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ABSTRACT
Motivation: Given the joint feature-label distribution, increasing the
number of features always results in decreased classification error;
however, this is not the case when a classifier is designed via a clas-
sification rule from sample data. Typically (but not always), for fixed
sample size, the error of a designed classifier decreases and then
increases as the number of features grows. The potential downside of
using too many features is most critical for small samples, which are
commonplace for gene-expression-based classifiers for phenotype
discrimination. For fixed sample size and feature-label distribution, the
issue is to find an optimal number of features.
Results: Since only in rare cases is there a known distribution of the
error as a function of the number of features and sample size, this study
employs simulation for various feature-label distributions and classific-
ation rules, and across a wide range of sample and feature-set sizes.
To achieve the desired end, finding the optimal number of features
as a function of sample size, it employs massively parallel compu-
tation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian
kernel, linear support vector machine, polynomial support vector
machine, perceptron, regular histogram and linear discriminant ana-
lysis. Three Gaussian-based models are considered: linear, nonlinear
and bimodal. In addition, real patient data from a large breast-cancer
study is considered. To mitigate the combinatorial search for finding
optimal feature sets, and to model the situation in which subsets of
genes are co-regulated and correlation is internal to these subsets,
we assume that the covariance matrix of the features is blocked, with
each block corresponding to a group of correlated features. Altogether
there are a large number of error surfaces for the many cases. These
are provided in full on a companion website, which is meant to serve
as resource for those working with small-sample classification.
Availability: For the companion website, please visit http://public.tgen.
org/tamu/ofs/
Contact: e-dougherty@ee.tamu.edu

1 INTRODUCTION
Given the joint feature-label distribution, increasing the number of
features always results in decreased classification error; however,
this is not the case when a classifier is designed via a classification

∗To whom correspondence should be addressed.

rule from sample data. Typically (but not always), for fixed sample
size, the error of a designed classifier decreases and then increases
as the number of features grows. This peaking phenomenon was first
rigorously demonstrated for discrete classification (Hughes, 1968),
but it can affect all classifiers, the manner depending on the feature-
label distribution. The potential downside of using too many features
is most critical for small samples, which are commonplace for gene-
expression-based classifiers for phenotype discrimination. For fixed
sample size and feature-label distribution, the issue is to find an
optimal number of features. A seemingly straightforward approach
would be to find the distribution of the error as a function of the
feature-label distribution, number of features and sample size. In fact,
this has rarely been achieved. This leaves open the simulation route,
and this approach has been taken in the past for quadratic and linear
discriminant analysis (Van Ness and Simpson, 1976; El-Sheikh and
Wacker, 1980; Jain and Chandrasekaran, 1982). To apply simulation
for various feature-label distributions and classification rules, and
across a wide range of sample and feature-set sizes requires enormous
computation. This study employs contemporary massively parallel
computation. There are a large number of resulting three-dimensional
graphs. A website is provided for comparison of the many
results.

Determining the optimal number of features is complicated by
the fact that if we have D potential features, then there are C(D, d)

feature sets of size d, and all of these must be considered to assure the
optimal feature set among them (Cover and Van Campenhout, 1977).
Owing to the combinatorial intractability of checking all feature sets,
many algorithms have been proposed to find good suboptimal feature
sets; nevertheless, feature selection remains problematic. Evaluation
of methods is generally comparative and based on simulations (Jain
and Zongker, 1997; Kudo and Sklansky, 2000). One method used
to avoid the confounding effect of feature selection is to make a
distributional assumption so that any d features possess the same
marginal distribution. To model the situation in which subsets of
genes are co-regulated and correlation is internal to these subsets,
we assume that the covariance matrix of the features is blocked, with
each block corresponding to a group of correlated features, and that
feature selection follows the order of the features in the covariance
matrix (details below). While this does not necessarily produce the
optimal feature set for each size, it does provide comparison of the
classification rules relative to a global selection procedure that takes
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into account correlation—as opposed to the less realistic assumption
of equal marginal distributions.

Feature-set size was first addressed for multinomial discrimina-
tion via the histogram rule by finding an expression for the expected
error E[εd(Sn)] over all probability models, assuming equally likely
probability models (Hughes, 1968). The drawback of this approach
is twofold. First, in practice there is only one probability model and
the behavior of the error can vary substantially for different mod-
els. Second, all models are not equally likely in realistic settings.
Recently, an analytic representation of the distribution of the error
εd(Sn) for multinomial discrimination has been discovered that is
distribution-specific (as is our simulation procedure here), and from
which a distribution-specific expected error E[εd(Sn)] is derived
(Braga-Neto and Dougherty, 2004a). The optimal feature number
is at once determined by this expectation.

The other case historically addressed is classification with two
Gaussian class-conditional distributions. The Bayes classifier �d

is determined by a discriminant Qd(x), with �d(x) = 1 if and
only if Qd(x) > 0. In practice, the discriminant is estimated from
sample data. The standard plug-in rule to design a classifier from a
feature-label sample of size n is to obtain an estimate Qd , n of Qd

by replacing the means and covariance matrices in the discriminant
by their respective sample means and sample covariance matrices.
The designed classifier �d , n is determined by the estimated discrim-
inant according to �d , n(x) = 1 if and only if Qd , n(x) > 0. Since
the discriminant yields a quadratic decision boundary, the method is
known as quadratic discriminant analysis (QDA). For equal covari-
ance matrices, the discriminant is a linear function, and the method is
called linear discriminant analysis (LDA). For LDA, representation
of the distribution of Qd ,n goes back more than 40 years (Bowker,
1961), as does the discovery of an analytic expression for the expec-
ted error E[εd(Sn)] under the assumption that the sample is evenly
split between the two classes (Sitgreaves, 1961). Recently, a repres-
entation of the distribution for Qd , n has been discovered for QDA
(McFarland and Richards, 2002). This representation has been used
in an analytic approach to the expected error E[εd(Sn)] in the fol-
lowing way: the mean and variance of Qd , n are derived exactly from
the McFarland–Richards representation; with these a normal approx-
imation to the distribution of Qd , n is constructed; and E[εd(Sn)] is
found based on the normal approximation (Hua et al., 2004).

It is reasonable to expect that error representations will be difficult
to obtain for most classification rules. Moreover, as the current sim-
ulation study shows, one must be wary of generalizing the behavior
of LDA classifiers. Even for LDA there are significant differences
in error behavior depending on the feature-label distribution, for
instance, between correlated and uncorrelated features. The combin-
ation of the mathematical difficulty of deriving error representations
and large differences in error makes it important to conduct large sim-
ulation studies under different conditions to gain an understanding
of the kind of feature-set sizes that should be employed.

One might conjecture that a practical way to proceed would be to
try feature sets of varying sizes and then choose the designed clas-
sifier having the least error; however, this approach is fraught with
danger. When a classifier is designed from a small sample, its error
must be estimated using the sample data by a method such as cross-
validation, but such methods are very inaccurate in the sense that
the expected absolute deviation between the estimated error and the
true error is often very large, the situation being worse for com-
plex classification rules and with increasing numbers of features

(Braga-Neto and Dougherty, 2004b). Thus, trying numerous feature
sets and selecting the one with the lowest estimated error presents
a multiple-comparison type problem in which it is likely that some
feature set will have an estimated error far below its true error, and
therefore appear to provide excellent classification. Since variation
is worse for large feature sets, this could create a bias in favor of
large feature sets, which goes directly into the teeth of the peaking
phenomenon. Hence, gaining an idea of feature-set sizes that provide
good classification in various circumstances is of substantial benefit.

2 SIMULATION WITH SYNTHETIC DATA
Seven classifiers are considered in our study: 3-nearest-neighbor
(3NN), Gaussian kernel, linear support vector machine (linear SVM),
polynomial support vector machine (polynomial SVM), perceptron,
regular histogram and linear discriminant analysis (LDA). For linear
SVM and polynomial SVM, we use the codes provided by LIBSVM
2.4 (Chang and Lin, 2000) with the default setting, except that for
polynomial SVM the degree in the kernel function is set to 6. For the
Gaussian kernel, the smoothing factor h has been set to 0.2 after vari-
ous trials. For the regular histogram classifier, the cell number along
each dimension is set to 2 or 3 and evaluated separately, after which
the optimal value between the two is selected. We consider three
two-class distribution models:

Linear model: The class-conditional distributions are Gaussian,
N(µ0, �0) and N(µ1, �1), with identical covariance matrices, �0 =
�1 = �. The Bayes classifier is linear and the Bayes decision
boundary is a hyperplane. Without loss of generality, we assume that
µ0 = (0, 0, . . . , 0) and µ1 = (1, 1, . . . , 1).

Non-linear model: The class-conditional distributions are Gaus-
sian with covariance matrices differing by a scaling factor, namely,
λ�0 = �1 = �. Throughout the study, λ = 2. The Bayes classifier
is non-linear and the Bayes decision boundary is quadratic. Again
we assume that µ0 = (0, 0, . . . , 0) and µ1 = (1, 1, . . . , 1).

Bimodal model: The class-conditional distribution of class S0 is
Gaussian, centered at µ0 = (0, 0, . . . , 0), and the class-conditional
distribution of class S1 is a mixture of two equiprobable Gaussians,
centered at µ10 = (1, 1, . . . , 1) and µ11 = (−1, −1, . . . , −1). The
covariance matrices of the classes are identical. The Bayes decision
boundaries are two parallel hyperplanes. Owing to the extreme non-
linear nature of this model, the perceptron, linear SVM and LDA
classifiers are omitted from our study in this model.

Throughout, we assume that the two classes have equal prior prob-
ability. The maximum dimension is D = 30. Hence, the number of
features available is ≤30 and the peaking phenomenon will only
show up in the graphs for which peaking occurs with <30 features.

As noted in the Introduction, to avoid the confounding effects of
feature selection, we employ a covariance-matrix structure. We let
all features have common variance, so that the 30 diagonal elements
in � have the identical value σ 2. To set the correlations between
features, the 30 features are equally divided into G groups, with each
group having K = 30/G features. To divide the features equally,
G cannot be arbitrarily chosen. The features from different groups
are uncorrelated, and the features from the same group possess the
same correlation ρ among each other. If G = 30, then all features are
uncorrelated. We denote a particular feature with the label Fi,j , where
i, 1 ≤ i ≤ G, denotes the group to which the feature belongs and
j , 1 ≤ j ≤ K , denotes its position in that group. The full feature
set takes the form F = {F1,1, F2,1, . . . , FG,1, F1,2, . . . , FG,K }. For
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Fig. 1. Optimal feature size versus sample size for LDA classifier. Linear model is tested. σ 2 is set to let Bayes error be 0.05. (a) Uncorrelated features. (b)
Slightly correlated features, G = 5, ρ = 0.125. (c) Highly correlated features, G = 1, ρ = 0.5.

any simulation based on a feature subset of d features, the first d

features in F are picked. For example, if G = 10, then each group
has K = 3 features, and the covariance matrix, with features ordered
as F1,1, F1,2, F1,3, F2,1, . . . , F10,1, F10,2, F10,3, is

� = σ 2




1 ρ ρ

ρ 1 ρ 0 · · · 0
ρ ρ 1

1 ρ ρ

0 ρ 1 ρ · · · 0
ρ ρ 1

· · · ·
· · · ·
· · · ·

1 ρ ρ

0 0 · · · ρ 1 ρ

ρ ρ 1




.

In our study, all seven classifiers are applied to the three distribution
models (except for the perceptron, linear SVM and LDA for the
bimodal model, as already explained). For each model, altogether
30 different cases are considered according to different covariance-
matrix structures and variances:

Variance (σ 2): Three different variances σ 2 are chosen for each
model. They correspond to Bayes errors 0.05, 0.10 and 0.15, under
the assumption of 10 uncorrelated features.

Covariance matrix: Four basic covariance-matrix structures are
studied by dividing the 30 features into G = 1, 5, 10 and 30
groups. For G = 1, 5 and 10, three different correlation coefficients,
ρ = 0.125, 0.25 and 0.5, are considered. Thus, the total number of
covariance-matrix structures studied is 10. For each variance σ 2, dif-
ferent covariance-matrix structures will have different Bayes errors.
The increase in correlation among features, either by decreasing G

or increasing ρ, will increase the Bayes error for a fixed feature size.
For each case, performances, i.e. error rates, of various classifiers

are estimated at various feature sizes and sample sizes based on
Monte Carlo simulations:

Feature size (d): Except for the regular histogram, all classifiers
are tested on 29 different feature sizes from 2 to 30. For the regu-
lar histogram, owing to the exponentially increasing cell numbers,
feature sizes are limited from 1 to 10.

Sample size (n): Sample sizes run from 10 to 200, increased by
steps of 10, for a total of 20 sample sizes.

For each feature size d and sample size n, the simulation generates
n training points according to the distribution model, variance and
covariance matrix being tested. The trained classifier is applied to 200
independently generated test points from the identical distribution.
This procedure is repeated 25 000 times for all classifiers except
LDA with 100 000 repetitions and linear SVM and polynomial SVM
with 5000 repetitions, the latter being extremely computationally
intensive. Error rates are then averaged. The results are presented by
a 2-D mesh plot like that in Figure 1. The black lines with circular
markers are those with the lowest error rates, and hence the ones
showing the optimal feature sizes. There are 540 mesh plots on the
website. In the next section we discuss some representative results.

3 RESULTS ON SYNTHETIC DATA
Figure 1 shows the effect of correlation for LDA with the linear
model. Note that the sample size must exceed the number of fea-
tures to avoid degeneracy. For uncorrelated features in Figure 1(a),
the optimal feature size is around n − 1, which matches well with
previously reported LDA results (Jain and Waller, 1978). As feature
correlation increases, the optimal feature size decreases, becoming
very small when correlation is high. This also matches results in the
same paper, which claims that the optimal feature size is proportional
to

√
n for highly correlated features. In all three parts, uncorrelated,

slightly correlated and highly correlated, we see the peaking phe-
nomenon and observe that the optimal number of features increases
with increasing sample size. For microarray-based studies, where
sample sizes of <50 and feature correlation are commonplace, one
should note that with slight correlation, the optimal number of fea-
tures for n = 30 and n = 50 is d = 12 and d = 19, respectively,
and with high correlation, the optimal number of features for n = 30
and n = 50 is d = 3 and d = 4, respectively. Similar results have
been obtained for the non-linear model.

Figure 2 provides some results for the regular histogram classifier
on the three models. The cell number increases exponentially with
feature size and the optimal number of features is quite small in all
three models. The curve of the optimal number of features as a func-
tion of the sample size shows the common increasing monotonicity.
The optimal feature size for the bimodal model is larger, indicating
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Fig. 2. Optimal feature size versus sample size for regular histogram classifier. Uncorrelated features. σ 2 is set to let Bayes error be 0.05.
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Fig. 3. Optimal feature size versus sample size for perceptron and SVM classifiers.
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the need for more features to separate three concentrations of mass
as opposed to two.

In Figure 3, we compare the perceptron, linear SVM and poly-
nomial SVM classifiers. Of practical importance, the linear SVM
shows no peaking phenomenon for up to 30 features, the polyno-
mial SVM peaks at under 30 only for quite small samples on the
uncorrelated linear model and the polynomial SVM shows no peak-
ing at up to 30 features for the correlated linear model. When there
is no peaking, one can safely use a large number of features even for
small samples. The optimal-feature-size curves for the perceptron
and linear SVM for the correlated linear and non-linear models are
quite similar, whereas they are very different for the uncorrelated
linear model. Note also that the error rate drops much faster relative
to sample size for the polynomial SVM in comparison to the linear
SVM for the correlated model.

Perhaps the most interesting aspect of Figure 3 is that there are
cases in which the optimal number of features is not monotonically
increasing with the sample size (and here we are not referring to the
slight wobble owing to a flat surface). When it applies, monotonicity
follows from the peaking point as the sample size increases. Two
phenomena are observed here. With an extremely small sample size
(n = 10), we observe no peaking for the perceptron and linear
SVM except for the perceptron in the non-linear model, and the
peaking is extremely slight. More striking is that, for the perceptron
in all cases and the linear SVM in the correlated cases, in a range
of sample sizes we do not observe the typical concave behavior of
the error as a function of the number of features. On the contrary,
in some feature size range, the classification error will increase and
then decrease with the feature size, thereby forming a ridge across the
error surface. A zoomed plot for the perceptron in the uncorrelated
case in Figure 4(a) shows the ridge.

This phenomenon can be appreciated by decomposing the error of
the designed classifier into the sum of the error, εd , of the optimal
classifier for the classification rule relative to the feature-label distri-
bution and the cost, �d(Sn), of designing a classifier from the sample
Sn. Then, taking expectation with respect to the distribution of the
samples yields

E[εd(Sn)] = E[�d(Sn)] + εd .

Considering the expected error as a function of the feature number
d, the common interpretation is that E[εd(Sn)] decreases to a min-
imum at d0 and thereafter increases with increasing d. This means
that for d < d0, the optimal error εd is falling faster than the design
cost E[�d(Sn)] is rising, and that for d > d0, the optimal error εd

is falling slower than the design cost E[�d(Sn)] is rising. The fea-
ture sets for d < d0 are said to underfit the data because there is
insufficient classifier complexity to take full advantage of the data
to separate the classes, whereas feature sets for d > d0 are said to
overfit the data because the complexity of the classifier allows it to
produce decision regions that too closely follow the sample points.
Under this interpretation, E[εd(Sn)] decreasing to a minimum at
d0 and thereafter increasing mean there is decreasing underfitting
and then increasing overfitting. The situation may not be so simple.
For example, in Figure 4, we observe the following phenomenon:
there are feature numbers d0 < d1 such that for d < d0, εd is
falling faster than E[�d(Sn)] is rising; for d0 < d < d1, εd is fall-
ing slower than E[�d(Sn)] is rising; and for d > d1, εd is falling
faster than E[�d(Sn)] is rising. For sample size n = 10, simulations
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Fig. 4. A case of perceptron classifier: linear model, uncorrelated features,
σ 2 is set to let Bayes error be 0.05. (a) Optimal feature size versus sample
size. (b) Relationship among E[εd (Sn)], E[�d(Sn)] and εd for n = 10, 20
and 30.

have been run up to 400 features and εd still falls no slower than
E[�d(Sn)] rises. Similar phenomena can be observed for other cases
of perceptron and some of the SVM classifiers on the complementary
website.

Figure 5 shows results for the 3NN classifier on all three models.
The surfaces and optimal-feature-size curves for the Gaussian-kernel
classifier have almost identical shapes (these being provided only on
the website owing to space limitations). Since for the Gaussian kernel
the distance between sample points increases with feature size, the
posterior probability of the test sample points will be largely determ-
ined by the nearest neighbors. Thus, the Gaussian kernel should have
similar properties to the 3NN classifier regarding optimal feature size,
and this is confirmed by our simulation. A key observation is that
for the linear and bimodal models, in which the optimal decision
boundaries are flat, there is no peaking up to 30 features. Peaking
has been observed in some cases at up to 250 features with sample
size n = 10, which should have little impact in practical applications.
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Fig. 5. Optimal feature size versus sample size for the 3NN classifier. Correlated features, G = 1, ρ = 0.25. σ 2 is set to let Bayes error be 0.05.
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Fig. 6. Optimal feature size versus sample size for various classifiers on real patient data. Sample size n = 40.

Once again the optimal-feature-number curve is not increasing
as a function of sample size—this being observed in the non-linear
model for both classifiers. The optimal feature size is larger at very
small sample sizes, rapidly decreases, and then stabilizes as the
sample size increases. To check this stabilization, we have tested
the 3NN classifier on the non-linear model case in Figure 5 for
sample size up to 5000. The result shows that the optimal feature size
increases very slowly with sample size. In particular, for n = 100
and n = 5000, the optimal feature sizes are 9 and 10, respectively.
This suggests a useful property of kNN and Gaussian-kernel classi-
fiers: once we find an optimal feature size for a very modest sized
sample, we can use the same number of features for much larger
samples without sacrificing optimality. Based on our simulations,

using more than d = 10 features is counterproductive for the models
considered.

4 PATIENT DATA
In addition to the synthetic data, we have conducted experiments
based on real patient data. With real data it is not possible to
perform the kind of systematic study performed on synthetic data
arising from parameterized distributions. Our purpose in consider-
ing a particular set of real microarray data is to demonstrate that the
behavior of optimal feature-set sizes for such data can bear similar-
ity to that arising from synthetic data, in particular, with correlated
synthetic data.
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The patient data come from a microarray-based cancer-
classification study (van de Vijver et al., 2002) that analyzes a
large number of microarrays prepared with RNA from breast tumor
samples of 295 patients. Using a previously established 70-gene
prognosis profile (van’t Veer et al., 2002), a prognosis signa-
ture based on gene-expression is proposed in van de Vijver et al.
(2002) that correlates well with patient survival data and other exist-
ing clinical measures. Of the 295 microarrays, 115 belong to the
‘good-prognosis’ class, whereas the remaining 180 belong to the
‘poor-prognosis’ class.

All classifiers are tested on various feature sizes from 1 to 30,
except the regular histogram, which is omitted for the patient data
because its error surface is too rough with the limited number of
replications used. To mitigate the confounding effects of feature
selection, for each feature-set size, floating forward selection (Pudil
et al., 1994) is used to find a (hopefully) close-to-optimal feature
subset based on all 295 data points. This will provide ‘population-
based’ feature sets whose sample-based performances can then be
evaluated. To evaluate the performance of each feature subset, we
approximate the classification error with a hold-out estimator. For
a sample size of n, 1000 samples of size n are drawn independ-
ently from the 295 data points, and for each observation the different
classifiers trained on the n points are tested on the 295 − n points
not drawn. The 1000 error rates are averaged to obtain an estim-
ate of the sample-based classification error. Since the observations
are actually not independent, a large n will induce inaccuracy in
the estimation. Hence, we limit n under 40 to reduce the impact of
observation correlation. The results are shown in Figure 6, where all
classifiers show some degree of overfitting beginning at feature size
from 10 to 20, some significant and some insignificant. Owing to
only 1000 samples, there is some wobble in the flat regions of the
graphs. Ignoring this, there is decent concordance with the correlated
synthetic data—one should not expect complete concordance. Note
that the flatness of the SVM graphs, especially in the polynomial
case, again indicates the robustness of SVM classification relative to
using large feature sets with small samples. Compare this to the lack
of feature-size robustness for LDA classification. As with the model
cases, there is similarity in the optimal-feature-size performance of
the 3NN and Gaussian-kernel classifiers; however, with the patient
data, there is earlier peaking for sample sizes below 20, but this is
fairly slight.

5 CONCLUSION
Two conclusions can safely be drawn from this study. First, the
behavior of the optimal-feature-size relative to the sample size
depends strongly on the classifier and the feature-label distribution.
An immediate corollary is that one should be wary of rules-of-
thumb generalized from specific cases. Second, the performance
of a designed classifier can be greatly influenced by the number of

features and therefore one should attempt to use a number close to the
optimal number. This means that it can be useful to refer to a database
of optimal-feature-size curves to choose a feature size, even if this
means making a necessarily very coarse approximation of the distri-
bution model from the data—even perhaps just a visual assessment of
the data. Owing to the roughness of these kinds of approximations,
a classifier like the polynomial SVM, which shows strong robust-
ness with respect to large feature sets, has inherent advantages over
a classifier like LDA, which does not show robustness.
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