ORIGINAL PAPER

Vol. 21 no. 7 2005, pages 1046-1054
doi:10.1093/bioinformatics/bti081

Gene expression

Superior feature-set ranking for small samples using

bolstered error estimation

Chao Sima', Ulisses Braga-Neto'? and Edward R. Dougherty'-3*

"Department of Electrical Engineering, Texas A&M University, College Station, TX, USA, 2Section of
Clinical Cancer Genetics, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA and
SDepartment of Pathology, University of Texas M. D. Anderson Cancer Center, Houston, TX, USA

Received on July 22, 2004; revised on September 25, 2004; accepted on September 30, 2004

Advance Access publication October 28, 2004

ABSTRACT

Motivation: Ranking feature sets is a key issue for classification, for
instance, phenotype classification based on gene expression. Since
ranking is often based on error estimation, and error estimators suf-
fer to differing degrees of imprecision in small-sample settings, it is
important to choose a computationally feasible error estimator that
yields good feature-set ranking.

Results: This paper examines the feature-ranking performance of
several kinds of error estimators: resubstitution, cross-validation, boot-
strap and bolstered error estimation. It does so for three classification
rules: linear discriminant analysis, three-nearest-neighbor classific-
ation and classification trees. Two measures of performance are
considered. One counts the number of the truly best feature sets
appearing among the best feature sets discovered by the error estim-
ator and the other computes the mean absolute error between the
top ranks of the truly best feature sets and their ranks as given by
the error estimator. Our results indicate that bolstering is superior to
bootstrap, and bootstrap is better than cross-validation, for discov-
ering top-performing feature sets for classification when using small
samples. A key issue is that bolstered error estimation is tens of times
faster than bootstrap, and faster than cross-validation, and is there-
fore feasible for feature-set ranking when the number of feature sets
is extremely large.

Availability: We provide a companion website, which contains the
complete set of tables and plots regarding the simulation study, and
a compilation of references on feature-set ranking with applications
in Genomics. The companion website can be accessed at the URL
http://ee.tamu.edu/ ~edward/bolster_ranking

Contact: edward@ee.tamu.edu

1 INTRODUCTION

When choosing among a collection of potential feature setsfor clas-
sification, estimating the errors of designed classifiersis akey issue;
indeed, it is natural to order the potential feature sets according to
the misclassification rates of their corresponding classifiers. Hence,
it is important to apply error estimators that provide rankings that
better correspond to rankings produced by the true errors. For phen-
otype classification based on gene expression, feature selection can
be viewed asgene selection: find sets of geneswhose expressionscan

*To whom correspondence should be addressed.

be used for phenotypic discrimination. In recent years, gene selec-
tion has been heavily investigated (see the companion website for a
list of papers on this topic).

A critical issuefor classification viamicroarray dataisthefrequent
presence of small samples and the consequences flowing therefrom
(Dougherty, 2001). For instance, with small-sampleclassifier design,
oneistypically limited to small feature setsto avoid overfitting (Jain
and Chandrasekaran, 1982; Raudys and Jain, 1991; Devroye €t al .,
1996). While thismay be animpediment, small gene setsare advant-
ageous relative to the very expensive and time-consuming anaysis
required to determineif they could serve asuseful targetsfor therapy.
Inany event, sinceall feature-selection algorithms are subject to sig-
nificant errors when samples are small, in the context of microarray
experiments, it is prudent to approach feature selection as finding a
list of potential feature sets, and not astrying to find abest feature set.
Indeed, the entire matter of feature selection and classification in the
context of small samples can be conservatively viewed as an explor-
atory methodology. This conservative position has been aticulated in
the following manner: ‘Most likely, it will not be possible to design
aclassifier from asingle set of microarray experiments. Separation
of the sample data by designed classifierswill likely haveto betaken
as evidence that the corresponding gene sets are potential variable
sets for classification. Their effectiveness will have to be checked
by large-replicate experiments designed to estimate their classifica
tion error, perhapsin conjunction with biological input or phenotype
evidence. Theremay, infact, be many gene setsthat provide accurate
classification of a given pathology. Of these, some sets may provide
mechanisticinsightsinto the molecul ar etiology of the disease, while
other sets may be indecipherable’ (Dougherty, 2001). For instance,
this approach has been explicitly taken in the case of discovering
markers for different types of glioma, where the number of avail-
abletissue samplesisseverely limited (Kim et al., 2002). This study
states, ‘We have identified robust classifier gene sets containing one
to three genes that distinguish each type of glioma from the other
three. This provides guidance for the development of pathological
assays using a reasonable number of markers for clinical use'.

The raw data associated with microarray experiments usually
contain an extraordinarily large number of gene expression measure-
ments, in the order of tens of thousands. On any given microarray,
many of these measurements fall below an acceptable quality level.
Inthe case of the software provided with the Affymetrix platform, an
unacceptable signal-to-noise ratio is quantified by a bad * detection’
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P-value (Liu et al., 2002). For spotted cDNA microarrays, the
DeArray software of the National Human Genome Research Insti-
tute calculates a multi-faceted quality metric for each spot (Chen
et al., 2002). This quality problem is a result of imperfections in
RNA preparation, hybridization to the arrays, scanning and aso
intrinsic factors, such as low expressed genes. Genes whose expres-
sionsfail to be effectively detected on alarge number of microarrays
are rejected from further consideration. Furthermore, many of the
reliably detected genes possess expression values that do not change
appreciably across the microarrays in the experiment—for instance,
“house-keeping’ genes. These genes can aso be removed from con-
sideration, by means of a simple variance filter, since they clearly
cannot contribute to discrimination. This pre-filtering process usu-
ally reduces the number of variables by an order of magnitude. One
then proceeds to apply afeature selection algorithm to obtain small
feature sets (combinations of genes). Feature selection can be either
optimal, which requires that all possible feature sets of a given size
are examined (Cover and van Campenhout, 1977), or suboptimal.
If pre-filtering reduces the number of potential features to around a
thousand, it becomes computationally possible to employ optimal
feature selection and examine al possible two- and three-gene fea-
ture sets. Larger numbers of potential features or larger feature sets
are possiblein an appropriate supercomputer environment. If theini-
tial number of genesto be considered, after pre-filtering, istoo large,
or if the size of the feature setsis large, then a suboptimal method
must be employed. It is not uncommon to apply a second filtering
(say, by standard ¢-tests) to further reduce the number of features,
and then follow this by an optimal or suboptimal selection process.
We refer to the literature for issues concerning suboptimal feature
selection, including small-sample considerations (Jain and Zongker,
1997; Kudo and Sklansky, 2000).

A natural way to measure the performance of an error estimator
relative to feature-set ranking is to measure the degree to which
application of the estimator yields aranking that reflects the ranking
based on the true errors of the classifiers designed for the feature
sets. Here we will consider two performance measures. The first
counts the number of top feature sets based on the true error that
arerated as top feature sets based on the estimated error. For feature
(gene) discovery, this performance measure is critical because the
features discovered based on the data will be the ones listed best
based on error estimation, and we would like that list to contain
a good supply of truly good feature sets. A second measure com-
putes the mean deviation between the rankings of the top feature sets
(based on true error) and their corresponding rankings based on error
estimation.

A perusal of the literature shows that cross-validation methods
(especidly leave-one-out estimation) are often used for error estim-
ation during feature selection; however, cross-validation estimators
display high variance (Devroye et al., 1996). Thisvarianceresultsin
awidely dispersed deviation distribution (deviation between the true
and estimated errors of aclassifier), thereby making cross-validation
unreliablefor small samples (Braga-Neto and Dougherty, 2004b). In
a previous paper, it has been demonstrated that, for small samples,
leave-one-out cross-validation-based feature ranking does not out-
perform resubstitution-based feature ranking on the best feature sets,
these being the ones whose designed classifiers possess the smal-
lest errors (Braga-Neto et al., 2004). Owing to typical experimental
methodology, the conclusions of that paper are too narrow. While
it is theoretically revealing to know that a popular cross-validation

procedure does not outperform resubstitution on the best feature sets,
in practice we do not know the best feature sets and must draw our
conclusions from feature sets ranked according to an error estim-
ator. Thus, we are presented with alist of feature sets whose errors
are estimated, and further investigation—for instance, laboratory
analysis to determine the biological basis of discrimination—will
proceed based on the list. Owing to imprecision in error estimation,
an experimentally derived list islikely to contain among its best fea-
ture sets some that are not truly the best. Hence, in evaluating error
estimators we cannot limit our view to the best feature sets; other-
wise, wewill not takeinto account the confusion created by mediocre
(or even poor) feature sets appearing at the top of an experimentally
derived list.

Going further, we do not want to limit ourselves to leave-one-out
cross-validation and resubstitution. Admittedly, these are com-
putationally efficient compared to replicated cross-validation and
bootstrap, but as we will see, they are among the worst performers
relative to ranking. Indeed, 0.632 bootstrap generally outperforms
cross-validation methods (the performances of which vary widely),
the exception being for the best feature sets, where the perform-
ances of all the tested estimators do not differ greatly. Owing to its
high computational complexity, bootstrap is not feasible for rank-
ing very large collections of feature sets; nonetheless, owing to its
generally superior performance to cross-validation, it can serve asa
benchmark. In this paper we demonstrate that the recently proposed
bolstered error estimation (Braga-Neto and Dougherty, 2004a) not
only outperforms cross-validation for feature-set ranking, but also
outperforms 0.632 bootstrap, even though the bootstrap takes tens of
times longer to compute than the bolstered estimators.

We use simulation studies to analyze feature-set ranking for a
number of cross-validation, bootstrap and bol stered error estimators.
The use of simulation studies is commonplace for feature-selection
analysis (Jain and Zongker, 1997; Kudo and Sklansky, 2000). We
conduct two large studies, one based on a Gaussian mixture model
that allows us to vary a number of parameters, and the other based
on patient data from a large microarray breast cancer study. In
both studies we consider linear discriminant analysis (LDA), three-
nearest-neighbor (3NN) classification and classification trees. We
present detailed analysis in the paper for one case from each study
and provide the bulk of the results on the companion website.

2 ERROR ESTIMATION

In two-group statistical pattern recognition, there is a feature vector
X e R? andalabel Y € {0,1}. The pair (X,Y) hasajoint probab-
ility distribution F, which is unknown in practice. Hence, classifiers
are designed from training data, which consists of a set of n inde-
pendent observations, S, = {(X1,Y1),...,(X,, Y,)}, drawnfromF.
A classification ruleisamapping g : {R” x {0, 1}}" x R? — {0, 1}.
It maps S, into the designed classifier g(S,,-) : R? — {0,1}. In
fact, a classification rule is actually a collection of mappings, one
for each n; however, we follow the usual practice of using asingle
operator notation g to represent all of the individual mappings. The
true error of adesigned classifier isits error rate given the training
data set:

€nlglSul = P(g(Sn, X) #Y) = Er(IY — (S, XD, (1)

where Er denotes expectation with respect to F. The expected error
rateover thedataisgivenby e,[g] = E., EF(|Y —g(S,, X)|), where
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F, isthejoint distribution of thetraining data s, . Weretheunderlying
feature-label distribution F known, the true error could be computed
exactly via(1). In practice, one must use an error estimator. Ideally,
this estimate should be fast to compute and as close as possible to
the true error, for the given training data.

2.1 Classical error estimation

The simplest way to estimate the error of a designed classifier in the
absence of independent test dataisto computeitserror directly onthe
sample data itself. This resubstitution estimator, €requp, IS very fast,
but isusually optimistic (i.e. biased low) asan estimator of ¢, [g]. For
some classification rules, resubstitution can be severely |ow-biased,
an extreme case being one-nearest-neighbor classification, in which
the resubstitution estimator is identically zero. Typically, the more
complex the classifier is, the more optimistic resubstitution is, since
complex classifiers tend to overfit the data, especially with small
samples (Vapnik, 1998).

Cross-validation removes optimism by using test points not used
in classifier design. In k-fold cross-validation, the data set S, is par-
titioned into k folds S, fori = 1,.. .,k (for simplicity, we assume
that k divides n). Each fold is left out of the design process and
used as a test set, and the estimate, €qk, is the overall proportion
of error on al folds. The process may be repeated: several cross-
validation estimates are computed using different partitions of the
dataintofolds, andtheresultsare averaged. A k-fold cross-validation
estimator isunbiased asan estimator of €, _,, /x[g]. Theleave-one-out
estimator, €100, inwhichasingleobservationisleft out eachtime, cor-
responds to n-fold cross-validation. It is unbiased as an estimator of
€,—1[g]. Cross-validation estimators are often pessimistic, sincethey
usesmaller training setsto design the classifier. Their main drawback
istheir variance (Braga-Neto and Dougherty, 2004b; Devroyeet al.,
1996). They can also be slow to compute when the number of folds
or samplesislarge.

Bootstrap error estimation (Efron, 1979, 1983) is based on the
notion of an ‘empirical distribution’ F*, which replaces the original
unknown distribution F. The empirical distribution puts mass 1/n
on each of the n available data points. A ‘bootstrap sample’ S
from F* consists of n equally likely draws with replacement from
the origina data S,. The basic bootstrap zero estimator (Efron,
1983) is written in terms of the empirical distribution as é¢g =
Ep (1Y — g(S;, X)|: (X,Y) € S, \ S;). Inpractice, theexpectation
Er+ has to be approximated by a Monte-Carlo estimate based on
independent replicates S**, for b = 1,..., B. The bootstrap zero
estimator works like cross-validation: the classifier is designed on
the bootstrap sample and tested on the original data points that are
left out. It tends to be high-biased as an estimator of ¢,[g], sincethe
amount of samplesavailablefor designing the classifier ison average
only (1 — e Hn ~ 0.632x. The 0.632 bootstrap estimator (Efron,
1983), €pszz = (1 — 0.632) €reup + 0.632 €, triesto correct thisbias
by doing aweighted average of the bootstrap zero and resubstitution
estimators. It has low variance, but can be extremely slow to com-
pute. In addition, it can fail when resubstitution is too low-biased
(Braga-Neto and Dougherty, 2004b).

2.2 Bolstered error estimation

The resubstitution estimator is defined in terms of the empirical
feature-label ditribution F* by 88 = Ep[|Y — g(S,, X)|]. Rel-
aive to F*, no distinction is made between points near or far from
the decision boundary. If one spreads the probability mass at each

point of the empirical distribution, then variation is reduced because
points near the decision boundary will have more mass on the other
side of the boundary than will points far from the decision bound-
ary. To take advantage of this observation, consider a probability
density function £, for i = 1,...,n, called a bolstering kernel,
and define the bolstered empirical distribution F<, with probab-
ility density function given by f¢(x) = (1/n) 31— £ (X —X;).
The bolstered resubstitution estimator (Braga-Neto and Dougherty,
2004a) is obtained by replacing F* by F© inthe definition of % to
obtain

8% = EpollY — g(Sy, X)|1. )

Whereas (Braga-Neto and Dougherty, 2004a) treated the definitions,
properties and comparisons of bolstering with classical error estima-
tion relative to variance and deviation from the true error, this paper
considers the ability of bolstering to provide accurate feature-set
ranking.

A computational expression for the bolstered resubstitution estim-
ator is given by

l n
g = n > (I.Vf=°_/ Fo = xydx + Iy
A1

i=1

X fio(x —X;) dx) . (©)]
Ao

where A; = {x|g(S,,x) = j}. Theintegrals are the error contribu-
tionsmade by thedatapoints, according towhether y; = 0or y; = 1.
The bolstered resubstitution error estimate is equal to the sum of al
error contributions divided by the number of points. If the classifier
islinear, then the decision boundary isahyperplaneand it is usually
possible to find analytical expressions for the integrals; otherwise,
Monte-Carlo integration can be employed:

1 n M M
é,?R ~ ;Z ; lIx,-_,-eAlly,-=O+jgllx,-_,erly;=1 , (4)

i=1 j=

where {x;;}j=1,...» aresamplesdrawn from the distribution fl.o. The
experiments in Braga-Neto and Dougherty (2004a) indicate that a
small number M of Monte-Carlo samplesis needed (in our simula-
tions, avalue M = 10 was adequate, and increasing M beyond that
did not substantially reduce the variance of the estimator). Figure 1
illustrates the situation where the bol stering kernel s are given by uni-
form circular distributions and the classifier islinear. In thiscase, the
bolstered resubstitution error estimate is given in terms of the areas
of the shaded regions.

When resubstitution is strongly low-biased, it may not be good
to spread incorrectly classified data points, as that increases optim-
ism. Biasis reduced by using no bolstering for incorrectly classified
points. The result is the semi-bolstered resubstitution estimator
(Braga-Neto and Dougherty, 20044q).

Bolstering can be applied to any error-counting error estima-
tion method. For the |eave-one-out estimation, let S/ ; denote
the data set resulting from deleting data point i from the ori-
ginal dataset 5, and A’ = {x|g(S,_y,x) = j}, for j = 0,1, bethe
decision region for the classifier designed from S!_;. The bolstered
leave-one-out estimator (Braga-Neto and Dougherty, 2004a) can be
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Fig. 1. Bolstered resubstitution for alinear classifier, assuming uniform cir-
cular bolstering kernels. Theareaof each shaded region divided by the areaof
the associated circle isthe error contribution made by a point. The bolstered
resubstitution error is the sum of all contributions divided by the number of
points.

computed via

n

. 1
6|%0 = ; Z (1},,._0 A: fio(x —)C,')dx + Iy,':l
1

i=1
C(x —xp)dx ). 5
X/;x'ofl(x xi) x) (5)

When the integrals cannot be computed exactly, a Monte-Carlo
expression like (4) can be used.

Although more general bolstering kernels may be considered, in
keeping with the principle of not making complicated inferences
fromalimited amount of data, weonly consider zero-mean, spherical
bolstering kernels £, with covariance matrices of the form o2 1,,.
In each case thereisafamily of bolstered estimators, corresponding
to the choices of the standard deviations o1,...,0,. These para
meters determine the variance and bias properties of the bolstered
estimator. If o; = 0, fori = 1,...,n, thenthereisno bolstering and
the bol stered estimator reducesto theoriginal estimator. Asageneral
rule, larger o;s,i.e. ‘wider’ bolstering kernels, lead to lower-variance
estimators, but after a certain point this advantage becomes offset by
increasing bias. The choice of the standard deviations is critical.
A non-parametric sample-based method to choose these paramet-
ers that is applicable in small-sample settings has been proposed
(Braga-Neto and Dougherty, 2004a). The method is described in the
Appendix, which also describes in detail bolstering using Gaussian
kernels, the kind used in this paper.

3 RANKING FEATURE SETS

We consider two performance measures concerning how well feature
ranking using the error estimators agrees with feature ranking based
on the true errors. Since our main interest is in finding good feature
sets, say the best K feature sets, we wish to compare the rankings of
the K best estimate-based feature setswith those of the K best based

on the true errors. Moreover, in asimilar vein to (Braga-Neto et al .,
2004), we want to make this comparison for feature sets whose true
performancesattain certain levels. Fort > 0, let g,’( bethecollection
of all feature sets of a given size whose true errors are less than ¢,
where GX is defined only if there exists at least K feature sets with
true error lessthan . Rank the best K feature sets according to their
trueerrorsandrank all featuressetsin GX according totheir estimated
errors, with rank 1 corresponding the lowest error. We then have two
ranks for each of the K best feature sets: k (true) and k* (estimated)
for al feature setsin GX. In case of ties, the rank is equal to the
mean of the ranks. It should be noted that the selection of feature
sets for inclusion in GX is based on the true error and is therefore
not subject to the kind of selection bias discussed in (Ambroise and
McLachlan, 2002). Moreover, any selection bias that might occur
in the ranking based on error estimation is part of the estimation-
based ranking process and its effect is ipso facto incorporated into
the ranking analysis.

If our interest isin feature discovery, then akey interest iswhether
truly important features appear in the list of important feature sets
based on error estimation. Thisisthelistweobtainfromdataanalysis,
and good classification depends on discovering truly good classify-
ing feature sets. Moreover, in gene discovery, the ultimate analysis
is not that based on the classification data, but is instead the |aborat-
ory analysis of genes discovered via classification, and therefore we
would like the classification methodol ogy to produce key genes. The
first performance statistic counts the number of feature sets among
the top K feature sets that also appear in the top K using the error
estimator,

K
RE() =) <k ®)

k=1

where I, denotes the indicator function. For this measure, higher
scores are better. Since k* isthe estimate-based rank of the k-th true-
ranked feature set among the feature setsin GX and since we only
consider feature sets in g,K , the larger ¢, the larger the collection
of ranks k* and the greater possibility that erroneous feature sets
appear among the top K, thereby resulting in a smaller value of
Rf (t). As will be seen in the experimenta results, the curve of
Rf (t) will flatten out for increasing ¢, which is reflective of the fact
that, as we consider ever poorer feature sets, their effect on the top
ranks becomes negligible owing to the fact that inaccuracy in the
measurement of their errors is not sufficient to make them confuse
theranking of the best feature sets.

The second performance metric measures the mean absolute
deviation in the ranks for the K best feature sets,

K 1 a *
RE@W =2 D k=K. ©
k=1

For this measure, lower scores are better. In analogy to RX (1), the
larger ¢, the larger the collection of ranks k* and the greater possible
deviation between k and k*. When ¢ is small, rank comparison is
only being made between (truly) good feature sets, which was the
interest in Braga-Neto et al. (2004). Our interest here is broader. We
interested in a wide variety of error estimators and are concerned
with the pragmatic issue of having to rank feature sets based on
error estimates without necessarily having any apriori restriction on
the goodness of the feature sets being considered. Hence, we are
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interested in large ¢, and in analogy to RX () the curve for RX (1)
will flatten out as ¢ increases.

4 EXPERIMENTAL RESULTS

We consider two basic sets of experiments, one using synthetic data
generated from amodel based on Gaussian classconditional distribu-
tions, and another using microarray data categorizing breast-cancer
patient prognosis. |n both caseswe consider threeclassificationrules:
LDA, 3NN, and classification and regression trees (CART). In al
cases we consider a sample size of 30, do the analysis for two and
three features, and consider top lists of sizes K = 20 and 40. We
provide detailed analysisin the paper for one Gaussian case and one
from the breast-cancer data. The resultsfor all other cases appear on
the companion website.

4.1 Synthetic data

The synthetic data used in our experiments is based on a Gaussian
model, under which the classes are equally likely and the class-
conditional densities are spherical unit-variance Gaussians. The
class means are located at §a and —3a, where § > 0 is a separa-
tion parameter and @ = (aq,a,...,a,) is aparameter vector with
llall = 1. The Bayes classifier is a hyperplane perpendicular to
the axis joining the means, with Bayes error e,,,es = 1 — ©(6),
where @ is the standard normal cumulative distribution function.
Since 8 = @1 (1 — €5es), ONe can find § for a prescribed Bayes
error. If asubset L of the original variables is selected, then again
one has a standard Gaussian model, but now the separation between
the classes is a function of which variables are selected. The Bayes
error is afunction of both the separation and the model parameters,

specifically, €& . = 1— @8/, a). Tominimize ek for
a given number of selected variables, one should pick the variables
corresponding to the largest parameters.

For the simulation, we let the total number of variables in the
Gaussian model be 20 and consider feature sets of sizes 2 and 3.
The separation parameter § is chosen so that the Bayes error in the
space of dimension corresponding to the feature-set sizes of 2 and
3is 0.05 or 0.10, respectively. We consider equal or unequal (1
and 1.5) class-conditional standard deviations. The parameter vector
a = (a,ay,...,a,)ispicked from asigmoida distribution in order
to favor afew of the feature sets and make the rest unimportant. We
generate 200 independent sampl e sets of size 30. For each, we apply
thethreeclassificationrules, LDA, 3NN and CART, with all possible
feature sets, and apply the different error estimators to compute the
statistics RE () and RX (r). Thenumber of feature setsfor which each
statistic is computed depends on the maximum true error threshold ¢.
For agiven feature set size, classification ruleand error estimator, we
can compute the average RX (r) and RX (r). Thereis aproviso here:
for small ¢ theremay not be K feature sets satisfying thethreshold for
al samples of size 30, and therefore we only consider those samples
for which there are K sets satisfying the threshold.

Figure 2aprovidesthe mean R{°(r) and R3°(¢) curvesfor the syn-
thetic data, in the equal-variance case and with feature sets of size
3, for resubstitution (resub), leave-one-out cross-validation (100),
10-fold cross-validation with replications (cv10r), 0.632 bootstrap
(b632), bolstered resubstitution (bresub), semi-bolstered resubsti-
tution (sresub) and bolstered leave-one-out (bloo), for the three
assumed classification rules. The companion website contains the
complete set of plots for all cases. In addition, the plots on

the companion website include curves for 5-fold cross-validation,
10-fold cross-validation and the bias-corrected bootstrap (bbc)
(Efron, 1983). These have been left out in the paper for clarity of
the graphical results (generally, cv10r outperforms cv5 and cv10,
sometimes significantly, cv5 and cv10 outperforms oo, and the per-
formances of b632 and bbc are often comparable, with b632 usually
providing slightly better performance). Each plotin Figure2 assumes
arange of maximum true error threshold = 0.25 through ¢+ = 0.50.
Table 1 shows two statistics for afew values of ¢: s; is the average
error for al feature sets having error < ¢, which isthe average error
among those feature sets for which the performance statistics have
been computed, and s, is the average number of feature sets hav-
ing error < ¢. A third statistic s3 (not shown in the table) gives the
number of sample sets for which there are at least K feature sets
having error < ¢, which isthe number of sample sets over which the
performance statistics have been averaged. For this statistic, please
see the companion web site.

For LDA, Figure 2a shows that bolstered resubstitution performs
best over theentirerange of 7, with the other bol stered estimatorsal so
performing better than the 0.632 bootstrap. Both cross-validation
estimators, 1oo and cv10r, perform about the same as resubstitution,
with the latter three al performing much worse than the 0.632 boot-
strap. On the companion website it is seen that cv10 is by far the
poorest among all estimators considered. The quantitative interpret-
ation of the difference in performance is that, on average, bolstered
resubstitution will correctly discover two more feature sets among
the top 40 than will 0.632 bootstrap, and the latter will discover two
more than loo or the heavily computational cv10r, neither of which
perform substantially better than resubstitution. Figure 2ashowsthat
the pattern shown by LDA with respect to Rfo(z) aso holds for
the ranking-comparison statistic Rgo(;). We remark that not only
does bolstered resubstitution outperform 0.632 bootstrap in terms
of feature discovery, it does so with much less computation time.
Table 2a provides computation times for the error estimatorsin this
experiment, with all values normalized with respect to the resubsti-
tution timing (meaning that, relative to the table, the resubstitution
timing is 1 in each case). Tablesfor al experiments are given on the
companion website.

For 3NN, Figure 2a shows the very bad performance of resubsti-
tution as measured by Rfo(t). Thisresults from the extreme low bias
of resubstitution for the 3NN classification rule (indeed, for the INN
rule resubstitution always yields zero error). Nonetheless, bolstered
resubstitution still performs as well as 0.632 bootstrap, which aso
suffers on account of the low bias of resubstitution, and outperforms
all cross-validation estimators. The best performanceis exhibited by
bolstered leave-one-out, which is consistent with the comments of
Braga-Neto and Dougherty (2004) regarding bolstering in the case
of 3NN classification. Similar comments apply to Rg‘o(t), the only
difference being that bolstered resubstitution slightly outperforms
0.632 bootstrap.

For CART, Figure 2a shows that bolstered and semi-bolstered
resubstitution significantly outperform 0.632 bootstrap, with
bolstered-leave-one-out dlightly outperforming 0.632 bootstrap,
which itself outperforms the cross-validation estimators to about the
same extent. Compared to the commonly employed cross-validation
estimators, bol stered resubstitution finds on average five moretop-40
feature setsamong the top 40 based on error estimation, which means
the discovery of substantially more features. Analogous relations
among the estimators are found for Rgo(z).
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Fig. 2. Mean ranking statistics versus maximum true error threshold, for (a)
patient data, for feature sets of size 3.

4.2 Patient data

We have conducted experiments based on patient data from a
microarray-based classification study (van de Vijver et al ., 2002) that
analyzesmicroarrays prepared with RNA from breast tumor samples
from 295 patients. Using apreviously established 70-gene prognosis
profile (van't Veer et al., 2002), aprognosis signature based on gene-
expression is proposed in (van de Vijver et al., 2002) that correlates
well with patient survival data and other clinical measures. Of the
295 microarrays, 115 belong to the ‘good-prognosis’ class and 180
belong to the ‘ poor-prognosis’ class.

Our experiments are set up in the following way. We use log-
ratio gene expression val ues associated with the top 20 genes ranked
according to van't Veer et al. (2002). The true error for each
sample of size n = 30 is approximated by a holdout estimator,

the synthetic data, in the equal-variance case and feature sets of size 3, and (b) the

whereby the 265 sample points not drawvn are used as the test set
(a very good approximation to the true error, given the large test
sample). It should be noted that the samples are not fully independ-
ent on account of overlap resulting from choosing the 30 samples
from among the same 295 sample points; however, as discussed in
Braga-Neto and Dougherty (2004a), the samples are only weakly
dependent.

The results corresponding to Figure 2a are shown in Figure 2b
for the patient data experiments, with feature sets of size 3. The
associated sample information and computation times are given in
Tables 1b and 2b, respectively. The companion website contains
the other case (feature sets of size 2), as well as curves for 5-fold
cross-validation, 10-fold cross-validation and the bias-corrected
bootstrap.
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Tablel. Two statisticsfor afew valuesof the maximum true error threshold ¢
in Figure 24, for (a) the synthetic data, in the equal-variance case and feature
sets of size 3, and (b) the patient data, for feature sets of size 3: 53 is the
averagetrueerror for all feature sets having error < ¢, while s, isthe average
number of feature sets having true error < ¢

LDA 3NN CART
t 1 52 1 52 51 52
@
0.25 0.227 102.65 0.223 63.05 0.226 57.71
0.27 0.245 155.19 0.244 81.60 0.248 73.53
0.30 0.265 304.30 0.273 125.40 0.277 100.78
0.32 0.278 433.89 0.288 190.41 0.293 135.08
0.35 0.293 623.28 0.308 322.71 0.314 241.22
0.37 0.300 706.18 0.320 430.29 0.326 335.76
0.40 0.311 804.06 0.334 573.68 0.343 480.03
0.42 0.321 883.44 0.342 648.93 0.352 566.84
0.45 0.337 1026.25 0.356 756.25 0.367 690.53
0.47 0.345 1098.47 0.369 858.75 0.380 798.94
0.50 0.350 1140.00 0.391 1056.07 0.404 1023.02
(b)

0.25 0.224 445.20 0.228 256.35 0.231 171.27
0.27 0.234 617.20 0.240 401.78 0.244 290.15
0.30 0.247 830.74 0.257 642.42 0.262 502.55
0.32 0.253 921.19 0.266 768.61 0.272 629.30
0.35 0.260 1019.06 0.277 923.54 0.286 810.46
0.37 0.265 1064.17 0.283 1003.04 0.294 917.19
0.40 0.269 1100.21 0.290 1071.38 0.303 1020.35
0.42 0.270 1113.42 0.293 1097.96 0.307 1063.04
0.45 0.272 1126.73 0.296 1123.37 0.312 1105.74
0.47 0.273 1131.89 0.297 1131.44 0.314 1120.66
0.50 0.274 1136.39 0.298 1137.56 0.316 1132.37

Table 2. Computation times for () the synthetic data, in the equal-variance
case and feature sets of size 3, and (b) the patient data, for feature sets of
size3

loo cvi10r b632 bresub  sresub  bloo
@
LDA 90.30 306.27 465.44 7.40 6.30 97.15
3NN 0.94 7 48.09 12.27 10.39 12.08
CART 122450 389547 193131 103.93 97.85 1527.95
(b)
LDA 128.37 460.29 611.40 1229 10.91 130.14
3NN 1 8.38 100.39 1159 10.88 11.54
CART 144187 4584.47  4758.40 96.00 84.87 1512.67

The values are relative to the resubstitution timing.

The trends regarding bolstering, bootstrap and cross-validation
observed in the Gaussian model are closely reflected in the patient
data. The performance measures are weaker in the patient data.
This is because we are choosing feature sets from among the best
correlated 20 genes, so that there are many good feature sets, and it
isdifficult to distinguish among them. Our goal isto seeif bolstering
would still prove superior to bootstrap and cross-validation in such
adifficult scenario. Our resultsindicate it does so.

5 CONCLUSION

The results demonstrate, for the three classification rules and the
data sets considered, that bolstering is superior to bootstrap, and
bootstrap is better than cross-validation. Superior performance has
been demonstrated with respect to two measures, one counting the
number of thetruly best feature sets appearing among the best feature
sets discovered by the error estimator and the other computing the
mean absolute error between the top ranks of the truly best feature
sets and their ranks as given by the error estimator. A key issue is
that bolstered error estimationisgenerally much faster than bootstrap
and is therefore feasible for feature-set ranking when the number of
feature setsis extremely large.

It should be recognized that the ranking results presented herein
apply directly to only the specific classification rules and data sets
presented and that more work is needed to determine the extent of
the superiority of bolstering with regard to ranking. We mention two
potential directions of future work. First, one could try to discover
theoretical results regarding the comparison of error estimators for
ranking. Given the paucity of such results to date, and the highly
specialized hypotheses that theoretical results would likely require,
a theoretical approach might not lead to a wide understanding of
applicability. A second approach would be to find counterexamples
wherethetrends of the current paper do not hold and to try to explain
the reasons behind the varying behavior. This could lead to abroader
set of conclusionsthat would state exactly what kind of classification
problems can be expected to behave as those studied in the current

paper.
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6 APPENDIX

The appendix describes how to choose the amount of bolstering and
it describesin detail the special situation of bolstering using Gaussian
kernels, the kind used in this paper.

6.1 Choosing the amount of bolstering

When bolstering resubstitution, the aim is to select the parameters
so that the bol stered resubstitution estimator is nearly unbiased. One
can think of (X,Y) in (1) asarandom test point. Giventhat ¥ = y,
this test point is at a ‘true mean distance’ §(y) from the data points
belonging to class y. This distance is determined by the underlying
class-conditional distribution F(X|Y = y). One reason why plain
resubstitution is optimistically biased is that the test points are all
at distance zero from the training data. Since bolstered estimators
spread the test points, the task is to find the amount of spreading
that makes the test points to be as close as possible to the true mean
distance to the training data points. The true mean distance can be
estimated by its sample-based estimate;

Yoraming{llx; — x|} Ly =y

Z?: 1 I Yi=y

The estimate d(y) is the mean minimum distance between points
belonging to class y.

Let ff'l be a unit-variance bolstering kernel, and let D; be the
random variable equal to the distance of a point randomly selected
from £ to the origin. Let Fp, (x) be the cdf of D;. In the case
of the bolstering kernel £ with variance 021, al distances get
multiplied by o;. We find the value of o, for class y such that the
median distance of atest point to the originis equal to the estimated
true mean distance d (), so that half of thetest pointswill be farther
from the center thand (), andtheother half will benearer. Hence, o,
isthe solution of the equation o, F;,'(1/2) = d(y). Notethat o, =
Fp, 1(1/2) can be viewed as aconstant ‘ correction’ factor, which can
be computed and stored off-line. The subscript p indicates explicitly
that the correction factor is a function of the dimensionality. The
estimated standard deviationsfor thebol stering kernelsarethusgiven
by o; = ﬁ(y,»)/ap,,», fori =1,...,n. Asthe sample size increases,
the standard deviations o; decrease, and there isless bias correction
introduced by the bolstered resubstitution. Thisisin accordancewith
the fact that resubstitution tends to be less optimistically biased as
the sample size increases.

d(y) = ®)

Let us consider now the leave-one-out estimator. In this case, no
bias correction is necessary or desired; the aim is solely reducing
the variance of the estimator. Considering the distance argument,
we see that each point Ieft out in the design of the classifier g isan
independent sample and is already at the right distance to the design
data set (this is the reason for the unbiasedness of |eave-one-out
as estimator of €,_1[g]). Therefore, we propose to use the minimum
distanced (x;, S,’;_l) of each pointtotherest of thedataset asthebasis
for selecting the standard deviation of the corresponding bolstering
kernel f°. As before, we want half of the test points to be farther
from the center than d(x;, S¢_,), and the other half to be nearer.
Therefore, the standard deviations are distinct for each data point,
and given by

d(xi, S} _)
0 = ————
Olp,i

fori=1,...,n, 9)

6.2 Gaussian-bolstered error estimation

An important case of bolstering, which is the one assumed in this
paper, is the choice of Gaussian kernels:

1 ||x||2>
= — — . 10
B e o (10)

For a general classifier, the integrals in (3) and (5) have to be
computed by Monte-Carlo sampling. For a linear classifier, how-
ever, analytical expressions are possible. For example, for LDA,
the Gaussian-bol stered resubstitution error estimateis given by (see
Braga-Neto and Dougherty, 2004a for a proof):

n

1
o = = D (P Walxi) Iy=0 + oy (=Walxi)) =), (11)
i=1

where @, is the cumulative distribution function of a zero-
mean Gaussian random variable with variance o2, and W, is the
normalized W-statistic, given by W, (x) = (a” x +m)/||al|, with
a=3%"Y(u1— po)and

m =3 (uo+p)" = (o — pa). 12)

Here, ¥ = %(Zo + ;) is the pooled covariance matrix, with
u; and X; denoting the mean and covariance matrix for class i,
respectively, which are obtained viatheir usual maximum-likelihood
estimates. Theparametersa and m specify the separating hyperplane
produced by LDA: a isavector normal tothehyperplane, andm/||a||
isits distance to the origin. A similar expression to (11) applies to
the Gaussian-bol stered |eave-one-out.

Note that ®,(0) = 1/2, which corresponds to the error
contribution of a point on the decision boundary. As o; — 0,
fori = 1,...,n, then al functions ®,, collapse to indicator step
functions and the Gaussian-bolstered error estimator reduces to the
original estimator. If o; — oo, fori = 1,...,n, then ®,, becomes
constant and equal to % so that the bolstered estimator isidentically
equal to % regardless of the data. This estimator has zero variance,
but is not useful.

Theactual valuesof o; inapractical situation arecomputed accord-
ing to the distance-based scheme outlined in the previous section. In
the present Gaussian case, the distance variables D; are distributed
as achi random variable D with p degrees of freedom. The density
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function of D isgiven by
21—p/2xp—1e—x2/2
r'(%)

where I isthe gamma function. For p = 2, this becomes the well-
known Rayleigh density. The cdf Fp can be computed by numerical

fo(x) = , (13)

integration of Equation (13), and the inverse at point 1/2 can be
found by a simple binary search procedure (using the fact that Fp
is monotonically increasing), which yields the correction factor «,.
For instance, the values of the correction factor up to five dimen-
sions are; o = 0.674, ap = 1.177, a3 = 1.538, oy = 1.832
and a5 = 2.086.
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