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ABSTRACT
Motivation: Ranking feature sets is a key issue for classification, for
instance, phenotype classification based on gene expression. Since
ranking is often based on error estimation, and error estimators suf-
fer to differing degrees of imprecision in small-sample settings, it is
important to choose a computationally feasible error estimator that
yields good feature-set ranking.
Results: This paper examines the feature-ranking performance of
several kinds of error estimators: resubstitution, cross-validation, boot-
strap and bolstered error estimation. It does so for three classification
rules: linear discriminant analysis, three-nearest-neighbor classific-
ation and classification trees. Two measures of performance are
considered. One counts the number of the truly best feature sets
appearing among the best feature sets discovered by the error estim-
ator and the other computes the mean absolute error between the
top ranks of the truly best feature sets and their ranks as given by
the error estimator. Our results indicate that bolstering is superior to
bootstrap, and bootstrap is better than cross-validation, for discov-
ering top-performing feature sets for classification when using small
samples. A key issue is that bolstered error estimation is tens of times
faster than bootstrap, and faster than cross-validation, and is there-
fore feasible for feature-set ranking when the number of feature sets
is extremely large.
Availability: We provide a companion website, which contains the
complete set of tables and plots regarding the simulation study, and
a compilation of references on feature-set ranking with applications
in Genomics. The companion website can be accessed at the URL
http://ee.tamu.edu/ ∼edward/bolster_ranking
Contact: edward@ee.tamu.edu

1 INTRODUCTION
When choosing among a collection of potential feature sets for clas-
sification, estimating the errors of designed classifiers is a key issue;
indeed, it is natural to order the potential feature sets according to
the misclassification rates of their corresponding classifiers. Hence,
it is important to apply error estimators that provide rankings that
better correspond to rankings produced by the true errors. For phen-
otype classification based on gene expression, feature selection can
be viewed as gene selection: find sets of genes whose expressions can

∗To whom correspondence should be addressed.

be used for phenotypic discrimination. In recent years, gene selec-
tion has been heavily investigated (see the companion website for a
list of papers on this topic).

A critical issue for classification via microarray data is the frequent
presence of small samples and the consequences flowing therefrom
(Dougherty, 2001). For instance, with small-sample classifier design,
one is typically limited to small feature sets to avoid overfitting (Jain
and Chandrasekaran, 1982; Raudys and Jain, 1991; Devroye et al.,
1996). While this may be an impediment, small gene sets are advant-
ageous relative to the very expensive and time-consuming analysis
required to determine if they could serve as useful targets for therapy.
In any event, since all feature-selection algorithms are subject to sig-
nificant errors when samples are small, in the context of microarray
experiments, it is prudent to approach feature selection as finding a
list of potential feature sets, and not as trying to find a best feature set.
Indeed, the entire matter of feature selection and classification in the
context of small samples can be conservatively viewed as an explor-
atory methodology. This conservative position has been aticulated in
the following manner: ‘Most likely, it will not be possible to design
a classifier from a single set of microarray experiments. Separation
of the sample data by designed classifiers will likely have to be taken
as evidence that the corresponding gene sets are potential variable
sets for classification. Their effectiveness will have to be checked
by large-replicate experiments designed to estimate their classifica-
tion error, perhaps in conjunction with biological input or phenotype
evidence. There may, in fact, be many gene sets that provide accurate
classification of a given pathology. Of these, some sets may provide
mechanistic insights into the molecular etiology of the disease, while
other sets may be indecipherable’ (Dougherty, 2001). For instance,
this approach has been explicitly taken in the case of discovering
markers for different types of glioma, where the number of avail-
able tissue samples is severely limited (Kim et al., 2002). This study
states, ‘We have identified robust classifier gene sets containing one
to three genes that distinguish each type of glioma from the other
three. This provides guidance for the development of pathological
assays using a reasonable number of markers for clinical use’.

The raw data associated with microarray experiments usually
contain an extraordinarily large number of gene expression measure-
ments, in the order of tens of thousands. On any given microarray,
many of these measurements fall below an acceptable quality level.
In the case of the software provided with the Affymetrix platform, an
unacceptable signal-to-noise ratio is quantified by a bad ‘detection’
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P -value (Liu et al., 2002). For spotted cDNA microarrays, the
DeArray software of the National Human Genome Research Insti-
tute calculates a multi-faceted quality metric for each spot (Chen
et al., 2002). This quality problem is a result of imperfections in
RNA preparation, hybridization to the arrays, scanning and also
intrinsic factors, such as low expressed genes. Genes whose expres-
sions fail to be effectively detected on a large number of microarrays
are rejected from further consideration. Furthermore, many of the
reliably detected genes possess expression values that do not change
appreciably across the microarrays in the experiment—for instance,
‘house-keeping’ genes. These genes can also be removed from con-
sideration, by means of a simple variance filter, since they clearly
cannot contribute to discrimination. This pre-filtering process usu-
ally reduces the number of variables by an order of magnitude. One
then proceeds to apply a feature selection algorithm to obtain small
feature sets (combinations of genes). Feature selection can be either
optimal, which requires that all possible feature sets of a given size
are examined (Cover and van Campenhout, 1977), or suboptimal.
If pre-filtering reduces the number of potential features to around a
thousand, it becomes computationally possible to employ optimal
feature selection and examine all possible two- and three-gene fea-
ture sets. Larger numbers of potential features or larger feature sets
are possible in an appropriate supercomputer environment. If the ini-
tial number of genes to be considered, after pre-filtering, is too large,
or if the size of the feature sets is large, then a suboptimal method
must be employed. It is not uncommon to apply a second filtering
(say, by standard t-tests) to further reduce the number of features,
and then follow this by an optimal or suboptimal selection process.
We refer to the literature for issues concerning suboptimal feature
selection, including small-sample considerations (Jain and Zongker,
1997; Kudo and Sklansky, 2000).

A natural way to measure the performance of an error estimator
relative to feature-set ranking is to measure the degree to which
application of the estimator yields a ranking that reflects the ranking
based on the true errors of the classifiers designed for the feature
sets. Here we will consider two performance measures. The first
counts the number of top feature sets based on the true error that
are rated as top feature sets based on the estimated error. For feature
(gene) discovery, this performance measure is critical because the
features discovered based on the data will be the ones listed best
based on error estimation, and we would like that list to contain
a good supply of truly good feature sets. A second measure com-
putes the mean deviation between the rankings of the top feature sets
(based on true error) and their corresponding rankings based on error
estimation.

A perusal of the literature shows that cross-validation methods
(especially leave-one-out estimation) are often used for error estim-
ation during feature selection; however, cross-validation estimators
display high variance (Devroye et al., 1996). This variance results in
a widely dispersed deviation distribution (deviation between the true
and estimated errors of a classifier), thereby making cross-validation
unreliable for small samples (Braga-Neto and Dougherty, 2004b). In
a previous paper, it has been demonstrated that, for small samples,
leave-one-out cross-validation-based feature ranking does not out-
perform resubstitution-based feature ranking on the best feature sets,
these being the ones whose designed classifiers possess the smal-
lest errors (Braga-Neto et al., 2004). Owing to typical experimental
methodology, the conclusions of that paper are too narrow. While
it is theoretically revealing to know that a popular cross-validation

procedure does not outperform resubstitution on the best feature sets,
in practice we do not know the best feature sets and must draw our
conclusions from feature sets ranked according to an error estim-
ator. Thus, we are presented with a list of feature sets whose errors
are estimated, and further investigation—for instance, laboratory
analysis to determine the biological basis of discrimination—will
proceed based on the list. Owing to imprecision in error estimation,
an experimentally derived list is likely to contain among its best fea-
ture sets some that are not truly the best. Hence, in evaluating error
estimators we cannot limit our view to the best feature sets; other-
wise, we will not take into account the confusion created by mediocre
(or even poor) feature sets appearing at the top of an experimentally
derived list.

Going further, we do not want to limit ourselves to leave-one-out
cross-validation and resubstitution. Admittedly, these are com-
putationally efficient compared to replicated cross-validation and
bootstrap, but as we will see, they are among the worst performers
relative to ranking. Indeed, 0.632 bootstrap generally outperforms
cross-validation methods (the performances of which vary widely),
the exception being for the best feature sets, where the perform-
ances of all the tested estimators do not differ greatly. Owing to its
high computational complexity, bootstrap is not feasible for rank-
ing very large collections of feature sets; nonetheless, owing to its
generally superior performance to cross-validation, it can serve as a
benchmark. In this paper we demonstrate that the recently proposed
bolstered error estimation (Braga-Neto and Dougherty, 2004a) not
only outperforms cross-validation for feature-set ranking, but also
outperforms 0.632 bootstrap, even though the bootstrap takes tens of
times longer to compute than the bolstered estimators.

We use simulation studies to analyze feature-set ranking for a
number of cross-validation, bootstrap and bolstered error estimators.
The use of simulation studies is commonplace for feature-selection
analysis (Jain and Zongker, 1997; Kudo and Sklansky, 2000). We
conduct two large studies, one based on a Gaussian mixture model
that allows us to vary a number of parameters, and the other based
on patient data from a large microarray breast cancer study. In
both studies we consider linear discriminant analysis (LDA), three-
nearest-neighbor (3NN) classification and classification trees. We
present detailed analysis in the paper for one case from each study
and provide the bulk of the results on the companion website.

2 ERROR ESTIMATION
In two-group statistical pattern recognition, there is a feature vector
X ∈ R

p and a label Y ∈ {0, 1}. The pair (X, Y ) has a joint probab-
ility distribution F, which is unknown in practice. Hence, classifiers
are designed from training data, which consists of a set of n inde-
pendent observations, Sn = {(X1, Y1), . . . , (Xn, Yn)}, drawn from F.
A classification rule is a mapping g : {Rp ×{0, 1}}n ×R

p → {0, 1}.
It maps Sn into the designed classifier g(Sn, ·) : R

p → {0, 1}. In
fact, a classification rule is actually a collection of mappings, one
for each n; however, we follow the usual practice of using a single
operator notation g to represent all of the individual mappings. The
true error of a designed classifier is its error rate given the training
data set:

εn[g|Sn] = P(g(Sn, X) �= Y ) = EF(|Y − g(Sn, X)|), (1)

where EF denotes expectation with respect to F. The expected error
rate over the data is given by εn[g] = EFn

EF(|Y −g(Sn, X)|), where
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Fn is the joint distribution of the training data Sn. Were the underlying
feature-label distribution F known, the true error could be computed
exactly via (1). In practice, one must use an error estimator. Ideally,
this estimate should be fast to compute and as close as possible to
the true error, for the given training data.

2.1 Classical error estimation
The simplest way to estimate the error of a designed classifier in the
absence of independent test data is to compute its error directly on the
sample data itself. This resubstitution estimator, ε̂resub, is very fast,
but is usually optimistic (i.e. biased low) as an estimator of εn[g]. For
some classification rules, resubstitution can be severely low-biased,
an extreme case being one-nearest-neighbor classification, in which
the resubstitution estimator is identically zero. Typically, the more
complex the classifier is, the more optimistic resubstitution is, since
complex classifiers tend to overfit the data, especially with small
samples (Vapnik, 1998).

Cross-validation removes optimism by using test points not used
in classifier design. In k-fold cross-validation, the data set Sn is par-
titioned into k folds S(i), for i = 1, . . . , k (for simplicity, we assume
that k divides n). Each fold is left out of the design process and
used as a test set, and the estimate, ε̂cvk, is the overall proportion
of error on all folds. The process may be repeated: several cross-
validation estimates are computed using different partitions of the
data into folds, and the results are averaged. A k-fold cross-validation
estimator is unbiased as an estimator of εn−n/k[g]. The leave-one-out
estimator, ε̂loo, in which a single observation is left out each time, cor-
responds to n-fold cross-validation. It is unbiased as an estimator of
εn−1[g]. Cross-validation estimators are often pessimistic, since they
use smaller training sets to design the classifier. Their main drawback
is their variance (Braga-Neto and Dougherty, 2004b; Devroye et al.,
1996). They can also be slow to compute when the number of folds
or samples is large.

Bootstrap error estimation (Efron, 1979, 1983) is based on the
notion of an ‘empirical distribution’ F∗, which replaces the original
unknown distribution F. The empirical distribution puts mass 1/n

on each of the n available data points. A ‘bootstrap sample’ S∗
n

from F∗ consists of n equally likely draws with replacement from
the original data Sn. The basic bootstrap zero estimator (Efron,
1983) is written in terms of the empirical distribution as ε̂0 =
EF∗

(|Y − g(S∗
n , X)| : (X, Y ) ∈ Sn \ S∗

n

)
. In practice, the expectation

EF∗ has to be approximated by a Monte-Carlo estimate based on
independent replicates S∗b

n , for b = 1, . . . , B. The bootstrap zero
estimator works like cross-validation: the classifier is designed on
the bootstrap sample and tested on the original data points that are
left out. It tends to be high-biased as an estimator of εn[g], since the
amount of samples available for designing the classifier is on average
only (1 − e−1)n ≈ 0.632n. The 0.632 bootstrap estimator (Efron,
1983), ε̂b632 = (1 − 0.632) ε̂resub + 0.632 ε̂0, tries to correct this bias
by doing a weighted average of the bootstrap zero and resubstitution
estimators. It has low variance, but can be extremely slow to com-
pute. In addition, it can fail when resubstitution is too low-biased
(Braga-Neto and Dougherty, 2004b).

2.2 Bolstered error estimation
The resubstitution estimator is defined in terms of the empirical
feature-label distribution F ∗ by ε̂R

n = EF ∗ [|Y − g(Sn, X)|]. Rel-
ative to F ∗, no distinction is made between points near or far from
the decision boundary. If one spreads the probability mass at each

point of the empirical distribution, then variation is reduced because
points near the decision boundary will have more mass on the other
side of the boundary than will points far from the decision bound-
ary. To take advantage of this observation, consider a probability
density function f

♦
i , for i = 1, . . . , n, called a bolstering kernel,

and define the bolstered empirical distribution F♦, with probab-
ility density function given by f ♦(x) = (1/n)

∑n
i=1 f

♦
i (x − xi ).

The bolstered resubstitution estimator (Braga-Neto and Dougherty,
2004a) is obtained by replacing F ∗ by F♦ in the definition of ε̂R

n to
obtain

ε̂♦R
n = EF♦[|Y − g(Sn, X)|]. (2)

Whereas (Braga-Neto and Dougherty, 2004a) treated the definitions,
properties and comparisons of bolstering with classical error estima-
tion relative to variance and deviation from the true error, this paper
considers the ability of bolstering to provide accurate feature-set
ranking.

A computational expression for the bolstered resubstitution estim-
ator is given by

ε̂♦R
n = 1

n

n∑
i=1

(
Iyi=0

∫
A1

f
♦
i (x − xi) dx + Iyi=1

×
∫

A0

f
♦
i (x − xi) dx

)
. (3)

where Aj = {x|g(Sn, x) = j}. The integrals are the error contribu-
tions made by the data points, according to whether yi = 0 or yi = 1.
The bolstered resubstitution error estimate is equal to the sum of all
error contributions divided by the number of points. If the classifier
is linear, then the decision boundary is a hyperplane and it is usually
possible to find analytical expressions for the integrals; otherwise,
Monte-Carlo integration can be employed:

ε̂♦R
n ≈ 1

n

n∑
i=1


 M∑

j=1

Ixij ∈A1Iyi=0 +
M∑

j=1

Ixij ∈A0Iyi=1


 , (4)

where {xij }j=1,...,M are samples drawn from the distribution f
♦
i . The

experiments in Braga-Neto and Dougherty (2004a) indicate that a
small number M of Monte-Carlo samples is needed (in our simula-
tions, a value M = 10 was adequate, and increasing M beyond that
did not substantially reduce the variance of the estimator). Figure 1
illustrates the situation where the bolstering kernels are given by uni-
form circular distributions and the classifier is linear. In this case, the
bolstered resubstitution error estimate is given in terms of the areas
of the shaded regions.

When resubstitution is strongly low-biased, it may not be good
to spread incorrectly classified data points, as that increases optim-
ism. Bias is reduced by using no bolstering for incorrectly classified
points. The result is the semi-bolstered resubstitution estimator
(Braga-Neto and Dougherty, 2004a).

Bolstering can be applied to any error-counting error estima-
tion method. For the leave-one-out estimation, let S i

n−1 denote
the data set resulting from deleting data point i from the ori-
ginal data set Sn and Ai

j = {x|g(S i
n−1, x) = j}, for j = 0, 1, be the

decision region for the classifier designed from S i
n−1. The bolstered

leave-one-out estimator (Braga-Neto and Dougherty, 2004a) can be
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Fig. 1. Bolstered resubstitution for a linear classifier, assuming uniform cir-
cular bolstering kernels. The area of each shaded region divided by the area of
the associated circle is the error contribution made by a point. The bolstered
resubstitution error is the sum of all contributions divided by the number of
points.

computed via

ε̂�
loo = 1

n

n∑
i=1

(
Iyi=0

∫
Ai

1

f �
i (x − xi) dx + Iyi=1

×
∫

Ai
0

f �
i (x − xi) dx

)
. (5)

When the integrals cannot be computed exactly, a Monte-Carlo
expression like (4) can be used.

Although more general bolstering kernels may be considered, in
keeping with the principle of not making complicated inferences
from a limited amount of data, we only consider zero-mean, spherical
bolstering kernels f �

i , with covariance matrices of the form σ 2
i Ip .

In each case there is a family of bolstered estimators, corresponding
to the choices of the standard deviations σ1, . . . , σn. These para-
meters determine the variance and bias properties of the bolstered
estimator. If σi = 0, for i = 1, . . . , n, then there is no bolstering and
the bolstered estimator reduces to the original estimator. As a general
rule, larger σis, i.e. ‘wider’ bolstering kernels, lead to lower-variance
estimators, but after a certain point this advantage becomes offset by
increasing bias. The choice of the standard deviations is critical.
A non-parametric sample-based method to choose these paramet-
ers that is applicable in small-sample settings has been proposed
(Braga-Neto and Dougherty, 2004a). The method is described in the
Appendix, which also describes in detail bolstering using Gaussian
kernels, the kind used in this paper.

3 RANKING FEATURE SETS
We consider two performance measures concerning how well feature
ranking using the error estimators agrees with feature ranking based
on the true errors. Since our main interest is in finding good feature
sets, say the best K feature sets, we wish to compare the rankings of
the K best estimate-based feature sets with those of the K best based

on the true errors. Moreover, in a similar vein to (Braga-Neto et al.,
2004), we want to make this comparison for feature sets whose true
performances attain certain levels. For t > 0, let GK

t be the collection
of all feature sets of a given size whose true errors are less than t ,
where GK

t is defined only if there exists at least K feature sets with
true error less than t . Rank the best K feature sets according to their
true errors and rank all features sets inGK

t according to their estimated
errors, with rank 1 corresponding the lowest error. We then have two
ranks for each of the K best feature sets: k (true) and k∗ (estimated)
for all feature sets in GK

t . In case of ties, the rank is equal to the
mean of the ranks. It should be noted that the selection of feature
sets for inclusion in GK

t is based on the true error and is therefore
not subject to the kind of selection bias discussed in (Ambroise and
McLachlan, 2002). Moreover, any selection bias that might occur
in the ranking based on error estimation is part of the estimation-
based ranking process and its effect is ipso facto incorporated into
the ranking analysis.

If our interest is in feature discovery, then a key interest is whether
truly important features appear in the list of important feature sets
based on error estimation. This is the list we obtain from data analysis,
and good classification depends on discovering truly good classify-
ing feature sets. Moreover, in gene discovery, the ultimate analysis
is not that based on the classification data, but is instead the laborat-
ory analysis of genes discovered via classification, and therefore we
would like the classification methodology to produce key genes. The
first performance statistic counts the number of feature sets among
the top K feature sets that also appear in the top K using the error
estimator,

RK
1 (t) =

K∑
k=1

Ik∗≤K . (6)

where IA denotes the indicator function. For this measure, higher
scores are better. Since k∗ is the estimate-based rank of the k-th true-
ranked feature set among the feature sets in GK

t and since we only
consider feature sets in GK

t , the larger t , the larger the collection
of ranks k∗ and the greater possibility that erroneous feature sets
appear among the top K , thereby resulting in a smaller value of
RK

1 (t). As will be seen in the experimental results, the curve of
RK

1 (t) will flatten out for increasing t , which is reflective of the fact
that, as we consider ever poorer feature sets, their effect on the top
ranks becomes negligible owing to the fact that inaccuracy in the
measurement of their errors is not sufficient to make them confuse
the ranking of the best feature sets.

The second performance metric measures the mean absolute
deviation in the ranks for the K best feature sets,

RK
2 (t) = 1

K

K∑
k=1

|k − k∗|. (7)

For this measure, lower scores are better. In analogy to RK
1 (t), the

larger t , the larger the collection of ranks k∗ and the greater possible
deviation between k and k∗. When t is small, rank comparison is
only being made between (truly) good feature sets, which was the
interest in Braga-Neto et al. (2004). Our interest here is broader. We
interested in a wide variety of error estimators and are concerned
with the pragmatic issue of having to rank feature sets based on
error estimates without necessarily having any a priori restriction on
the goodness of the feature sets being considered. Hence, we are
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interested in large t , and in analogy to RK
1 (t) the curve for RK

2 (t)

will flatten out as t increases.

4 EXPERIMENTAL RESULTS
We consider two basic sets of experiments, one using synthetic data
generated from a model based on Gaussian class conditional distribu-
tions, and another using microarray data categorizing breast-cancer
patient prognosis. In both cases we consider three classification rules:
LDA, 3NN, and classification and regression trees (CART). In all
cases we consider a sample size of 30, do the analysis for two and
three features, and consider top lists of sizes K = 20 and 40. We
provide detailed analysis in the paper for one Gaussian case and one
from the breast-cancer data. The results for all other cases appear on
the companion website.

4.1 Synthetic data
The synthetic data used in our experiments is based on a Gaussian
model, under which the classes are equally likely and the class-
conditional densities are spherical unit-variance Gaussians. The
class means are located at δa and −δa, where δ > 0 is a separa-
tion parameter and a = (a1, a2, . . . , an) is a parameter vector with
||a|| = 1. The Bayes classifier is a hyperplane perpendicular to
the axis joining the means, with Bayes error εBAYES = 1 − �(δ),
where � is the standard normal cumulative distribution function.
Since δ = �−1

(
1 − εBAYES

)
, one can find δ for a prescribed Bayes

error. If a subset L of the original variables is selected, then again
one has a standard Gaussian model, but now the separation between
the classes is a function of which variables are selected. The Bayes
error is a function of both the separation and the model parameters,

specifically, εL
BAYES

= 1 − �(δ

√∑
k∈L a2

k ). To minimize εL
BAYES

for
a given number of selected variables, one should pick the variables
corresponding to the largest parameters.

For the simulation, we let the total number of variables in the
Gaussian model be 20 and consider feature sets of sizes 2 and 3.
The separation parameter δ is chosen so that the Bayes error in the
space of dimension corresponding to the feature-set sizes of 2 and
3 is 0.05 or 0.10, respectively. We consider equal or unequal (1
and 1.5) class-conditional standard deviations. The parameter vector
a = (a1, a2, . . . , an) is picked from a sigmoidal distribution in order
to favor a few of the feature sets and make the rest unimportant. We
generate 200 independent sample sets of size 30. For each, we apply
the three classification rules, LDA, 3NN and CART, with all possible
feature sets, and apply the different error estimators to compute the
statisticsRK

1 (t) andRK
2 (t). The number of feature sets for which each

statistic is computed depends on the maximum true error threshold t .
For a given feature set size, classification rule and error estimator, we
can compute the average RK

1 (t) and RK
2 (t). There is a proviso here:

for small t there may not be K feature sets satisfying the threshold for
all samples of size 30, and therefore we only consider those samples
for which there are K sets satisfying the threshold.

Figure 2a provides the mean R40
1 (t) and R40

2 (t) curves for the syn-
thetic data, in the equal-variance case and with feature sets of size
3, for resubstitution (resub), leave-one-out cross-validation (loo),
10-fold cross-validation with replications (cv10r), 0.632 bootstrap
(b632), bolstered resubstitution (bresub), semi-bolstered resubsti-
tution (sresub) and bolstered leave-one-out (bloo), for the three
assumed classification rules. The companion website contains the
complete set of plots for all cases. In addition, the plots on

the companion website include curves for 5-fold cross-validation,
10-fold cross-validation and the bias-corrected bootstrap (bbc)
(Efron, 1983). These have been left out in the paper for clarity of
the graphical results (generally, cv10r outperforms cv5 and cv10,
sometimes significantly, cv5 and cv10 outperforms loo, and the per-
formances of b632 and bbc are often comparable, with b632 usually
providing slightly better performance). Each plot in Figure 2 assumes
a range of maximum true error threshold t = 0.25 through t = 0.50.
Table 1 shows two statistics for a few values of t : s1 is the average
error for all feature sets having error < t , which is the average error
among those feature sets for which the performance statistics have
been computed, and s2 is the average number of feature sets hav-
ing error < t . A third statistic s3 (not shown in the table) gives the
number of sample sets for which there are at least K feature sets
having error < t , which is the number of sample sets over which the
performance statistics have been averaged. For this statistic, please
see the companion web site.

For LDA, Figure 2a shows that bolstered resubstitution performs
best over the entire range of t , with the other bolstered estimators also
performing better than the 0.632 bootstrap. Both cross-validation
estimators, loo and cv10r, perform about the same as resubstitution,
with the latter three all performing much worse than the 0.632 boot-
strap. On the companion website it is seen that cv10 is by far the
poorest among all estimators considered. The quantitative interpret-
ation of the difference in performance is that, on average, bolstered
resubstitution will correctly discover two more feature sets among
the top 40 than will 0.632 bootstrap, and the latter will discover two
more than loo or the heavily computational cv10r, neither of which
perform substantially better than resubstitution. Figure 2a shows that
the pattern shown by LDA with respect to R40

1 (t) also holds for
the ranking-comparison statistic R40

2 (t). We remark that not only
does bolstered resubstitution outperform 0.632 bootstrap in terms
of feature discovery, it does so with much less computation time.
Table 2a provides computation times for the error estimators in this
experiment, with all values normalized with respect to the resubsti-
tution timing (meaning that, relative to the table, the resubstitution
timing is 1 in each case). Tables for all experiments are given on the
companion website.

For 3NN, Figure 2a shows the very bad performance of resubsti-
tution as measured by R40

1 (t). This results from the extreme low bias
of resubstitution for the 3NN classification rule (indeed, for the 1NN
rule resubstitution always yields zero error). Nonetheless, bolstered
resubstitution still performs as well as 0.632 bootstrap, which also
suffers on account of the low bias of resubstitution, and outperforms
all cross-validation estimators. The best performance is exhibited by
bolstered leave-one-out, which is consistent with the comments of
Braga-Neto and Dougherty (2004) regarding bolstering in the case
of 3NN classification. Similar comments apply to R40

2 (t), the only
difference being that bolstered resubstitution slightly outperforms
0.632 bootstrap.

For CART, Figure 2a shows that bolstered and semi-bolstered
resubstitution significantly outperform 0.632 bootstrap, with
bolstered-leave-one-out slightly outperforming 0.632 bootstrap,
which itself outperforms the cross-validation estimators to about the
same extent. Compared to the commonly employed cross-validation
estimators, bolstered resubstitution finds on average five more top-40
feature sets among the top 40 based on error estimation, which means
the discovery of substantially more features. Analogous relations
among the estimators are found for R40

2 (t).
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Fig. 2. Mean ranking statistics versus maximum true error threshold, for (a) the synthetic data, in the equal-variance case and feature sets of size 3, and (b) the
patient data, for feature sets of size 3.

4.2 Patient data
We have conducted experiments based on patient data from a
microarray-based classification study (van de Vijver et al., 2002) that
analyzes microarrays prepared with RNA from breast tumor samples
from 295 patients. Using a previously established 70-gene prognosis
profile (van’t Veer et al., 2002), a prognosis signature based on gene-
expression is proposed in (van de Vijver et al., 2002) that correlates
well with patient survival data and other clinical measures. Of the
295 microarrays, 115 belong to the ‘good-prognosis’ class and 180
belong to the ‘poor-prognosis’ class.

Our experiments are set up in the following way. We use log-
ratio gene expression values associated with the top 20 genes ranked
according to van’t Veer et al. (2002). The true error for each
sample of size n = 30 is approximated by a holdout estimator,

whereby the 265 sample points not drawn are used as the test set
(a very good approximation to the true error, given the large test
sample). It should be noted that the samples are not fully independ-
ent on account of overlap resulting from choosing the 30 samples
from among the same 295 sample points; however, as discussed in
Braga-Neto and Dougherty (2004a), the samples are only weakly
dependent.

The results corresponding to Figure 2a are shown in Figure 2b
for the patient data experiments, with feature sets of size 3. The
associated sample information and computation times are given in
Tables 1b and 2b, respectively. The companion website contains
the other case (feature sets of size 2), as well as curves for 5-fold
cross-validation, 10-fold cross-validation and the bias-corrected
bootstrap.
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Table 1. Two statistics for a few values of the maximum true error threshold t

in Figure 2a, for (a) the synthetic data, in the equal-variance case and feature
sets of size 3, and (b) the patient data, for feature sets of size 3: s1 is the
average true error for all feature sets having error < t , while s2 is the average
number of feature sets having true error < t

LDA 3NN CART
t s1 s2 s1 s2 s1 s2

(a)
0.25 0.227 102.65 0.223 63.05 0.226 57.71
0.27 0.245 155.19 0.244 81.60 0.248 73.53
0.30 0.265 304.30 0.273 125.40 0.277 100.78
0.32 0.278 433.89 0.288 190.41 0.293 135.08
0.35 0.293 623.28 0.308 322.71 0.314 241.22
0.37 0.300 706.18 0.320 430.29 0.326 335.76
0.40 0.311 804.06 0.334 573.68 0.343 480.03
0.42 0.321 883.44 0.342 648.93 0.352 566.84
0.45 0.337 1026.25 0.356 756.25 0.367 690.53
0.47 0.345 1098.47 0.369 858.75 0.380 798.94
0.50 0.350 1140.00 0.391 1056.07 0.404 1023.02

(b)
0.25 0.224 445.20 0.228 256.35 0.231 171.27
0.27 0.234 617.20 0.240 401.78 0.244 290.15
0.30 0.247 830.74 0.257 642.42 0.262 502.55
0.32 0.253 921.19 0.266 768.61 0.272 629.30
0.35 0.260 1019.06 0.277 923.54 0.286 810.46
0.37 0.265 1064.17 0.283 1003.04 0.294 917.19
0.40 0.269 1100.21 0.290 1071.38 0.303 1020.35
0.42 0.270 1113.42 0.293 1097.96 0.307 1063.04
0.45 0.272 1126.73 0.296 1123.37 0.312 1105.74
0.47 0.273 1131.89 0.297 1131.44 0.314 1120.66
0.50 0.274 1136.39 0.298 1137.56 0.316 1132.37

Table 2. Computation times for (a) the synthetic data, in the equal-variance
case and feature sets of size 3, and (b) the patient data, for feature sets of
size 3

loo cv10r b632 bresub sresub bloo

(a)
LDA 90.30 306.27 465.44 7.40 6.30 97.15
3NN 0.94 7 48.09 12.27 10.39 12.08
CART 1224.50 3895.47 1931.31 103.93 97.85 1527.95

(b)
LDA 128.37 460.29 611.40 12.29 10.91 130.14
3NN 1 8.38 100.39 11.59 10.88 11.54
CART 1441.87 4584.47 4758.40 96.00 84.87 1512.67

The values are relative to the resubstitution timing.

The trends regarding bolstering, bootstrap and cross-validation
observed in the Gaussian model are closely reflected in the patient
data. The performance measures are weaker in the patient data.
This is because we are choosing feature sets from among the best
correlated 20 genes, so that there are many good feature sets, and it
is difficult to distinguish among them. Our goal is to see if bolstering
would still prove superior to bootstrap and cross-validation in such
a difficult scenario. Our results indicate it does so.

5 CONCLUSION
The results demonstrate, for the three classification rules and the
data sets considered, that bolstering is superior to bootstrap, and
bootstrap is better than cross-validation. Superior performance has
been demonstrated with respect to two measures, one counting the
number of the truly best feature sets appearing among the best feature
sets discovered by the error estimator and the other computing the
mean absolute error between the top ranks of the truly best feature
sets and their ranks as given by the error estimator. A key issue is
that bolstered error estimation is generally much faster than bootstrap
and is therefore feasible for feature-set ranking when the number of
feature sets is extremely large.

It should be recognized that the ranking results presented herein
apply directly to only the specific classification rules and data sets
presented and that more work is needed to determine the extent of
the superiority of bolstering with regard to ranking. We mention two
potential directions of future work. First, one could try to discover
theoretical results regarding the comparison of error estimators for
ranking. Given the paucity of such results to date, and the highly
specialized hypotheses that theoretical results would likely require,
a theoretical approach might not lead to a wide understanding of
applicability. A second approach would be to find counterexamples
where the trends of the current paper do not hold and to try to explain
the reasons behind the varying behavior. This could lead to a broader
set of conclusions that would state exactly what kind of classification
problems can be expected to behave as those studied in the current
paper.
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6 APPENDIX
The appendix describes how to choose the amount of bolstering and
it describes in detail the special situation of bolstering using Gaussian
kernels, the kind used in this paper.

6.1 Choosing the amount of bolstering
When bolstering resubstitution, the aim is to select the parameters
so that the bolstered resubstitution estimator is nearly unbiased. One
can think of (X, Y ) in (1) as a random test point. Given that Y = y,
this test point is at a ‘true mean distance’ δ(y) from the data points
belonging to class y. This distance is determined by the underlying
class-conditional distribution F(X|Y = y). One reason why plain
resubstitution is optimistically biased is that the test points are all
at distance zero from the training data. Since bolstered estimators
spread the test points, the task is to find the amount of spreading
that makes the test points to be as close as possible to the true mean
distance to the training data points. The true mean distance can be
estimated by its sample-based estimate:

d̂(y) =
∑n

i=1 minj �=i{||xi − xj ||} : Iyi=y∑n
i=1 Iyi=y

. (8)

The estimate d̂(y) is the mean minimum distance between points
belonging to class y.

Let f
�,1
i be a unit-variance bolstering kernel, and let Di be the

random variable equal to the distance of a point randomly selected
from f

�,1
i to the origin. Let FDi

(x) be the cdf of Di . In the case
of the bolstering kernel f �

i with variance σ 2
i Ip , all distances get

multiplied by σi . We find the value of σy for class y such that the
median distance of a test point to the origin is equal to the estimated
true mean distance d̂(y), so that half of the test points will be farther
from the center than d̂(y), and the other half will be nearer. Hence, σy

is the solution of the equation σy F−1
Di

(1/2) = d̂(y). Note that αp,i =
F−1

Di
(1/2) can be viewed as a constant ‘correction’ factor, which can

be computed and stored off-line. The subscript p indicates explicitly
that the correction factor is a function of the dimensionality. The
estimated standard deviations for the bolstering kernels are thus given
by σi = d̂(yi)/αp,i , for i = 1, . . . , n. As the sample size increases,
the standard deviations σi decrease, and there is less bias correction
introduced by the bolstered resubstitution. This is in accordance with
the fact that resubstitution tends to be less optimistically biased as
the sample size increases.

Let us consider now the leave-one-out estimator. In this case, no
bias correction is necessary or desired; the aim is solely reducing
the variance of the estimator. Considering the distance argument,
we see that each point left out in the design of the classifier g is an
independent sample and is already at the right distance to the design
data set (this is the reason for the unbiasedness of leave-one-out
as estimator of εn−1[g]). Therefore, we propose to use the minimum
distance d(xi , Si

n−1) of each point to the rest of the data set as the basis
for selecting the standard deviation of the corresponding bolstering
kernel f �

i . As before, we want half of the test points to be farther
from the center than d(xi , Si

n−1), and the other half to be nearer.
Therefore, the standard deviations are distinct for each data point,
and given by

σi = d(xi , Si
n−1)

αp,i
, for i = 1, . . . , n, (9)

6.2 Gaussian-bolstered error estimation
An important case of bolstering, which is the one assumed in this
paper, is the choice of Gaussian kernels:

f �
i (x) = 1

(2π)p/2σ
p

i

exp

(
−||x||2

2σ 2
i

)
. (10)

For a general classifier, the integrals in (3) and (5) have to be
computed by Monte-Carlo sampling. For a linear classifier, how-
ever, analytical expressions are possible. For example, for LDA,
the Gaussian-bolstered resubstitution error estimate is given by (see
Braga-Neto and Dougherty, 2004a for a proof):

ε̂�
resub = 1

n

n∑
i=1

(
�σi

(Wa(xi))Iyi=0 + �σi
(−Wa(xi))Iyi=1

)
, (11)

where �σi
is the cumulative distribution function of a zero-

mean Gaussian random variable with variance σ 2
i , and Wa is the

normalized W -statistic, given by Wa(x) = (aT x + m)/||a||, with
a = �−1(µ1 − µ0) and

m = 1
2 (µ0 + µ1)

T �−1(µ0 − µ1). (12)

Here, � = 1
2 (�0 + �1) is the pooled covariance matrix, with

µi and �i denoting the mean and covariance matrix for class i,
respectively, which are obtained via their usual maximum-likelihood
estimates. The parameters a and m specify the separating hyperplane
produced by LDA: a is a vector normal to the hyperplane, and m/||a||
is its distance to the origin. A similar expression to (11) applies to
the Gaussian-bolstered leave-one-out.

Note that �σ (0) = 1/2, which corresponds to the error
contribution of a point on the decision boundary. As σi → 0,
for i = 1, . . . , n, then all functions �σi

collapse to indicator step
functions and the Gaussian-bolstered error estimator reduces to the
original estimator. If σi → ∞, for i = 1, . . . , n, then �σi

becomes
constant and equal to 1

2 , so that the bolstered estimator is identically
equal to 1

2 , regardless of the data. This estimator has zero variance,
but is not useful.

The actual values of σi in a practical situation are computed accord-
ing to the distance-based scheme outlined in the previous section. In
the present Gaussian case, the distance variables Di are distributed
as a chi random variable D with p degrees of freedom. The density

1053



C.Sima et al.

function of D is given by

fD(x) = 21−p/2xp−1e−x2/2

	(
p

2 )
, (13)

where 	 is the gamma function. For p = 2, this becomes the well-
known Rayleigh density. The cdf FD can be computed by numerical

integration of Equation (13), and the inverse at point 1/2 can be
found by a simple binary search procedure (using the fact that FD

is monotonically increasing), which yields the correction factor αp .
For instance, the values of the correction factor up to five dimen-
sions are: α1 = 0.674, α2 = 1.177, α3 = 1.538, α4 = 1.832
and α5 = 2.086.

1054


