &= \frac{COD_4(Degree, Salary)}{COD_4(Degree, Salary) + COD_4(Experience, Salary)} \\ &= \frac{0.750}{0.750 + 0.250} = 0.750, \\ COD_{4,e} &= \frac{COD_4(Experience, Salary)}{COD_4(Degree, Salary) + COD_4(Experience, Salary)} \\ &= \frac{0.250}{0.750 + 0.250} = 0.250. \end{split}$$ In the same way, we can obtain the value of $COD_{i,d}$ and $COD_{i,e}$ of each cluster, where $1 \le i \le 9$, as shown in Table 7. - [Step 5] Based on formula (4) and formula (5), we can calculate the value of ΔDS_i and ΔES_i of each cluster, where $1 \le i \le 9$. For example, the value of ΔDS_4 and ΔES_4 are calculated as follows: - (i) From Table 5, we can see that the EMP-ID of the tuples in cluster₄ are S_2 , S_{10} and S_{15} , and the cluster center C_4 of cluster₄ is (1.333, 3.500, 36000). Thus, $D_{4_\text{center}} = 1.333$, $E_{4_\text{center}} = 3.500$ and $N_{4_\text{center}} = 36000$. - (ii) From Table 4, we can see that $D_{4,1}=2.000$, $D_{4,2}=1.000$, $D_{4,3}=1.000$, $E_{4,1}=2.000$, $E_{4,2}=3.500$, $E_{4,3}=5.000$, $N_{4,1}=37000$, $N_{4,2}=35000$ and $N_{4,3}=36000$. - (iii) From Table 7, we can see that $COD_{4,d} = 0.750$ and $COD_{4,e} = 0.250$. Table 7 The value of $COD_{i,d}$ and $COD_{i,e}$ of each cluster_i | Cluster _i | $\mathrm{COD}_{i,d}$ | $\mathrm{COD}_{i,e}$ | | |----------------------|----------------------|----------------------|--| | cluster ₁ | 0.500 | 0.500 | | | cluster ₂ | 0.500 | 0.500 | | | cluster ₃ | 0.500 | 0.500 | | | cluster ₄ | 0.750 | 0.250 | | | cluster ₅ | 0.522 | 0.478 | | | cluster ₆ | 0.500 | 0.500 | | | cluster ₇ | 0.692 | 0.308 | | | cluster ₈ | 0.000 | 1.000 | | | cluster ₉ | 0.500 | 0.500 | | Based on formula (4), we can get the value of ΔDS_4 shown as follows: $$\Delta DS_4 = COD_{4,d} \times \frac{\sum_{j=1}^{3} |N_{4_center} - N_{4,j}|}{\sum_{j=1}^{3} |D_{4_center} - D_{4,j}|} = 0.750 \times \frac{1000 + 1000 + 0}{0.667 + 0.333 + 0.333}$$ $$= 1127.820.$$ Based on formula (5), we can get the value of ΔES_4 shown as follows: $$\Delta ES_4 = -COD_{4,e} \times \frac{\sum_{j=1}^{3} |N_{4_center} - N_{4,j}|}{\sum_{j=1}^{3} |E_{4_center} - E_{4,j}|}$$ $$= -0.250 \times \frac{1000 + 1000 + 0}{1500 + 0.00 + 1500} = -166.667.$$ In the same way, we can get the values of ΔDS_i and ΔES_i of each cluster, where $1 \le i \le 9$, as shown in Table 8. [Step 6] Based on formula (6), we can calculate the Euclidean Degree-Experience distance Dist_i between $S_{23}(2.000, 4.500, N_{\text{estimated}})$ and the cluster center C_i of cluster_i, where $1 \le i \le 9$. The results are shown as follows: $$\begin{split} \text{Dist}_1 &= \sqrt{\left(1.000 - 2.00\right)^2 + \left(0.500 - 4.500\right)^2} = 4.123, \\ \text{Dist}_2 &= \sqrt{\left(1.000 - 2.000\right)^2 + \left(1.500 - 4.500\right)^2} = 3.162, \\ \text{Dist}_3 &= \sqrt{\left(1.000 - 2.000\right)^2 + \left(2.300 - 4.500\right)^2} = 2.417, \end{split}$$ Table 8 ΔDS_i and ΔES_i of each cluster, | Cluster _i | $\Delta \mathrm{DS}_i$ | $\Delta \mathrm{ES}_i$ | | |----------------------|------------------------|------------------------|--| | cluster ₁ | 0.000 | 0.000 | | | cluster ₂ | 0.000 | 0.000 | | | cluster ₃ | 0.000 | 0.000 | | | cluster ₄ | 1127.820 | -166.667 | | | cluster ₅ | 523.678 | -138.443 | | | cluster ₆ | 0.000 | 0.000 | | | cluster ₇ | 3047.114 | 431.578 | | | cluster ₈ | 0.000 | 2000.000 | | | cluster ₉ | 1000.000 | -666.667 | | $$\begin{split} \text{Dist}_4 &= \sqrt{\left(1.333 - 2.000\right)^2 + \left(3.500 - 4.500\right)^2} = 1.202, \\ \text{Dist}_5 &= \sqrt{\left(1.667 - 2.000\right)^2 + \left(4.700 - 4.500\right)^2} = 0.388, \\ \text{Dist}_6 &= \sqrt{\left(3.000 - 2.000\right)^2 + \left(1.200 - 4.500\right)^2} = 3.448, \\ \text{Dist}_7 &= \sqrt{\left(2.429 - 2.000\right)^2 + \left(5.457 - 4.500\right)^2} = 1.049, \\ \text{Dist}_8 &= \sqrt{\left(2.667 - 2.000\right)^2 + \left(7.700 - 4.500\right)^2} = 3.269, \\ \text{Dist}_9 &= \sqrt{\left(2.500 - 2.000\right)^2 + \left(9.250 - 4.500\right)^2} = 4.776. \end{split}$$ Because Dist₅ has the smallest value among the values of Dist₁, Dist₂,..., and Dist₉, we let S_{23} (2.000, 4.500, $N_{\text{estimated}}$) be an element of cluster₅. [Step 7] Based on formula (7), the estimated value $N_{\text{estimated}}$ of the attribute "Salary" of the tuple whose EMP-ID = S_{23} can be calculated as follows: Table 9 A relation in a relational database system [5,6] | EMP-ID | Degree | Experience | Salary | |----------|----------|------------|--------| | S_1 | Ph.D. | 7.200 | 63000 | | S_2 | Master | 2.000 | 37000 | | S_3 | Bachelor | 7.000 | 40000 | | S_4 | Ph.D. | 1.200 | 47000 | | S_5 | Master | 7.500 | 53000 | | S_6 | Bachelor | 1.500 | 26000 | | S_7 | Bachelor | 2.300 | 29000 | | S_8 | Ph.D. | 2.000 | 50000 | | S_9 | Ph.D. | 3.800 | 54000 | | S_{10} | Bachelor | 3.500 | 35000 | | S_{11} | Master | 3.500 | 40000 | | S_{12} | Master | 3.600 | 41000 | | S_{13} | Master | 10.000 | 68000 | | S_{14} | Ph.D. | 5.000 | 57000 | | S_{15} | Bachelor | 5.000 | 36000 | | S_{16} | Master | 6.200 | 50000 | | S_{17} | Bachelor | 0.500 | 23000 | | S_{18} | Master | 7.200 | 55000 | | S_{19} | Master | 6.500 | 51000 | | S_{20} | Ph.D. | 7.800 | 65000 | | S_{21} | Master | 8.100 | 64000 | | S_{22} | Ph.D. | 8.500 | 70000 | Table 10 A comparison of the estimated results of the proposed method with the existing methods | EMP-ID | Degree | Experience | Salary | Chen-and-Ch
method [5] | en-and-Chen's
thod [5] | | -Yeh's
6] | The proposed | method | |-------------|-----------------|------------|--------|---------------------------|---------------------------|----------------------------|-----------------|--------------|-----------------| | | | | | Salary
(estimated) | Estimated error | Salary
(esti-
mated) | Estimated error | | Estimated error | | S_1 | Ph.D. | 7.200 | 63000 | 63000 | +0.000 | 65000 | +3.175 | 63000.000 | +0.000 | | S_2 | Master | 2.000 | 37000 | 33711 | -8.889 | 30704 | -17.016 | 37002.256 | +0.006 | | S_3 | Bachelor | 7.000 | 40000 | 46648 | +16.620 | 35000 | -12.500 | 39665.621 | -0.836 | | S_4 | Ph.D. | 1.200 | 47000 | 36216 | -22.945 | 46000 | -2.128 | 47000.000 | +0.000 | | S_5 | Master | 7.500 | 53000 | 56200 | +6.038 | 54500 | +2.830 | 52431.645 | -1.072 | | S_6 | Bachelor | 1.500 | 26000 | 27179 | +4.535 | 26346 | +1.331 | 26000.000 | +0.000 | | S_7 | Bachelor | 2.300 | 29000 | 29195 | + 0.672 | 28500 | -1.724 | 29000.000 | +0.000 | | S_8 | Ph.D. | 2.000 | 50000 | 39861 | -20.278 | 50000 | +0.000 | 53105.080 | +6.210 | | S_9 | Ph.D. | 3.800 | 54000 | 48061 | -10.998 | 55000 | +1.852 | 53881.920 | -0.219 | | S_{10} | Bachelor | 3.500 | 35000 | 32219 | -7.946 | 31538 | -9.891 | 35624.436 | +1.784 | | S_{11} | Master | 3.500 | 40000 | 40544 | +1.360 | 41590 | +3.975 | 40673.849 | +1.685 | | S_{12} | Master | 3.600 | 41000 | 41000 | 0.000 | 45159 | +10.144 | 40660.005 | -0.829 | | S_{13} | Master | 10.000 | 68000 | 64533 | -5.099 | 65000 | -4.412 | 68000.000 | +0.000 | | S_{14} | Ph.D. | 5.000 | 57000 | 55666 | -2.34 | 55000 | -3.509 | 54399.814 | -4.562 | | S_{15} | Bachelor | 5.000 | 36000 | 35999 | -0.003 | 35000 | -2.778 | 35374.435 | -1.738 | | S_{16} | Master | 6.200 | 50000 | 51866 | +3.732 | 48600 | -2.800 | 51870.594 | +3.741 | | S_{17} | Bachelor | 0.500 | 23000 | 24659 | +7.213 | 25000 | +8.696 | 23000.000 | +0.000 | | S_{18} | Master | 7.200 | 55000 | 55200 | +0.364 | 52400 | -4.727 | 52302.172 | -4.905 | | S_{19} | Master | 6.500 | 51000 | 52866 | +3.659 | 49500 | -2.941 | 52000.067 | +1.961 | | S_{20} | Ph.D. | 7.800 | 65000 | 65000 | +0.000 | 65000 | +0.000 | 64200.000 | -1.231 | | S_{21} | Master | 8.100 | 64000 | 58200 | -9.063 | 58700 | -8.281 | 64800.000 | +1.250 | | S_{22} | Ph.D. | 8.500 | 70000 | 67333 | -3.810 | 65000 | -7.143 | 70000.000 | +0.000 | | Average est | timated error 1 | rate (%) | | 6.162 | | 5.084 | | 1.456 | | $$N_{\text{estimated}} = N_{5_{\text{center}}} + \Delta DS_5 \times (2.000 - D_{5_{\text{center}}}) + \Delta ES_5 \times (4.500 - E_{5_{\text{center}}})$$ = $40333.333 + 523.678 \times (2.000 - 1.667)$ + $(-138.443) \times (4.500 - 4.700)$ = 40186.637 . Therefore, the estimated value of the attribute "Salary" of the tuple whose EMP-ID = S_{23} is 40186.637. Table 9 [5,6] shows a relation of a relational database system. We apply the proposed method to estimate the attribute value of the attribute "Salary" of each tuple shown in Table 9 and compare the estimated error of each tuple with the ones in [5,6], as shown in Table 10, where we made 22 experiments and each experiment consider 1 null value and 21 non-null values of the attribute "Salary" of Table 9. From Table 10, we can see that the average estimated error rate of the proposed method is smaller than the ones presented in [5,6]. That is, the average estimated accuracy rate of the proposed method is better than the ones presented in [5,6]. ## 6. Conclusions In this paper, we have presented a new method to estimate null values in relational database systems based on automatic clustering techniques. The proposed method clusters data in advance, such that it only needs to process the most proper clusters instead of all the data in the relational database systems. From Table 10, we can see that the average estimated error rate of the proposed method is smaller than the ones presented in [5,6]. That is, the average estimated accuracy rate of the proposed method is better than the ones presented in [5,6]. The proposed method provides a useful way to estimate null values in relational database systems. ## Acknowledgements This work was supported in part by the National Science Council, Republic of China, under Grant NSC 91-2213-E-011-052. ### References - [1] M.L. Bernson, D.M. Levine, M. Goldstein, Intermediate Statistical Methods and Applications, Prentice-Hall, New Jersey, 1983. - [2] S.K. Bhatia, J.S. Deogun, Conceptual clustering in information retrieval, IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics 28 (3) (1998) 427–436. - [3] F. Can, E.A. Fox, C.D. Snavely, R.K. France, Incremental clustering for very large databases: initial MARIAN experience, Information Sciences 84 (1-2) (1995) 101–114. - [4] K.S. Candan, J. Grant, V.S. Subrahmanian, A unified treatment of null values using constraints, Information Sciences 98 (1-4) (1997) 99–156. - [5] S.M. Chen, H.H. Chen, Estimating null values in the distributed relational databases environments, Cybernetics and Systems: An International Journal 31 (8) (2000) 851–871. - [6] S.M. Chen, M.S. Yeh, Generating fuzzy rules from relational database systems for estimating null values, Cybernetics and Systems: An International Journal 29 (6) (1998) 363–376. - [7] S. Hirano, X. Sun, S. Tsumoto, Comparison of clustering methods for clinical databases, Information Sciences 159 (3-4) (2004) 155–165. - [8] E. Horowitz, S. Sahni, Fundamentals of Data Structures, Computer Science Press, New York, 1982. - [9] H.R. Hsiao, S.M. Chen, A new automatic clustering algorithm for fuzzy query processing, in: Proceedings of the 6th Conference on Artificial Intelligence and Applications, Kaohsiung, Taiwan, Republic of China, 2001, pp. 550–555. - [10] H.R. Hsiao, S.M. Chen, A new method to estimate null values in relational database systems, in: Proceedings of the 2002 International Conference on Information Management, Taipei, Taiwan, Republic of China, 2002. - [11] C.M. Huang, S.M. Chen, A new method to estimate null values in relational database systems using genetic algorithms, in: Proceedings of the 6th Conference on Artificial Intelligence and Applications, Kaohsiung, Taiwan, Republic of China, 2001, pp. 599–604. - [12] C.M. Huang, S.M. Chen, Estimating null values in relational database systems with a negative dependency relationship between attributes, in: Proceedings of the 2002 International Conference on Information Management, Taipei, Taiwan, Republic of China, 2002. - [13] M. Kamel, B. Hadfield, M. Ismail, Fuzzy query processing using clustering techniques, Information Processing and Management 26 (2) (1990) 279–293. - [14] G.J. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, New Jersey, 1995. - [15] S.W. Lee, S.M. Chen, A new method to generate fuzzy rules from relational database systems, in: Proceedings of the 9th National Conference on Fuzzy Theory and Its Applications, Tao-Yuan, Taiwan, Republic of China, 2001, pp. 702–707. - [16] Y.S. Lin, S.M. Chen, Using automatic clustering techniques for fuzzy query processing in relational database systems, in: Proceedings of the 11th National Conference on Information Management, Kaohsiung, Taiwan, Republic of China, 2000. - [17] W. Mendenhall, R.J. Beaver, Introduction to probability and statistics, Wadsworth, Belmont, CA, 1994. - [18] S.Z. Selim, M.A. Ismail, Soft clustering of multidimensional data: a semi-fuzzy approach, Pattern Recognition 17 (5) (1984) 559–568. - [19] M.S. Yeh, S.M. Chen, A new method for fuzzy query processing using automatic clustering techniques, Journal of Computers 6 (1) (1994) 1–10.