Computational Intelligence, Volume 20, Number 3, 2004

DETECTING NEW FORMS OF NETWORK INTRUSION USING
GENETIC PROGRAMMING

WEI LU AND ISSA TRAORE
Department of Electrical and Computer Engineering, University of Victoria, Victoria, B.C., Canada

How to find and detect novel or unknown network attacks is one of the most important objectives in current
intrusion detection systems. In this paper, a rule evolution approach based on Genetic Programming (GP) for detecting
novel attacks on networks is presented and four genetic operators, namely reproduction, mutation, crossover, and
dropping condition operators, are used to evolve new rules. New rules are used to detect novel or known network
attacks. A training and testing dataset proposed by DARPA is used to evolve and evaluate these new rules. The
proof of concept implementation shows that a rule generated by GP has a low false positive rate (FPR), a low false
negative rate and a high rate of detecting unknown attacks. Moreover, the rule base composed of new rules has high
detection rate with low FPR. An alternative to the DARPA evaluation approach is also investigated.

Key words: genetic programming, network security, intrusion detection, anomaly detection, rule evolution,
rule coverage.

1. INTRODUCTION

Intrusion detection has been extensively studied since the seminal report written by
Anderson (1980). Traditionally, intrusion detection techniques are divided into misuse detec-
tion and anomaly detection. Misuse detection techniques mainly focus on developing models
of known attacks, which can be described by specific patterns or sequences of events and data.
Anomaly detection techniques model system or users’ normal behaviors, and any deviation
from the normal behaviors is considered as an intrusion. Misuse detection techniques have
low false detection rates (FDR), but their major weakness is that novel or unknown attacks
will go unnoticed until corresponding signatures are added to the database of the Intrusion
Detection System (IDS). Anomaly detection techniques have the potential to detect novel
attacks, but quite often they tend to have high FDR because it is very difficult to discriminate
between abnormal and intrusive behavior.

In this paper, we propose a rule evolution approach based on Genetic Programming
(GP) (Koza 1992; Wong and Leung 2000) for detecting known or novel attacks on the
network. GP extends the fundamental idea of Genetic Algorithm (GA), and evolves more
complex data structures. To do so, it uses parse trees to represent initial populations, instead of
chromosomes. Moreover, the GP technique can be used to evolve a population of individuals,
whereas GA searches the best solution in all possible solutions. Initial rules are selected based
on background knowledge from known attacks and can be represented as parse trees. GP
will evolve these initial rules to generate new rules. New rules are used to detect novel
or known attacks. To evolve and evaluate these new rules, we use the training and testing
dataset proposed by DARPA (Lippmann 2000), which includes almost all known network-
based attacks, namely land, synflood, ping of death (pod), smurf, teardrop, back, neptune,
ipsweep, portsweep, and UDPstorm attacks. The proof of concept implementation shows
the GP-based approach can detect smurf and UDPstorm attacks, which are absent from the
training dataset. The average false negative rate (FNR) for each rule is 5.04% and the average
false positive rate (FPR) is 5.23%. The average rate of detecting unknown attacks for each
rule is 57.14%. Moreover, we plot a receiving operator characteristic (ROC) curve of FPR
and detection rate when we apply the testing dataset to evaluate our rule base. The ROC

Address correspondence to Wei Lu at the Department of Electrical and Computer Engineering, University of Victoria, PO.
Box 3055 STN CSC, Victoria, B.C., Canada, V8W 3P6; e-mail: wlu@ece.uvic.ca

© 2004 Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington Road, Oxford 0X4 2DQ, UK.

476 COMPUTATIONAL INTELLIGENCE

curve shows that the detection rate will be close to 100% when the (FPR) falls in the range
between 1.4% and 1.8%.

The rest of the paper is organized into the following modules. Section 2 presents an
overview of related works. Section 3 provides background information on genetic program-
ming. Section 4 discusses how to use GP to generate new rules for detecting known or novel
attacks on network. Section 5 presents the evaluation of the new rules using DARPA testing
dataset and discusses the experimental results. Section 6 highlights the shortcomings of the
DARPA evaluation approach, and then proposes an alternative evaluation approach. Finally,
Section 7 makes some concluding remarks.

2. RELATED WORKS

Frank (1994) described and categorized several Artificial Intelligence (Al) techniques
that can be used for intrusion detection; use of Al techniques for intrusion detection is
categorized according to two dimensions: behavior classification and data reduction. Behavior
classification assumes that intrusion can be decided by a given set of known behaviors, and
data reduction is typically used to analyze the large amount of audit-log data produced, so
as to reduce the amount of data handled by human experts. However, explicit knowledge of
known behaviors is difficult to establish. Any mistake occurring in the process of defining
patterns of known behaviors will increase false alarm rate and decrease the effectiveness of
intrusion detection.

Some early applications of neural networks for user behavior modeling were proposed
by Fox et al. (1990). Ghosh, Wanken, and Charron (1998) later extended their idea by using
back propagation algorithm for anomaly detection. They established that randomly generating
anomalous input data increases the performance of anomaly detection. The biggest limitation
of this method is the difficulty of choosing the input parameters. Any mistake in input data
selection will increase the false alarm rate. Further, how to initialize the weights of the neural
network is still an open question.

Me (1992) initially proposed another application of Al to intrusion detection by using
GA for misuse detection. He defined a n-dimensional hypothesis vector H, where H; = 1
if attack i was taking place according to the hypothesis, otherwise H; = 0. Thus, the aim of
intrusion detection was reduced to the problem of finding the H vector that maximizes the
product W x H, subject to the constraint AE - H; <= O;. W refers to the n-dimensional
weight vector; AE refers to an attacks-events matrix; O refers to the observed n-dimensional
audit trail vector. He showed that GA applied to misuse detection has a low false alarm rate.
However, this approach cannot identify attacks precisely.

Chittur (2002) extended this idea by using GA for anomaly detection. Random numbers
were generated using GA. A threshold value was established and any certainty value exceed-
ing this threshold value was classified as a malicious attack. The experimental result showed
that GA successfully generated an accurate empirical behavior model from training data.
The biggest limitation of this approach was the difficulty of establishing the threshold value,
possibly leading to a high false alarm rate when used to detect novel or unknown attacks.

More works on using GA for intrusion detection are described in Bridges and Vaughn
(2000), Balajinath and Raghavan (2001), Gomez et al. (2002). Gomez et al. (2002) proposed
a linear representation scheme for evolving fuzzy rules using the concept of complete binary
tree structures. GA is used to generate genetic operators for producing useful and minimal
structure modification to the fuzzy expression tree represented by chromosomes. This ap-
proach, however, required-time consuming training. Bridges and Vaughn (2000) employed
GA to tune the fuzzy membership functions and select an appropriate set of features in
their prototype 1IDS (Intelligent IDS). Balajinath and Raghavan (2001) used GA to learn

NETWORK INTRUSION USING GENETIC PROGRAMMING 477

individual user behavior. Active user behavior is predicted by GA based on past observed
user behavior and used to detect intrusion. In both approaches, the training process is time
consuming and they can only be used to detect anomalous behaviors at the host level.

Crosbie and Spafford (1995) employed GP and agent technology to detect anomalous
behaviors in a system. The autonomous agents are used to detect intrusions using log data
of network connections. Each autonomous agent is used to monitor a particular network
parameter and autonomous agents that are predicting correctly are given higher weight value
in deciding whether a session is intrusive or not. There are a number of advantages to having
many small agents, instead of a single large one. However, communication among these
agents is still an issue. Moreover, the training process may be time consuming if the proper
primitive for each agent is not chosen.

3. OVERVIEW OF GENETIC PROGRAMMING

3.1. GP Algorithm

GP is an extension of GA (Koza 1992). It is a general search method that uses analogies
from natural selection and evolution. The main difference between them is the solution en-
coding method. GA encodes potential solutions for a specific problem as a simple population
of fixed-length binary strings named chromosomes and then applies reproduction and re-
combination operators to these chromosomes to create new chromosomes. In contrast to GA,
GP encodes multipotential solutions for specific problems as a population of programs or
functions. The programs can be represented as parse trees. Usually, parse trees are composed
of internal nodes and leaf nodes. Internal nodes are called primitive functions, and leaf nodes
are called terminals. The terminals can be viewed as the inputs to the specific problem. They
might include the independent variables and the set of constants. The primitive functions
are combined with the terminals or simpler function calls to form more complex function
calls. For instance, GP can be used to evolve new rules from general ones. The rules are
represented as if condition 1 and condition 2 ... and condition N then consequence. In this
case, the primitive function corresponds to AND operator and the terminals are the conditions
(e.g., condition 1, condition 2, . .., condition N).

GP randomly generates an initial population of solutions. Then, the initial population is
manipulated using various genetic operators to produce new populations. These operators
include reproduction, crossover, mutation, dropping condition, etc. The whole process of
evolving from one population to the next population is called a generation. A high-level
description of GP algorithm can be divided into a number of sequential steps:

1. Create a random population of programs, or rules, using the symbolic expressions pro-
vided as the initial population.

2. Evaluate each program or rule by assigning a fitness value according to a predefined
fitness function that can measure the capability of the rule or program to solve the
problem.

3. Use reproduction operator to copy existing programs into the new generation.

4. Generate the new population with crossover, mutation, or other operators from a randomly
chosen set of parents.

5. Repeat steps 2 onwards for the new population until a predefined termination criterion
has been satisfied, or a fixed number of generations have been completed.

6. The solution to the problem is the genetic program with the best fitness within all the
generations.

478 COMPUTATIONAL INTELLIGENCE

(£
oodo = G%
ble

FIGURE 1. Example of crossover in GP.

3.2. Genetic Operators

In GP, crossover operation is achieved firstly by reproduction of two parent trees; two
crossover points are then randomly selected in the two offspring trees. Exchanging sub-trees,
which are selected according to the crossover point in the parent trees, generates the final
offspring trees. The obtained offspring trees are usually different from their parents in size
and shape. Figure 1 describes a crossover operation between function x> + x + x — 2x and
function 2x2, they produce two offspring functions 2x2 + x and x* — x.

Mutation operation is also considered in GP. A single parental tree is firstly reproduced.
Then a mutation point is randomly selected from the reproduction, which can be either a leaf
node or a sub-tree. Finally, the leaf node or the sub-tree is replaced by a new leaf node or
sub-tree generated randomly. Figure 2 describes a mutation operation on function 2x2, the
produced mutation offspring function is x> + 2x.

A new operator named “dropping condition” is proposed to evolve new rules in this
paper. It randomly selects one condition in the rule, and then turns it into any. That is, this
particular condition is no longer considered in the rule. For example, the rule

if condition 1 and condition 2 and condition 3 then consequence
can be changed to
if condition 1 and condition 2 and any then consequence

@ routation | QQ @

FIGURE 2. Example of mutation in GP.

NETWORK INTRUSION USING GENETIC PROGRAMMING 479

3.3. Fitness Function

Fitness functions ensure that the evolution is toward optimization by calculating the fitness
value for each individual in the population. The fitness value evaluates the performance of
each individual in the population. We use a fitness function defined in Wong and Leung (2000)
that is based on the support-confidence framework. Support is a ratio of the number of records
covered by the rules to the total number of records. Confidence factor (cf) represents the
accuracy of rules, which is the confidence of the consequent to be true under the conditions.
It is the ratio of the number of records matching both the consequent and the conditions to
the number of records matching only the conditions. If a rule is represented as, if 4 then B,
and the size of the training dataset is NV, then

¢f= |4 and B|/|A| ; support = |4 and B|/N.

|4| stands for the number of records that only satisfy condition 4. |B| stands for the number
of records that only satisfy consequent B. |4 and B| stands for the number of records that
satisfy both condition 4 and consequent B.

A rule with a high confidence factor does not necessarily behave significantly different
from the average. Thus, normalized confidence factor is defined to consider the average
probability of consequent denoted prob.

normalized_cf = cf x log (cf/prob), prob = |B |/N.

To avoid wasting time to evolve those rules with a low support value, a strategy is defined:
if support is below a user-defined minimum threshold (min_support), the confidence factor
of the rule should not be considered.

Thus, the fitness function is defined as follows:

i support if support < min_support
raw_fitness =
w1 X support + wy X normalized_cf otherwise

Where the weights w; and w, are user-defined and used to control the balance between the
confidence and the support during the searches.

Token competition is used to increase the diversity of solutions (Leung and Yam 1992).
The idea is as follows: In the natural environment, once an individual finds a good place to
live, then (s)he will try to protect this environment and prevent newcomers from using it,
unless the newcomers are stronger than this individual. Other weaker individuals are hence
forced to search for their own place. In this way, the diversity of the population is increased.
A token is allocated to each record in the training dataset. If a rule matches a record, its token
will be seized by the rule. The priority of receiving the token is determined by the strength
of the rules. Thus, a rule with high raw_fitness score can acquire as many tokens as possible.
The modified fitness is defined as follows:

modified_fitness = raw_fitness x count/ideal,

where count is the number of tokens that the rule has actually seized, ideal is the total number
of tokens that it can seize, which is equal to the number of records that the rule matches.

4. GENERATING NEW RULES USING GP

The use of GP to detect unknown attacks is based on the belief that new rules will have
better performance than initial ones based on known attacks. Better performance means the

480 COMPUTATIONAL INTELLIGENCE

new rules obtained after evolving the initial ones using GP will not only cover known attacks,
but also possibly detect the novel ones.

Individual solution in a population is represented as a derivation tree that we describe
using a string data structure. For example, a tree can be represented as “AabAcdAcel”. A
means “and” operator; a, b, ¢, d, and e correspond to the conditions in the rules. / is the
consequence, which means intrusion. The redundant conditions in the rule will be deleted
after the evolution, and thus, AabAcdAcel can be interpreted as “if a and b, and, ¢ and d and
e, then intrusion.” The attribute values of a,b,c,d, e are selected from known attacks.

New rules are generated in two phases. In the first step, temporary new rules are composed
of new rules generated by four operators including mutation, reproduction, crossover, and
dropping condition and additional rules directly generated from previous populations. Thus,
the number of temporary new rules is doubled. In the second phase, one half of the temporary
new rules with the highest fitness scores after token competition are retained and passed to
the next generation.

To assess the feasibility and efficiency of GP for intrusion detection, we have selected
an initial population of 40 rules that cover a series of network-based attacks. Table 1 shows
10 instances of the initial rules; the rest of the rules are given in Appendix A.

We calculate the fitness value for each rule based on the training dataset. Currently, the
most widely used training and testing dataset for anomaly detection is provided by DARPA
Intrusion Detection Evaluation Program (Lippmann 2000), consisting of the raw TCP dump
data of 9 weeks activity in a local area network simulating a typical U.S. Air Force LAN. The
training dataset is labeled as either normal or intrusive. The test dataset is similar with the
training dataset. The only difference is the test dataset includes some unknown attacks not
occurring in the training dataset.

In our case, 10,000 network connection records provided by DARPA training dataset
are used to train the rules, each connection lasting 2s. Eleven parameters defined in DARPA
dataset are used to describe the attacks in the training dataset. Table 2 describes these param-
eters and their meaning.

The rules in the initial population are evolved using mutation, crossover, and dropping
condition operators. The rates of crossover, mutation, and dropping condition operations
are respectively 0.6, 0.01, and 0.001 for each rule. Forty offspring rules are evolved from
the previous forty parent rules. Based on token competition, combining offspring rules with
parent rules generates temporary new rules. One half of the temporary new rules with highest
fitness scores after token competition are selected as the new rules.

TABLE 1. Initial Rules

Rules Meaning

Afp if land = 1 and wrong_fragment = 0 then intrusion

AAgg if wrong_fragment > 1 then intrusion

Aab if protocol_type = tcp and count > 3 then intrusion

bAbA if srv_count > 3 then intrusion

AhAg if protocol_type = icmp and wrong_fragment > 1 then intrusion
rA if synflood = 1.00 then intrusion

AatA if protocol_type = tcp and num_compromised > 1 then intrusion
Aaav if protocol_type = tcp and same_srv_rate = 1.00 then intrusion
WWWWA if diff_srv_rate > 0.33 then intrusion

Aajt if count<3 and num_compromised > 1 then intrusion

NETWORK INTRUSION USING GENETIC PROGRAMMING 481

TABLE 2. Representation of Parameters

Parameters Meaning

protocol _type Type of protocol

land Flag to identify whether connection is from/to the same host/port

wrong_fragment Number of wrong fragments in the connection

synflood Connections that have “SYN” errors

num_compromised ~ Number of compromised conditions

same_srv_rate Percentage of connections to the same services

diff_srv_rate Percentage of connections to the different services

count Number of connections from the same source host to the same destination host

srv_count Number of connections from the same source service to the same destination
service

dst_host_count Number of connections from the same destination host to the same source host

dst_host_srv_count =~ Number of connections from the same destination service to the same source
service

TABLE 3. New Rules

Rules Meaning

Ag if wrong_fragment > 1 then intrusion

Afpq if land = 1 and wrong_fragment = 0 and synflood = 0 then intrusion

Aav if protocol_type = tcp and same_srv_rate = 1.00 then intrusion

Ahcq if protocol_type = icmp and dst_host_srv_count > 160 and synflood = 0 then intrusion

Aikq if protocol_type = udp and srv_count > 367 and synflood = 0 then intrusion

Aat if protocol_type = tcp and num_compromised > 1 then intrusion

At if num_compromised > 1 then intrusion

Ag if wrong_fragment > 1 then intrusion

Ajlpr if count < 412 and dst_host_count < 810 and wrong_fragment = 0 and synflood > 1
then intrusion

Ail if protocol_type = udp and dst_host_count > 203 then intrusion

The evolution will not be terminated until we have executed 5,000 runs or the fitness
value for each rule is bigger than a threshold equal to 0.95. Table 3 describes 10 instances of
obtained new rules. To view the rest of the new rules, please refer to Appendix A.

The initial and new rules are composed of attribute descriptors. Table 4 shows attribute
descriptors representations and meanings.

5. EVALUATION OF NEW RULES

Evaluation of intrusion detection approaches for detecting novel attacks is an important
and multi-faceted problem. The training dataset we use is one day’s connection records pro-
vided by DARPA, consisting of 10,000 connection records. Eight kinds of network attacks
are included in the training dataset, namely land, synflood, pod, teardrop, back, neptune,
ipsweep, and portsweep. The testing dataset we use is another one-day activity consisting of

482 COMPUTATIONAL INTELLIGENCE

TABLE 4. Representation of Terminals

Terminal Meaning Terminal Meaning

s num_compromised = 0 i protocol_type = udp
b count > R1 f land = 1

c srv_count > R1 0 land =0

d dst_host_count > R1 j count < R2

k srv_count < R2 q synflood = 0

p wrong_fragment = 0 r synflood > 1

e dst_host_srv_count > R1 a protocol_type = tcp

1 dst_host_count < R2 h protocol_type = icmp
m dst_host_srv_count < R2 u same_srv_rate = 0.00
t num_compromised > 1 v same_srv_rate = 1.00
g wrong_fragment > 1 w diff_srv_rate > R3

Note: R1, R2, and R3 are random values.

10,000 connection records. Ten kinds of network attacks are included in the testing dataset,
namely smurf, UDPstorm, land, synflood, pod, teardrop, back, neptune, ipsweep, and
portsweep. Smurf and UDPstorm attacks are the novel attacks which are absent from the
training dataset. Detection of attacks involved in the test dataset, and not occurring in the
training dataset, assesses the potential ability to detect novel attacks. We use three perfor-
mance metrics to evaluate the new rules, namely FPR, false negative rate (FNR), and unknown
attack detection rate (UADR). A false positive occurs when a rule classifies normal traffic as
intrusive. A false negative occurs when a rule characterizes an intrusion as normal. UADR
measures the capability of a new rule to detect novel attacks.

For each rule, we calculate its FPR, FNR, and UADR independently. We find that every
time we use GP to evolve the rules, the number of generated rules is different and thus the
FPR, FNR, and UADR for each rule is also different. Therefore, to statistically evaluate the
efficiency of our GP-based approach, FPR, FNR, and UADR are defined as the arithmetical
average of the sum of all new rules’ rates

FPR = average (Y(FPR)yutes);

FNR = average (Z(FNR)rules);

UADR = average (Y _(UADR),y1e5);

For instance, consider a rule base that includes two new rules: rulel and rule2. The FPR,
FNR, and UADR of rulel is 0.001, 0.015, and 0.56, respectively. The FPR, FNR, and UADR
of rule2 is 0.002, 0.03, and 0.78, respectively. Thus, according to the definition:

average FPR for each rule = (0.001 4 0.002)/2 = 0.0015;

average FNR for each rule = (0.015 4+ 0.03)/2 = 0.0225;

average UADR for each rule = (0.56 4+ 0.78)/2 = 0.67;

Since the number of new rules is different in each run, the average FPR, FNR, and
UADR for each run is also different. We execute 10,000 runs and plot the probability dis-
tribution of FPR, FNR, and UADR. Figure 3a illustrates the FPR’s probability distribu-
tion and Figure 3b illustrates the log scale probability distribution. Figure 4a illustrates the
FNR’s probability distribution and Figure 4b illustrates the log scale probability distribution.

Figure 5a illustrates the UADR’s probability distribution and Figure 5b illustrates the log
scale probability distribution.

Probahiity

Probabidgy

NETWORK INTRUSION USING GENETIC PROGRAMMING 483

L — .| e
03 04 05 OB 07
FPR

EIIZ‘
FPR

(a) {h)

FIGURE 3. (a) Distribution of FPR and (b) log scale distribution of FPR.

rokabidy

I."_; | I |
1 02 03

i i i i
04 035 065 @7 og 09
FHA

(a)

FMNR

(h)

FIGURE 4. (a) Distribution of FNR and (b) log scale distribution of FNR.

The standard deviation of FPR for each rule over 10,000 runs is 0.0944 and the average

value of FPR for each rule over 10,000 runs is 0.0523. The confidence interval or, margin of
error is 0.0019. In the figure of Log Scale Distribution of FPR, we amplify the probability
difference of different FPR scales, and conclude that the probability of the rules whose FPRs

Probatelty

FIGURE 5. (a) Distribution of UADR and (b) log scale distribution of UADR.

484 COMPUTATIONAL INTELLIGENCE

fall in a range between 0 and 0.1 is about 10 times greater than the probability of rules whose
FPRs fall in other ranges, such as between 0.1 and 0.2, 0.2 and 0.3, etc. Table 5 summarizes
this information.

The standard deviation of FNR for each rule over 10,000 runs is 0.0801 and the average
value of FNR for each rule over 10,000 runs is 0.0504. The margin of error is 0.0016. In the
figure of Log Scale Distribution of FNR, we amplify the probability difference of different
FNR scales, and conclude that the probability of the rules whose FNRs fall in a range between
0 and 0.1 is about 10 times greater than the probability of rules whose FNRs fall in other
ranges, such as between 0.1 and 0.2, 0.2 and 0.3, etc. Table 6 summarizes this information.

The standard deviation of UADR for each rule over 10,000 runs is 0.397 and the average
value of UADR for each rule over 10,000 runs is 0.2509. The margin of error is 0.00794.
In the figure of Log Scale Distribution of UADR, we amplify the probability difference of
different UADR scales, and conclude that the UADR for each rule in about 20% of the runs
are bigger than 0.9 and rates in 70% of the runs fall in a range between 0 and 0.1. Table 7
summarizes this information.

In practical evaluation, we usually use the rule base instead of single rule to test the
performance of intrusion detection system based on GP. We execute 10,000 runs to evaluate
the statistical performance of our system, since we get different rules every time. We use as
evaluation metrics the FPR and the detection rate (DR). Generally speaking, we say that an
intrusion detection approach is good if it has high detection rate with low. The probability
distribution of FPR for the rule base over 10,000 runs is illustrated in Figure 6a. Figure 6b
illustrates the same information for FPR between 0 and 0.1.

The average value of FPR over 10,000 runs is 0.41% and the standard deviation value of
FPR over 10,000 runs is 0.0063.

The probability distribution of DR for the rule-base in 10,000 runs is illustrated in
Figure 7a. Figure 7b illustrates the log scale probability distribution of DR.

The average value of DR over 10,000 runs is 0.5714, and the standard deviation value of
DR over 10,000 runs is 0.4068. Figure 8 is the ROC curve plotting the and FPR the DR.

The DR increases as the FPR does the same. The DR is close to 100% when the FPR is
in the range between 1.4% and 1.8%. However, when the FPR is close to 0%, the DR is only
about 40%. The DR falls in a broad range from 40% to 100% because the number of rules
in the rule base is different for each run. When there are more rules in the rule base, we have
a high DR and thus, will possibly have a low FPR. There are some other approaches used to
detect intrusion using the DARPA’s dataset as a testbed. For example, the ROC curve plotted
by Eskin et al. (2000) is illustrated in Figure 9.

Figure 9 shows that DR increases as the FPR does the same. For instance, in the first
week the DR is close to 100% when the FPR falls in the range between 0.06% and 0.1%.
Eskin’s result is better than ours considering the ROC curve comparison. However, the curve
plotted by Eskin et al. is for only one kind of attack, a fipd attack, while our ROC curve is for
10 attacks. Our approach can detect 10 kinds of attacks when the FPR is smaller than 1.8%.
The approach proposed by Eskin et al. can be used to detect only one kind of attack when its
FPR is smaller than 0.1%.

6. ALTERNATIVE EVALUATION METHOD

6.1. Approach

The conventional approach presented in the previous section for evaluating the potential
of new rules to detect new forms of attacks consists of some attacks in the testing dataset
that are absent from the training dataset, and then testing whether the new rules can detect
them or not.

TABLE 5.

Scale Distribution Over 10,000 Runs

FPR 0-0.1 0.1-0.2 0.2-0.3 0.3-04 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Number of run 8,200 1,000 400 200 99 70 20 8 3 0
TABLE 6. Scale Distribution Over 10,000 Runs

FNR 0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Number of run 8,300 1,100 300 100 100 30 40 5 25 0
TABLE 7. Scale Distribution Over 10,000 Runs

UADR 0-0.1 0.1-0.2 0.2-0.3 0.3-04 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0

Number of run 6,835 25 75 105 550 60 250 50 5 2,055

ONINIYYDOYJ OLLANTD) DNIS() NOISNILIN] YAOMLAN

S8Y

486

Prokatalny

Prozabiity

COMPUTATIONAL INTELLIGENCE

0004

000 0008 OO0
FPR

Qo2 o014 O QOB

(h)

. T T . T T . T T o7 -
A ’
a o1 o2 03 04 05 0E or o8 a8 1 o 0002
FPR
(a)
FIGURE 6. (a) Distribution of FPR and (b) distribution of FPR between 0 and 0.1.

Probabilty

04

oR

(b)

FIGURE 7. (a) Distribution of DR and (b) log scale of distribution of DR.

There are, however, some limitations with this evaluation method. First, it does not
consider the completeness of the testing dataset. Completeness refers to the extent to which
the dataset represents all types of attacks. For instance, the DARPA’s training dataset only
contains a total of 24 attack types with an additional 14 types included in the testing dataset.

oa
oa
o7

o0&

; 0.5

o . L
o 002 00X 0006 OO0

oot
FPR

FIGURE 8. ROC curve of FPR and DR.

L L L
0m2 0oéd 0016

NETWORK INTRUSION USING GENETIC PROGRAMMING 487

1

Weak1 —— |

Weak 2 ——
Weak 3 —3F—

@ 08 :

m

o

5 og J

g o

-]

@

a

S 04 .

‘@

E

[=

- 02 :

u 3 1 1 1 1
0 0.0002 0.0004 0.0008 0.0008 0.001

Falea Positiva Rate

FIGURE 9. ROC curve of FPR and DR plotted by Eskin et al. (2000).

Even if the rules perform well under the testing dataset, they may possibly carry errors that
are not identified due to incompleteness of the testing dataset. Second, the coverage of rules
by the testing dataset is not taken into account.

An incomplete testing dataset may possibly lead to an inadequate coverage of rules.
Consequently, some sections of rules may not be tested due to the absence of test cases.
Nevertheless, collecting all types of attacks is very difficult and even if we get all possible
kinds of attacks, running them all would be time consuming. A workable alternative consists
of improving the completeness of the testing dataset and increasing the coverage of rules.

We propose an alternative evaluation strategy that is depicted by Figure 10. First, we start
by building a testing dataset that provides a complete coverage of the new rules generated
using GP. We evaluate the coverage of these rules by using a tool named TRUBAC (Testing
with Rule-Base Coverage), which implements a coverage analysis method developed by Barr
(1995, 1997). Second, we apply the new testing dataset to the initial set of rules from which
the new rules have been generated. Test cases that fail the initial rules are flagged as potential
new attacks, since they are covered by the new rules but not by the initial ones. Then, we
need to verify whether these potential attacks correspond to real attacks. This can be done
by reproducing and analyzing corresponding behavior in real network environment.

Coverage New
Analysis :
Tnitial Test Testing
Dataset
Dataset
Exaluation
Initial
quu]e Potential
s Attacks
Simulation
New «
Attacks

FIGURE 10. Evaluation strategy.

488 COMPUTATIONAL INTELLIGENCE

6.2. Coverage Analysis Using TRUBAC

TRUBAC represents a rule base using a directed acyclic graph (DAG). It is based on the
premise that a rule-base is also a classification system and exploits the AND/OR graph struc-
ture inherent to the rule base. The DAG contains a source node and a sink node, corresponding
respectively to the working memory and the classification result. It also contains nodes for
findings and classes. Findings correspond to the antecedents of rules; classes correspond
to their consequents. There are also two additional types of interior nodes: subclass nodes
and operator nodes. Subclass nodes correspond to intermediate hypotheses; operator nodes
correspond to logical operators such as AND and OR. There are links from the source node
to each finding, and from each class to the sink. The antecedent for each rule is represented
as a subgraph, which is then connected to the node for the consequent. We refer interested
readers to Barr (1995, 1997) for more details. As an example, let us consider the following
two rules:

if FI and F2 and F3 then SC;
if F4 and F5 and SC then C;

The DAG representation of these two related rules is depicted by Figure 11.

TRUBAC defines and implements five rule-base coverage measures (RBCMs), which
can be used to guide the selection of testing dataset and give an idea of how well a testing
dataset covers some rules. We describe briefly in the sequel these RBCMs.

RBCM1 ensures that there is at least one test data covering one execution path to each
class.

RBCM?2 ensures that there is at least one test data covering one execution path to each
subclass, as well as each class.

RBCM3 ensures that for every finding-class combination, at least one execution path,
including this combination, is tested, if such path exists.

RBCMA4 provides test data covering at least one execution path that contains a connection
from finding to class.

RBCMS5 ensures that some test data causes traversal of a collection of execution paths
that contains every edge in the graph.
6.3. Generation of New Test Dataset

Based on the five RBCMs, we can analyze the coverage of the new rules and select
appropriate test data from the initial test dataset. However, the new rule-base possibly includes
some rules uncovered by the initial test dataset. Therefore, some execution paths in the DAG

FIGURE 11. Example of DAG representation.

NETWORK INTRUSION USING GENETIC PROGRAMMING 489

FIGURE 12. Example: DAG of new rules.

may not be covered by any of the available test data. Consequently, we need to update the
initial testing dataset by generating additional test data according to the uncovered execution
paths. In the sequel, our example illustrates how to construct the new test dataset based on
the RBCMs. Consider, for instance, the ten new rules described in Table 3. Since there is
no subclass in the rule-base, corresponding DAG can be represented as shown by Figure 12,
where a, ¢, f, g, h, i, , k, I, p, q, r, and ¢ are findings and / stands for intrusive behavior.

Since there is no subclass, only three RBCMs are applicable in this example: RBCM1,
RBCM4, and RBCM5. Based on RBCM 1, we select one test data from the testing dataset,
for instance, a test data covering path “ANDZ2(g)->1.” Based on RCBM4, we consider two
execution paths each including a connection from finding a to class 7, “ANDI(a,t)->1" and
“AND3(a,v)->1. From these two paths, we can provide one test data whose path covers the
connections from finding a to /. In the same way, we can provide one test data whose paths
cover the connections from finding b to /. Ideally, if each path corresponds to one connection,
we will have 14 test data, which is a multiple of the number of classes and the number of
findings. Table 8 lists all possible execution paths based on each possible connection.

Since the DAG does not include any subclasses, the only difference between RBCM4 and
RBCMS is that the test cases provided by RBCM4 cover only one path for each connection
while the test cases provided by RBCMS cover all paths for each connection. Finally, we
generate 21 test data which can cover all new rules in the rule-base. It is possible that some
paths in the DAG may not be covered by any of the available test data. Therefore, to increase
the coverage of the new rules, we must synthesize the additional test data according to
corresponding path. As an example, if the path “ANDG6(i,[)->1" is not covered by any of
the test data, this means “if protocol_type = udp and dst_host_count > 203 then intrusion.”

490 COMPUTATIONAL INTELLIGENCE

TABLE 8. All Possible Connections and Paths

Connection Path

finding a toclass I ANDI(a,t)->1; AND3(a,v)->1
finding ctoclass I AND4(h,c,q)->1

finding f toclass I ANDY(f,p,q)->1

finding gtoclass I AND2(g)->1

finding 4 toclass I AND4(h,c,q)->1

finding i toclass I ANDS5(i,k,q)->1; ANDG(i,1)->1
finding j to class I ~ ANDS(j,Lp,r)->1

finding k toclass I ANDS5(i,k,q)->1

finding / to class / ANDG6(i,1)->1; ANDS(j,lp,r)->1
finding p toclass I ANDS(j,Lp,r)->1; ANDI(f,p,q)->1
finding g to class I AND4(h,c,q)->1; ANDS5(i,k,q)->1; AND9(f,p,q)->1
finding 7 toclass I ANDS(j,Lp,r)->1

finding f toclass I ANDI(a,t)->1; AND7(t)->1
finding vtoclass I AND3(a,v)->1

We simply need to insert manually the packet whose protocol type is UDP into the testing
dataset, in order to create corresponding test case.

Overall, 292 test cases are generated for the entire new rule-base involving 40 rules, 276
of which are coming from the initial test dataset and 16 are manually synthesized. Table 9
illustrates the breakdown of new test cases.

6.4. ldentifying New Forms of Intrusions

We identify new forms of potential intrusions by evaluating the initial rule-base against
the new data-set generated above. Any test case that fails to be covered by the initial rule-base
may be considered a potential new attack. From the 292 test cases generated previously, eight
failed the initial rules. Consequently, we have eight potential new attacks, which are listed as
follows:

’v’,0,0,19,20,255,255,0.00,0,0.00,0.00
’v’,0,0,20,21,255,255,0.00,0,0.00,0.00
’u’,0,0,21,22,255,255,0.00,0,0.00,0.00
’v’,0,0,22,23,255,255,0.00,0,0.00,0.00
’v’,0,0,23,24,255,255,0.00,0,0.00,0.00
’v’,0,0,24,25,255,255,0.00,0,0.00,0.00
’v’,0,0,25,26,255,255,0.00,0,0.00,0.00
’u’,0,0,26,27,255,255,0.00,0,0.00,0.00

TABLE 9. Breakdown of New Test Cases

Number of New Test Cases

Size of Initial Covered by Uncovered by
Test Dataset Initial Rule Base Initial Rule Base

10,000 276 16

NETWORK INTRUSION USING GENETIC PROGRAMMING 491

Each test case includes 11 fields, corresponding (as specified in Table 2) respectively to
protocol_type, land, wrong_fragment, count, srv_count, dst_host_count, dst_host_srv_count,
synflood, num_compromised, same_srv_rate, and diff srv_rate.

To verify whether a potential attack corresponds to a real attack, we simulate correspond-
ing behaviors. More specifically, we use a packet generator to simulate corresponding packets
in a real network environment, and then analyze the behavior of corresponding hosts, using
for instance, a performance analyzer.

6.5. Attack Simulation and Results

It is very difficult to accurately simulate potential attacks on a real network. The eight
potential attacks considered above involve continuously sending a defined number of UDP
packets from the same source host to the same destination host. Each potential attack lasts
2s. As an example, the first potential attack means that streams of 19 UDP packets are sent
from the same source host to the same destination host with a period of 2s. Figure 13 depicts
our experimental environment, which consists of the following components:

UDP packet generator: UDPFlood.exe working under Windows NT 4.0.

Source host: Sixteen workstations whose IP addresses range from 142.104.124.101 to
142.104.124.116.

Destination/Victim host: The host provides online computer buying service. Its [P address
is 24.77.57.19.

Settings of UDP packet generator: Destination port is set to 8,080; the maximum duration
is Os; packet sending rate is 250 packets/s.

The destination host provides an online computer sale service. The simulation of each of
the eight potential attacks results in a denial of service; the website becomes unavailable. The
denial of service is created by a flood of UDP packets, which corresponds to an UDPStorm
attack.

Victim Host
T

Jr— r— —— | =

i, P =

s1 ‘Q\ P S16

UDP Traffic

] i]

FIGURE 13. Simulated network topology graph.

492 COMPUTATIONAL INTELLIGENCE
7. CONCLUSIONS

In this paper, we have presented and evaluated a GP-based approach for detecting known
or novel attacks on a network. The proof of concept implementation shows that new rules
generated by GP have the potential capability to detect novel forms of attacks. However, the
detection result is not good for some runs because the selection of crossover and mutation
points in corresponding operations is random. In addition, deciding the probability of genetic
operators selection is experience based. In our implementation, the probability of mutation
and crossover are 0.01 and 0.6, respectively.

The purpose of the work reported in this paper was mainly to assess the efficiency of GP
for known or novel attacks detection. The next step in our work will consist of extending the
scope of the rules involved.

REFERENCES

ANDERSON, J. P. 1980, Computer Security Threat Monitoring and Surveillance, Technical Report, James P.
Anderson Co., Fort Washington, PA.

BALAJINATH, B., and S. RAGHAVAN. 2001. Intrusion detection through learning behavior model. Computer
Communications, 24(12):1202-1212.

BARR, V. 1995. TRUBAC: A tool for testing expert systems with rule-base coverage measures. /n Proceedings of
the Thirteenth Annual Pacific Northwest Software Quality Conference.

BARR, V. 1997. Rule-based coverage analysis applied to test case selection. Annals of Software Engineering, 4.

BRIDGES, S. M., and R. M. VAUGHN. 2000. Fuzzy data mining and genetic algorithms applied to intrusion detection.
In Proceedings of the Twenty-third National Information Systems Security Conference, Baltimore, MD.

CHITTUR, A. 2002. Model generation for an intrusion detection system using genetic algorithm. High School
Honors Thesis.

CROSBIE, M., and G. SPAFFORD. 1995. Applying genetic programming to intrusion detection. Technical Report,
FS-95-01, AAAI Fall Symposium Series. AAAI Press.

ESKIN, E., and M. MILLER, Z. D. ZHONG, G. Y1, W-A. LEE, and S. STOLFO. 2000. Adaptive model generation for
intrusion detection systems. /n Workshop on Intrusion Detection and Prevention, 7th ACM Conference on
Computer Security, Athens, GR.

Fox, K. L., R. R. HENNING, J. H. REED, and P. R. SIMONIAN. 1990. A neural network approach towards intrusion
detection. /n Proceedings of 13th National Computer Security Conference, pp. 125-134.

FRANK, J. 1994. Artificial intelligence and intrusion detection: Current and future directions. /n Proceedings of
the 17th National Computer Security Conference, pp. 11-21.

GHOSH, A. K., J. WANKEN, and F. CHARRON. 1998. Detecting anomalous and unknown intrusions against pro-
grams. /n Proceedings of the 14th Annual Computer Security Applications Conference, pp. 259-267.

GOMEZ, J., D. DASGUPTA, O. NASAROUI, and F. GONZALEZ. 2002. Complete expression trees for evolving fuzzy
classifiers systems with genetic algorithms and application to network intrusion detection. /n Proceedings
of NAFIPS-FLINT joint Conference, New Orleans, LA, pp. 469—474.

Koza, J. R. 1992. Genetic Programming. MIT Press.

LEUNG, K. S., and K. F. YAM. 1992. Rule learning in expert systems using genetic algorithms: 1, Concepts. /n
Proceeding of the 2nd International Conference on Fuzzy Logic and Neural Networks, pp. 201-204.

LipPMANN, R. 2000. The 1999 DARPA off-line intrusion detection evaluation. Computer Networks, 34(4):579—
595.

ME, L. 1992. Genetic algorithms: An alternative tool for security audit trails analysis. Technical Report, Supelec,
France.

WONG, M. L., and K. S. LEUNG. 2000. Data mining using grammar based genetic programming and applications.
Kluwer Academic Publishers, Netherlands.

NETWORK INTRUSION USING GENETIC PROGRAMMING 493

APPENDIX
TABLE Al. Initial Rules (Ctd.)

Rules Meaning

AfpAqA if land = 1 and wrong_fragment = 0 and synflood = 0.00 then intrusion

AagggA if wrong_fragment > 1 and synflood = 0.00 then intrusion

Aigq if protocol_type = udp and wrong_fragment > 1 and synflood = 0.00 then intrusion

AabrA if protocol_type = tcp and count > 3 and synflood > 1 then intrusion

Aarc if srv_count > 3 and synflood > 1 then intrusion

Ahcr if protocol_type = icmp and srv_count > 3 and synflood > 1 then intrusion

AaaAfj if protocol_type = tcp and land = 1 and count < 3 then intrusion

AaAoc if protocol_type = tcp and srv_count > 3 and land = 0 then intrusion

gaAjA if protocol_type = tcp and count < 3 and wrong_fragment > 1 then intrusion

capAA if protocol_type = tcp and srv_count > 3 and wrong_fragment = 0 then intrusion

Abc if count > 3 and srv_count > 3 then intrusion

AatA if protocol_type = tcp and num_compromised > 1 then intrusion

Akvq if srv_count < 3 and synflood = 0 and same_srv_rate = 1.00 then intrusion

uagjA if protocol_type = tcp and same_srv_rate = 0.00 and wrong_fragment > 1 and count <
3 then intrusion

AAVA if protocol_type = tcp and same_srv_rate = 1.00 then intrusion

AAwv if protocol_type = tcp and diff_srv_rate > 0.33 and same_srv_rate = 1.00 then intrusion

AqgsujaA if protocol_type = tcp and count < 3 and synflood = 0 and num_compromised = 0 and
same_srv_rate = 0.00 then intrusion

Aasf if num_compromised = 0 and land = 1 then intrusion

AsAg if wrong_fragment > 1 and num_compromised = 0 then intrusion

AAAtfg if num_compromised > 1 and land = 1 and wrong_fragment > 1 then intrusion

Aaib if protocol_type = udp and count > 3 then intrusion

Attt if num_compromised > 1 then intrusion

Avfrg if land = 1 and wrong_fragment > 1 and same_srv_rate = 1.00 and synflood > 1 then
intrusion

AAAtIA if protocol_type = udp and num_compromised > 1 then intrusion

AAAVA if same_srv_rate = 1.00 then intrusion

cwAA if srv_count > 25 and diff_srv_rate > 0.33 then intrusion

Aaiog if protocol_type = udp and land = 0 and wrong_fragment > 1 then intrusion

Ar if synflood > 1 then intrusion

Aagg if wrong_flagment > 1 then intrusion

AaffA

if land = 1 then intrusion

494

COMPUTATIONAL INTELLIGENCE

TABLE A2. New Rules (Ctd.)

Rules Meaning

Agr if wrong_fragment > 1 and synflood > 1 then intrusion

Agq if wrong_fragment > 1 and synflood = 0 then intrusion

Agiq if protocol_type = udp and wrong_fragment > 1 and synflood = 0 then intrusion
Aw if diff_srv_rate > 0.33 then intrusion

Aagq if protocol_type = tcp and wrong_fragment > 1 and synflood = 0 then intrusion
Aqv if synflood = 0 and same_srv_rate = 1.00 then intrusion

Agu if wrong_fragment > 1 and same_srv_rate = (.00 then intrusion

Aadr if protocol_type = tcp and dst_host_count > 88 and synflood > 1 then intrusion
Ahmgq if protocol_type = icmp and dst_host_srv_count < 160 and synflood = 0 then intrusion
Aicq if protocol_type = udp and srv_count > 367 and synflood = 0 then intrusion
Aha if protocol_type = icmp and count > 160 then intrusion

Afs if land = 1 and num_compromised = 0 then intrusion

Aags if protocol_type = tcp and wrong_fragment > 1 and num_compromised = 0 then intrusion
Av if same_srv_rate = 1.00 then intrusion

Af if land = 1 then intrusion

Afg if land = 1 and wrong_fragment > 1 then intrusion

Aflp if land = 1 and sat_host_coun < 203 and wrong_fragment = 0 then intrusion
Afq if land = 1 and wrong_fragment = 0 then intrusion

Agh if protocol_type = icmp and wrong_flagment > 1 then intrusion

Abc if count > 120 and srv_count > 250 then intrusion

Aad if protocol_type = tcp and dst_host_count > 320 then intrusion

Ajjv if protocol_type = udp and count < 10 and same_srv_rate = 1.00 then intrusion
Akr if srv_count < 60 and synflood > 1 then intrusion

Aabo if protocol_type = tp and count > 450 and land = 0 then intrusion

Ach if protocol_type = icmp and dst_host_srv_count > 255 then intrusion

Aopt if land = 0 and wrong_fragment > 1 and num_compromised > 1 then intrusion
Agr if wrong_fragment > 1 and synflood > 1 then intrusion

Ahfg if protocol_type = icmp and land = 1 and wrong_fragment > 1 then intrusion
Afw if land = 1 and diff_srv_rate > 0.5 then intrusion

Act if srv_count > 46 and num_compromised > 1 then intrusion

