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Abstract

We present a modification of the weighted K-nearest neighbours imputation method (KNNimpute) for missing values (MVs) estimation in

microarray data based on the reuse of estimated data. The method was called iterative KNN imputation (IKNNimpute) as the estimation is

performed iteratively using the recently estimated values.

The estimation efficiency of IKNNimpute was assessed under different conditions (data type, fraction and structure of missing data) by the

normalized root mean squared error (NRMSE) and the correlation coefficients between estimated and true values, and compared with that of other

cluster-based estimation methods (KNNimpute and sequential KNN). We further investigated the influence of imputation on the detection of

differentially expressed genes using SAM by examining the differentially expressed genes that are lost after MV estimation.

The performance measures give consistent results, indicating that the iterative procedure of IKNNimpute can enhance the prediction ability of

cluster-based methods in the presence of high missing rates, in non-time series experiments and in data sets comprising both time series and non-

time series data, because the information of the genes having MVs is used more efficiently and the iterative procedure allows refining the MV

estimates. More importantly, IKNN has a smaller detrimental effect on the detection of differentially expressed genes.
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1. Introduction

DNA microarrays are a high-throughput technology that

allows for the simultaneously monitoring of the mRNA levels

of thousands of genes in particular cells or tissues, giving a

global view of gene expression (Lockhart and Winzeler, 2000;

Schena et al., 1995; Schulze and Downward, 2001).

The data generated in a set of microarray experiments are

usually gathered in a matrix with genes in rows and

experimental conditions in columns. Frequently, these matrices

contain missing values (MVs). This is due to the occurrence of

imperfections during the microarray experiment (e.g. insuffi-

cient resolution, spotting problems, deposition of dust or

scratches on the slide, hybridization failures) that create suspect

values, which are usually thrown away and set as missing
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(Alizadeh et al., 2000). The in situ synthesized Affymetrix

GeneChips and the spotted cDNA (or oligonucleotide)

microarrays are the two most commonly used types of

microarray technology. The redundancy in design used in a

GeneChip (i.e. a gene is represented by a set of approximately

20 probe pairs) prevents the existence of MVs. This is not the

case for spotted cDNA microarrays, where usually each spot is

assigned to a unique gene, and the use of double to quadruple

spots for a gene is currently an exception. So, the loss at a spot

usually leads to the loss of information for a gene, and thus to a

MV in the gene expression data matrix. Therefore, in this work

we consider the estimation of MVs in gene expression data

obtained from spotted cDNA microarrays.

In some microarray data sets, the proportion of MVs is

significant. For example, some authors reported that the

percentage of gene profiles with at least one MV can be higher

than 85% (de Brevern et al., 2004). The presence of missing

gene expression values constitutes a problem for downstream

data analyses, since many of the methods employed (e.g.

classification and model-based clustering techniques) require
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complete matrices. Due to economic reasons or biological

sample availability, repeating the microarray experiments in

order to obtain a complete gene expression matrix is usually

unfeasible, so other alternatives have to be considered. The

simple approaches usually applied to handle missing gene

expression entries include removing the genes with MVs

before the analysis (case deletion), or replacing the MVs of a

gene with the average of the observed values over that gene

(mean substitution; Schafer and Graham, 2002). Another

common approach is to replace missing log2 transformed gene

expression ratios by zeros (Alizadeh et al., 2000). These

approaches have disadvantages: case deletion procedures may

bias the results if the remaining cases are unrepresentative of

the entire sample (Little and Rubin, 1987), while both mean

and zero substitutions distort relationships among variables

and artificially reduce the variance of the variable in question

(Little and Rubin, 1987; Schafer and Graham, 2002), since

the same value is used to replace missing entries in a given

gene.

To overcome these drawbacks, Troyanskaya et al. (2001)

proposed a method called weighted K-nearest neighbour

imputation (KNNimpute) that reconstructs the MVs using a

weighted average of K most similar genes. Overall, this

estimation method is more robust than others, such as

replacement by zero, row average or singular value decom-

position, to the fraction of missing elements and to the type of

data for which estimation is executed, performing better in non-

time series data or noisy data (Troyanskaya et al., 2001). As an

improvement of KNN imputation, Kim et al. (2004) proposed a

sequential KNN imputation method (SKNNimpute) that uses

the estimated values sequentially for the later nearest neighbour

calculation and estimation.

In a recent work, de Brevern et al. (2004) studied the stability

of gene clusters of microarray data including MVs or not,

specified by diverse hierarchical clustering algorithms, showing

that the MVs (even at a low rate) have important effects on the

gene clusters’ stability. Thus, the presence of MVs in the data

matrix should not be neglected, and MV estimation should be

regarded as a pre-processing step essential to obtain proper

results from microarray data analyses.

Although other methods have been proposed for estimating

gene expression missing data, such as regression-based

methods (Bø et al., 2004; Kim et al., 2005; Nguyen et al.,

2004; Brás and Menezes, 2006) and Bayesian approaches (Oba

et al., 2003), in this work we focus on the cluster-based

methods, since these are widely used for the replacement of

MVs in microarray data. For example, KNNimpute is the only

imputation method available in significance analysis of

microarrays (SAM; Tusher et al., 2001), prediction analysis

for microarrays (PAM; Tibshirani et al., 2002) and microarray

analysis of variance (MAANOVA; Kerr et al., 2000).

We propose an iterative procedure for the prediction of gene

expression MVs called iterative KNN imputation (IKNNim-

pute), and compare its performance with that of other

clustering-based imputation methods (KNNimpute and

SKNNimpute) for various rates of MVs and type of missing

structure using publicly available microarray data sets.
The methods are evaluated by comparing their estimates for

the artificial missing entries with the true values, using

measures such as normalized root mean squared errors,

correlation coefficients and bias. Though such approach gives

important measures of performance, a more fundamental and

functional question that should further be addressed is the effect

of the methods’ estimates on the final output of different

analysis methods, such as clustering algorithms or statistical

algorithms for the differential analysis of gene expression. In

the literature, such evaluations are lacking, and only a few cases

can be found (for example, see de Brevern et al., 2004; Ouyang

et al., 2004; Scheel et al., 2005; Jörnsten et al., 2005). In our

study, the impact of the imputation methods’ estimates on

significance analysis for differential expression is also

performed by comparing the lists of differentially expressed

genes obtained using the statistical method known as SAM

(Tusher et al., 2001). We opted to focus on the effects of

imputation on differential expression, since, although cluster

analysis of microarray data is capable of discovering coherent

patterns of gene expression, it gives little information about

statistical significance, i.e., about whether changes in gene

expression are experimentally significant.

2. Materials and methods

2.1. Notation

Throughout this paper, microarray data are represented by matrices with rows

corresponding to genes and columns to experimental conditions. In particular, G

represents the original data matrix (with real MVs), while X is a gene expression

matrix with p genes and n experiments (with p� n) that may contain missing

entries. The ith row of X represents the expression profile of the ith gene in the n

experiments, whereas xij denotes the expression level of gene i in sample j.

Using the notation of Nguyen et al. (2004), a gene with MVs is called target

gene, and the genes with available information for estimating its missing entries

constitute the set of candidate genes.

We also make use of the missing indicator matrix, R, defined by Rubin

(1976) to track the missing and non-missing entries of X. If the expression value

xij is available, the ijth element of R, rij, is equal to 1, otherwise it is zero.

2.2. Weighted KNN imputation and SKNN imputation

In cluster-based estimation, MVs are estimated by combining the expression

levels of K-nearest genes chosen based on a given similarity measure. Thus,

KNN predictions are based on the intuitive assumption that objects close in

distance are potentially similar. Both the measure to use for computing

similarities between genes and the number of nearest neighbours (K) must

be determined.

For a given target gene xi, KNNimpute (Troyanskaya et al., 2001) calculates

a weighted Euclidean distance dik between the target gene i and each candidate

gene k using the expression:

dik ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 ri jrk jðxk j � xi jÞ2Pn

j¼1 ri jrk j

vuut (1)

where rij is the element in the ith row and jth column of the missing indicator

matrix R. The missing entry j of target gene i is then estimated by the weighted

average of the expression values of the K most similar genes in experiment j:

ŷi j ¼
XK

k¼1

wikxk j (2)
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where wik is the weight for the kth neighbour gene of target gene i normalized by

the sum of the inverse weighted Euclidean distance for all K neighbours (i.e. the

contribution of each neighbour gene is weighted by the similarity of its

expression to that of the target gene):

wik ¼
1=dikPK

k¼1 1=dik

(3)

SKNNimpute (Kim et al., 2004) was proposed as an improvement to KNNim-

pute, differing from the latter method in two main points: (a) MVs are

estimated sequentially starting with the gene having the smallest missing

rate, and (b) SKNNimpute uses the estimated values for estimating the MVs of

the remaining genes. In SKNNimpute, X is split into two sets by considering

the genes with no MVs (Xcomplete) and the genes comprising MVs (Xincomplete).

The former matrix is used as the candidate set, while the latter contains the

target genes to be estimated following the order of their missing rate. Applying

the KNN principle, the target gene’s missing entries are filled according to

Eq. (2). However, once the estimation of a given target gene is completed, the

candidate set is updated with that gene, so that it can be used for the next

estimation round.

In KNNimpute, the set of candidate genes is constructed for each

missing position of a given target gene. Thus, in each estimation, the

candidate matrix may contain MVs. Therefore, the pairs of vectors target

gene/candidate gene may have different lengths. Ignoring this fact would be

assuming that expression levels are equal in both vectors, so that vectors

with more MVs would present smaller distances. Therefore, as presented in

Eq. (1), only the jointly available positions between both target and

candidate genes are used to compute the Euclidean distance, and the

number of such positions is used as weight (weighted Euclidean distance).

In SKNNimpute, all MVs in a given target gene are estimated simultaneously

using the selected neighbour genes, since the latter genes were taken from

Xcomplete. Moreover, a simple Euclidean distance can be used. Consequently,

SKNNimpute offers an advantage over KNNimpute in terms of speed.

2.3. IKNN imputation

As referred above, one of the main differences between KNNimpute and

SKNNimpute is due to the fact that in SKNNimpute the set of candidate

genes is continuously updated after completing each target gene, making it

possible to use former target genes as candidate genes. Reformulating the

concept of reusing the estimated data in the estimation process, we develop a new

method that we called iterative KNN imputation (IKNNimpute). IKNNimpute is

based on an iterative procedure that involves the following steps:

Step 1. Initialisation: replace all the MVs in X by the estimates given by row

(gene) averages, obtaining a complete matrix Xcomplete (0).

Step 2. hth estimation cycle (h = 1,. . .):
(1) F
or each target gene i in X:

a. Using Xcomplete (h�1), construct the matrix of candidate genes that

comprises all genes, except the one that is currently being estimated (i.e.

the target gene).

b. Compute the Euclidean distance between the target gene and each

candidate gene, and select the K nearest genes.

c. Impute the MVs in target gene i simultaneously by using a weighted

average of the expression levels of the K-nearest genes—Eq. (2).
(2) A
fter imputing all target genes, Xcomplete (h) is obtained.
(3) D
etermine the sum of squared differences between the estimated

positions of the complete matrices Xcomplete (h � 1) and Xcomplete (h)

obtained from the two last iterations:

dðhÞ ¼
XN

j¼1

ðŷ j
ðh�1Þ � ŷ j

ðhÞÞ2;
Step 3. If d(h) < t, stop. Otherwise, return to step (2) and iterate until the

convergence criterion t is reached.

Herein, we considered t = 10�3. In general, the convergence criterion was

reached in two iterations (h = 2).
IKNNimpute differs from SKNNimpute in the way of constructing the set of

candidate genes and in the way of reusing the estimated data. Specifically, the

initial step of gene average substitution performed in IKNNimpute provides the

possibility of using the maximum number of genes as candidates for estimating

the MVs of a given target gene. Furthermore, the iterative procedure allows a

refinement of the predictions. As in SKNNimpute, the missing positions of a

target gene can be estimated at once, which is computationally more efficient

compared to KNNimpute.

2.4. Data

In this study, we used four publicly available data sets. Two of the data sets

(data sets TS1 and TS2) come from a study of the cell cycle regulated genes in

Saccharomyces cerevisiae (Spellman et al., 1998), and consist of time series

cDNA microarray data. The data set called TS1 contains data from a cdc15- and

cdc28-based synchronisation, while data set TS2 only comprises the cdc28-

based synchronisation data. TS2 has a dimension ratio n/p five times smaller

than that of TS1, but similar to that of the third and fourth data sets. The third

data set belongs to a study of gene expression regulated by the calcineurin/

Crz1p-signalling pathway in S. cerevisiae (Yoshimoto et al., 2002). This data set

is denoted by MIX, since it can be classified as a mixed experiment, comprising

both time course and non-time course data. The fourth data set comes from a

study of human cancer cell lines (Ross et al., 2000), and is termed by NTS, since

it corresponds to non-time series data. All data sets were downloaded from the

supplementary Internet pages accompanying the papers, and consist of cDNA

microarray experiments. Table 1 presents the dimensions of the data matrices

before (original data set) and after removing all genes with MVs (complete data

set). Prior to the analysis, data were logarithmically (base 2) transformed

(except for the cases where data sets were already downloaded in log2 scale).

2.5. Missing data set-up

To evaluate the methods’ accuracy, we introduced artificial missing entries

to a complete (i.e. without MVs) expression matrix, Xcomplete, constructed from

the real data set (G) by discarding the missing elements. Two different

procedures were considered (A and B).

In procedure A, the test set X was constructed by randomly removing

(marking as missing) a specific percentage of the entries (1, 5 and 10%) of

Xcomplete. These percentages were chosen based on the values of missing rate

commonly encountered in real experimental microarray data sets (see below).

Given that the probes are arrayed at random in the chips, one can expect

that the missing signals caused by effects such as irregularities in the spot

production, hybridization failure, dust on the chip, spatial noise, etc., will

have a random distribution. However, in some cases where the signal is too

low, the image processing software used for spotted cDNA microarrays flags

out signals that cannot be distinguished from the background, or that have too

irregular shape. Thus, in such cases, missing entries are not introduced at

random, but instead the missing pattern depends on the signal intensity. In

general, we should then expect that a mixture of missing at random and not at

random will be present in a given microarray data set. At this view, procedure

B intends to reproduce realistic missing data patterns, i.e. an abnormally high

frequency of MVs in some arrays (columns) of a real microarray data matrix.

Therefore, in procedure B, we assigned MVs to the elements in the p rows of

the complete matrix by randomly sampling p rows (genes) of G, and using

their missing positions. This led to a similar missing structure for the test data

set X as that of the original set G. Table 1 presents the structure of missing

entries in G for the different data sets analyzed in this work, showing that the

total missing rate in the original data sets was below 10%. Similar total

missing rates have been reported in other microarray data sets. For example,

de Brevern et al. (2004) examined the content of MVs in eight series of

microarray experiments, reporting that the percentage of MVs varied from

0.8 to 10.6%. Table 1 shows that in all data sets, only a small number of genes

(inferior to 1.5%) have more than 50% of their entries missing, while there is

no array with more than 50% entries missing. Thus, according to Table 1, the

total percentage of missing elements in the test data sets generated by

procedure B is approximately 8%, 6%, 4% and 4%, respectively, for

experiments TS1, TS2, MIX and NTS.



Table 1

Dimension and missing pattern of the data sets: dimension of the data matrices before (original data set G) and after (complete data set) removing the missing

elements; ratio between the number of experiments and genes in the complete data sets (n/p); pattern of missing entries in the original data matrices (overall missing

rate and distribution of MVs among genes and among arrays)

TS1 TS2 MIX NTS

Dimension ( p � n)

Original data set (G) 6178 � 41 6178 � 17 6166 � 24 9712 � 64

Complete data set 869 � 41 1383 � 17 4380 � 24 6115 � 64

n/p (complete data set) 0.05 0.01 0.006 0.01

Total missing rate in G (%) 8.3 6.1 3.8 3.9

% of genes in G with:

<5% missing entries 82.5 22.4 84.8 82.2

5–10% missing entries 9.3 66.8 4.4 6.2

10–20% missing entries 5.0 9.1 4.3 5.9

20–50% missing entries 2.5 0.9 5.2 4.6

�50% missing entries 0.7 0.8 1.3 1.1

% of arrays in G with:

<5% missing entries 87.9 64.8 75.0 73.5

5–10% missing entries 12.1 23.5 25.0 20.3

10–20% missing entries 0.0 0.0 0.0 4.7

20–50% missing entries 0.0 11.7 0.0 1.5

�50% missing entries 0.0 0.0 0.0 0.0

L.P. Brás, J.C. Menezes / Biomolecular Engineering 24 (2007) 273–282276
To obtain results unbiased with regard to the portion of the data that is

missing, we run five independent rounds of procedures A and B.

We use the following notation (here exemplified for dataset NTS) to identify

the type and rate of MVs in each data matrix: NTS1% represents the matrix

obtained after randomly assigning as missing 1% of the entries of NTS using

procedure A; while NTSuneq represents the NTS matrix with unequally dis-

tributed missing entries introduced according to procedure B.

KNNimpute and SKNNimpute were run on R (version 2.0.1., 2004), a free

software environment for statistical computing and graphics (Gentleman and

Ihaka, 1996), while IKNNimpute was implemented in MATLAB (version 6.5.0.

Natick, Massachusetts, USA; The MathWorks Inc., 2002). The R code for

KNNimpute is given in the package impute that can be downloaded from the

Bioconductor project (Gentleman et al., 2004). The code for SKNNimpute was

gently given by K. Kim. The code of IKNN method is available upon request for

both R and MATLAB.

2.6. Parameter sets

In cluster-based methods, the number of nearest neighbours, K, must be

selected. Troyanskaya et al. (2001) addressed this question in KNNimpute,

reporting the best results for K in the range 10–20. Therefore, we decided to

perform multiple estimation tests using K = 5, 10, 15 and 20. Moreover, we

implemented a procedure for selecting K automatically in IKNNimpute, making

it a parameter-free method. This procedure was implemented as follows: at least

one position among the non-missing elements of the genes with MVs was set as

missing, and estimated using different K values. The optimum value for the

parameter was chosen as the one originating the smallest prediction error. The

obtained value for K was then employed for estimating the MVs by the

IKNNimpute algorithm.

2.7. Evaluation of the methods

For every data set, each estimation method was applied to recover the

introduced MVs, and the accuracy of the method was evaluated by calculating

the error between actual (yj) and estimated values (ŷ j) using the normalized root

mean squared error (NRMSE):

NRMSE ¼ 1

sy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 ðy j � ŷ jÞ2

N

s
(4)
where sy is the standard deviation for the N true values that correspond to all the

missing entries in the test matrix.

Moreover, in order to assess the capability of the different estimation

methods in preserving the data structure of each experiment, we computed

the squared Pearson correlation coefficients (R2) between true and estimated

values for each column (experiment) of the data set.

The bias on the methods, i.e. a consistent under- or overestimation of the

true values was also tested using the Wilcoxon signed rank test (Siegel and

Castellan, 1988). Considering the residuals e j ¼ y j � ŷ j of a given estimation

method, we tested the null hypothesis (H0) that states that negative and positive

residuals are equally likely.

To compare the performance of two different estimation methods (or the

same estimation method run using different K-values) one can compare their

mean squared errors of prediction (MSEP), which is equivalent to performing a

test comparing the variances of two groups of samples. Herein, we used the

Levene’s test (Levene, 1960), whereby the data values (residuals) were trans-

formed and subject to an analysis of variance to produce the usual F-statistic for

a test of whether the means vary significantly between the samples. As a data

transformation, we opted to apply the absolute deviation from the sample

median (instead of the sample mean), since it provides good robustness against

many types of non-normal data, retaining good power (Manly, 1998). The null

hypothesis states that the variance (or MSEP, in our case) is equal across both

methods, while the alternative hypothesis states that the variances are different

between the two estimates.

In both tests (Wilcoxon signed rank test and Levene’s test), we considered a

significance level of 5%, so H0 was rejected if the obtained p-value was inferior

or equal to 0.05.

We further assessed the performance of the methods by comparing the list of

differentially expressed genes based on the imputed matrix with the same list

based on the true full data set. Specifically, we counted the number of genes in the

latter list that were lost when analyzing the imputed data set. While there are

several methods for detecting differentially expressed genes, herein we considered

a common approach called SAM. SAM is a statistical method developed by

Tusher et al. (2001). SAM gives a score to each gene on the basis of change in gene

expression relative to the standard deviation across experimental conditions.

These scores are calculated again after permuting the data set several times. The

original and permuted-based values are approximately equal for the majority of

the genes, while for a few genes, the difference between the two scores exceeds a

given threshold; hence, these genes are supposed potentially significant and called

differentially expressed. The percentage of genes identified by chance (the false
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discovery rate, FDR) is estimated on the basis of permuted data sets. SAM is freely

available as an R package called samr, available at http://www-stat.stanford.edu/

�tibs/SAM. In our study, for detecting differentially expressed genes, we used a

median false discovery rate of 1% in SAM.

3. Results and discussion

The NRMSE was used to assess the accuracy of each method

under different conditions, i.e., type of data (time series, mixed

and non-time series), proportion of MVs (1, 5 and 10%), and

missing structure (equally and unequally distributed MVs).

Results are presented in Fig. 1.

3.1. Model parameter

Many authors refer that the estimation ability of KNNimpute

depends on the number of nearest neighbour genes, K. This

parameter is dependent on the data type and missing rate, but

has no theoretical way, however, to be appropriately

determined. In this context, we decided to evaluate if choosing
Fig. 1. Normalized root mean squared error (NRMSE) calculated based on the mis

based methods for the different data sets. ‘‘K = a’’ corresponds to the case where
the correct value for K was in fact such a relevant issue in

cluster-based estimation methods and if the use of an automatic

procedure to select K was worthwhile. Therefore, we studied

the influence of the value of K on prediction ability by

performing Levene’s tests on the transformed residuals

obtained using different K values.

For all cluster-based methods, results from Levene’s test

show that for TS experiments (data sets TS1 and TS2), the

range K = 5–20 gives statistically equivalent prediction errors.

In data sets TS1 and MIX, this optimum range narrows for

higher missing rates in favour of higher K values (K = 10–20).

For the non-time series data, in general, there is evidence of a

better estimation performance when a small value for K is

utilized (K = 5). Thus, in the presence of a weaker data

similarity structure (NTS data), incorporating farthest neigh-

bours reduces the prediction accuracy, since the information

they bring is irrelevant comparatively to the noise they

introduce in the MVs estimation process.

We implemented a procedure to automatically estimate the

optimum number of nearest neighbouring genes (K) within
sing value estimates obtained using different parameters (x-axis) in the cluster-

K was automatically selected inside IKNN method.

http://www-stat.stanford.edu/~tibs/SAM
http://www-stat.stanford.edu/~tibs/SAM
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IKNNimpute. For all the types of experiments, we found that

the value automatically estimated for K (data not shown)

belongs to the previously reported optimum range determined

using a fixed K value in IKNNimpute. So, the increase in

computation time required by a procedure such as the one

herein implemented is dispensable, and K can just be set to any

value in the range K = 5–20 (or to be more conservative, in the

range K = 10–15) for TS and MIX data, while K should be set

equal to 5 when dealing with NTS data.

3.2. Comparison between cluster-based methods

Considering the model parameter value that originated a

minimal NRMSE for each type of microarray data, missing rate

and pattern, the prediction performance of KNNimpute,

SKNNimpute and IKNNimpute were compared by applying

the Levene’s test on the transformed residuals. The obtained p-

values are shown in Table 2, and indicate that SKNNimpute and

IKNNimpute have statistically smaller MSEPs than KNNim-

pute when applied on MIX, NTS and TS1uneq data ( p < 0.04).

The three cluster-based methods display similar estimation

ability in the other TS test data sets (7.86 � 10�2 <
p < 9.87 � 10�1). Moreover, results indicate that the strategy

utilized in IKNNimpute for information reuse can surpass that

employed in SKNNimpute when dealing with MIX and NTS

data (especially in the presence of a higher proportion of MVs)

and for TS110% ( p < 0.03), while giving statistically similar

prediction errors in the other cases (Fig. 1 and Table 2).

The methods were also evaluated in terms of bias using the

Wilcoxon signed ranks test. At a 5% significance level, the

cluster-based methods behave similarly in terms of generating

biased or unbiased estimates. Specifically, the methods

originate biased estimates when applied to NTS experiments

( p < 1.2 � 10�5), and to TS data with high rate of MVs or

unequally distributed MVs ( p < 3.8 � 10�2). Unbiased esti-
Table 2

Probability level ( p-value) of Levene’s test based on transformed residuals for the

shown in bold)

Data sets KNNimpute vs. SKNNimpute KN

TS11% 8.63 � 10�1 9.5

TS15% 2.80 � 10�1 5.6

TS110% 5.21 � 10�1 9.2

TS1uneq 2.93 � 10�2 1.1

TS21% 7.26 � 10�1 9.8

TS25% 9.83 � 10�1 4.4

TS210% 7.10 � 10�1 7.8

TS2uneq 7.32 � 10�1 6.5

MIX1% 3.81 � 10�2 2.2
MIX5% 5.61 � 10�4 8.0
MIX10% 4.81 � 10�10 0
MIXuneq 0 0

NTS1% 3.53 � 10�5 2.3
NTS5% 6.39 � 10�8 0
NTS10% 4.91 � 10�11 0
NTSuneq 0 0
mates were obtained for TS experiments with a total missing

rate of 1% and for MIX experiments.

As a further characterization of the estimation efficiency, we

evaluated the capability of the methods to retain the data

structure of each array by determining the R2 value between

estimated values and true values for each column (array) of the

data matrix. Results indicate that in the presence of unevenly

distributed missing entries or on MIX (Fig. 2) and NTS (Fig. 3),

experiments SKNNimpute and IKNNimpute offer an advantage

over KNNimpute. Moreover, IKNNimpute is more capable of

reconstructing the original structure of the data for higher

missing rates, particularly when dealing with NTS data.

Despite the fact that the above measures (NRMSE and R2)

are important measures of performance, it is more essential to

assess the effect of the methods’ estimates for MVs on final

outputs of the analysis of microarray data. Therefore, for MIX

and NTS data sets, for which the IKNN method has a

statistically significant advantage over the other cluster-based

methods in terms of prediction ability, we applied the

permutation-based SAM procedure to obtain the list of genes

differentially expressed for the true complete data sets and after

MV estimation by KNNimpute, SKNNimpute and IKNNim-

pute. Then, we examined the differentially expressed genes that

are lost due to MV estimation by comparing the lists of

differentially expressed genes. Results are presented in Figs. 4

and 5. For comparison, we have also included in the plots, the

results respecting the replacement of missing entries by gene

average substitution.

Fig. 4 displays the percentage of lost differentially expressed

genes. This percentage increases with the content of missing

entries in the data. Depending on the total missing rate, 3.0–

9.8% or 1.8–12.5% (respectively for MIX and NTS data) of the

genes in the list of differentially expressed genes for the true

complete MIX or NTS data sets are lost after estimating the

missing entries using clustering-based methods. These values
estimation of MVs using different cluster-based methods ( p-values � 0.05 are

Nimpute vs. IKNNimpute SKNNimpute vs. IKNNimpute

8 � 10�1 9.05 � 10�1

1 � 10�1 9.61 � 10�2

4 � 10�2 2.04 � 10�2

6 � 10�2 7.29 � 10�1

7 � 10�1 7.38 � 10�1

3 � 10�1 4.30 � 10�1

6 � 10�2 1.62 � 10�1

0 � 10�1 4.26 � 10�1

6 � 10�2 8.35 � 10�1

9 � 10�9 2.09 � 10�2

6.37 � 10�5

8.25 � 10�1

4 � 10�10 2.90 � 10�2

0
0
4.84 � 10�1



Fig. 2. Correlation (R2) between true and estimated values within each array when the methods are applied on MIX experiments. To facilitate the visualization, arrays

(x-axis) were sorted by increasing the R2 values of KNNimpute. (A) MIX1%, (B) MIX5%, (C) MIX10% and (D) MIXuneq data sets.
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represent a significant improvement in comparison with the

range 5.1–24.0% (MIX) or 3.3–25.0% (NTS) obtained when

the missing entries are substituted by gene averages. The

differences between the three cluster-based methods are
Fig. 3. Correlation (R2) between true and estimated values within each array when th

(x-axis) were sorted with respect to the R2 values of KNNimpute. (A) NTS1%, (B)
modest. Nevertheless, the results indicate the better perfor-

mance of IKNN method for higher missing rates. Besides, in

general the results of SAM procedure have a lower variability

between runs when the MVs are estimated by IKNNimpute.
e methods are applied on NTS experiments. To facilitate the visualization, arrays

NTS5%, (C) NTS10% and (D) NTSuneq data sets.



Fig. 4. Percentage of lost differentially expressed genes when analyzing the data sets using SAM. The bars correspond to the average between repeated runs, and the

vertical lines represent two standard deviations from the average of repeated runs.
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To evaluate the importance of the loss of differentially

expressed genes, we further examined the position of the lost

genes in the list of differentially expressed genes obtained for

the true complete data sets. The ratio between the ranks of the

lost genes after replacing the missing entries by gene average

substitution, KNN, SKNN or IKNN methods and the length of

the original list is presented in Fig. 5, in the form of box plots,

for each data set and missingness. The lower the rank of a given

gene, the more significant that gene is, and more severe is its

loss. As expected, the ranks of the lost genes (expressed as

ratios in Fig. 5) decrease with increasing missing rate. Gene

average substitution of MVs originates severe losses in the

detection of differential expression and KNN-based MVs
Fig. 5. Box plots of ratio between the original rank of the lost differentially expressed

true full data set.
estimates are capable to recover some of the lost genes,

especially those in the top 50% of the original list. For example,

for MIX data with more than 1% missing rate, when gene

average substitution is applied to estimate the missing entries,

almost 30% of the lost differentially expressed genes belong to

the top 50% original list; this percentage drops to less than 10%

when IKNN method is applied instead.

The pattern of the missing entries in the data matrix is of

relevance. Although for MIXuneq and NTSuneq data sets (both of

which present a total missing rate of approximately 4%; see

Section 2.5) the percentage of lost differentially expressed genes

is approximately comparable to the values obtained for 5% of

MVs randomly assigned (or at least smaller than the values
genes and the length of the list of differentially expressed genes obtained for the
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obtained for 10% missing at random; Fig. 4), there are more lost

genes with a low rank than when imputing 5 or 10% at random.

In general, regardless of the cluster-based method used to

estimate the missing entries, the effect on detection of

differential expression using SAM is similar. However, there

are slight improvements when IKNN method is applied for 5

and 10% missing at random, since the median rank of lost

differentially expressed genes is higher, and there are fewer

genes located at topmost positions of the original list of

differentially expressed genes.

4. Conclusion

In this work, we propose a cluster-based method for

estimating missing values in DNA microarray data, which was

called iterative KNN imputation (IKNNimpute), since it

involves the iterative use of estimated data. The prediction

performance of IKNNimpute was assessed and compared with

that of other cluster-based methods (KNNimpute and

SKNNimpute) over different types of data sets (time series,

mixed and non-time course experiments) with different

proportions (1, 5 and 10%) and patterns (equally and unequally

distributed) of missing data, and using different values for the

parameter K (i.e. number of nearest neighbouring genes).

In general, using a small number of nearest genes (K = 5 or

10) is enough in cluster-based methods because the information

brought in by farthest neighbours is irrelevant when compared

to the noise they introduce in the MVs estimation process,

leading to a decrease in accuracy. Furthermore, we evaluated

the possibility of using an automated procedure to select the

value for K, and thus overcome the need to perform parameter

adjustments in advance, concluding that the expense of time

required by such procedure is dispensable.

Using the NRMSE and R2 between true and estimated MVs

as measures of performance, we found that the proposed

procedure for the re-utilization of estimated data in IKNN

imputation can outperform the one employed in SKNNimpute

for the estimation of MVs in MIX and NTS data sets (especially

for higher missing rates) and in TS110%. This is due to the fact

that IKNNimpute allows using the information of the genes

having MVs more efficiently, and the iterative procedure allows

refining the MV estimates.

The methods were additionally compared on the basis of the

effect of MV imputation on the detection of differentially

expressed genes using SAM procedure, for MIX and NTS

experiments. Although the advantage of IKNN method over

KNN and SKNN for MIX and NTS data with higher missing

rates is small when the outputs of SAM are compared, the

variability of the results across runs is lower when IKNNimpute

estimates are used, which may suggest that the results for KNN

and SKNN might be overoptimistic.
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