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Missing values, common in epidemiologic studies, are a major issue in obtaining valid estimates. Simulation
studies have suggested that multiple imputation is an attractive method for imputing missing values, but it is
relatively complex and requires specialized software. For each of 28 studies in the Asia Pacific Cohort Studies
Collaboration, a comparison of eight imputation procedures (unconditional and conditional mean, multiple hot
deck, expectation maximization, and four different approaches to multiple imputation) and the naive, complete
participant analysis are presented in this paper. Criteria used for comparison were the mean and standard
deviation of total cholesterol and the estimated coronary mortality hazard ratio for a one-unit increase in
cholesterol. Further sensitivity analyses allowed for systematic over- or underestimation of cholesterol. For 22
studies for which less than 10% of the values for cholesterol were missing, and for the pooled Asia Pacific Cohort
Studies Collaboration, all methods gave similar results. For studies with roughly 10–60% missing values, clear
differences existed between the methods, in which case past research suggests that multiple imputation is the
method of choice. For two studies with over 60% missing values, no imputation method seemed to be
satisfactory.

bias; cholesterol; coronary disease; hazard rate; imputation; meta-analysis; missing data; mortality

Abbreviations: APCSC, Asia Pacific Cohort Studies Collaboration; CHD, coronary heart disease; DBP, diastolic blood pressure; 
EM, expectation maximization; MI, multiple imputation; SBP, systolic blood pressure.

Researchers modeling medical data often encounter the
problem of missingness regarding one or more of the vari-
ables under investigation. The most common approach is to
delete those observations with missing values, leading to a
complete participant analysis. This approach not only wastes
data and reduces power but also produces biased estimates
when the group excluded is a selective subsample from the
study population, that is, when the values are not missing
completely at random (1, 2). An alternative is to use one of
the many methods available for imputing the missing values.
Of these, the method of multiple imputation (MI) (3) is
attractive since theoretical and simulation studies have
shown that it yields estimates with good statistical proper-
ties, such as efficiency and validity, when a correct model is
specified for the imputation (1). However, MI is not well
understood in the medical community and requires advanced
software typically implementing the algorithms of Shafer (4,

5). Consequently, alternative, simpler methods of imputation
are more commonly adopted at present.

To our knowledge, systematic comparisons of methods of
imputation using real-life meta-data are lacking. In this
article, we compare the naive, complete participant method
and several imputation methods, including different imple-
mentations of MI, for dealing with missing values of total
cholesterol in 28 cohorts within the Asia Pacific Cohort
Studies Collaboration (APCSC) (6, 7). Most importantly, we
compare these methods in an investigation of association
between cholesterol and coronary heart disease (CHD)
mortality. Since the APCSC studies have a wide variation in
cholesterol distributions as well as very different rates of
missingness for cholesterol, they provide an opportunity to
apply different imputation methods to diverse epidemiologic
data.

All of the imputation methods considered here assume that
data are missing at random (1, 8). That is, the probability of
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a value being missing does not depend on the unobserved
data, although it may depend on observed data, which can
thus provide information about the missing values and a
basis for imputation. We further explore the potential effects
of a mechanism for handling missingness that does not
satisfy the assumption of missing at random (9, 10) by
allowing for systematic over- or underestimation of
cholesterol.

THE APCSC

APCSC collects individual participant data from studies in
the Asia Pacific region, with the major aims of providing
reliable information about the determinants of cardiovas-
cular diseases and of comparing the different population
groups within the region (6). When this article was written,
the collaboration included 37 studies with a total of 419,639
male and female participants aged 20 years or older followed
up for a median of 5.5 years. To address the aims of APCSC,
the participants were grouped into four geographic areas:
Australia and New Zealand, China-Taiwan-Singapore
(China), Japan, and Korea.

As a result of the collaboration’s inclusion criteria, all
studies have complete participant information on age, sex,
systolic blood pressure (SBP), and diastolic blood pressure
(DBP); after data collection, we additionally excluded
subjects for whom information on survival time or causes of
death were missing (7). Information was also collected on
body mass index (weight (kg)/height (m)2), total cholesterol,
and the binary variables smoking and history of diabetes.
Some studies did not collect information on all of these vari-
ables. When they did, some values were missing for
unknown but probably diverse reasons, such as unwilling-
ness to answer certain questions.

Table 1 shows that cholesterol was measured at baseline in
28 studies (numbered in the table in rank order of cholesterol
missingness) involving 385,975 persons. Altogether, choles-
terol values were missing for 33,664 (9 percent) subjects, but
the percentage varied considerably across studies, ranging
from 0 percent to 69 percent (study 28). Although choles-
terol was almost always measured in Korea, values were
missing for 2 percent, 3 percent, and 32 percent of partici-
pants in Australia and New Zealand, Japan, and China,
respectively. Overall, 5 percent of body mass index values,
51 percent of diabetes values, and 22 percent of smoking
values were missing. Excluding the Korean Medical Insur-
ance Corporation study, which contributed by far the largest
number of subjects (48 percent) to the collaboration, choles-
terol values were missing for 17 percent, diabetes values
were missing for 7 percent, body mass index values were
missing for 8 percent, and smoking values were missing for
0.5 percent of the participants.

Overall, 90 cases (5 percent) of CHD death were lost by
analyzing only those subjects for whom cholesterol was
measured (complete participant analyses). Not surprisingly,
the percentage lost per study tended to increase with
increasing rate of nonresponse, although the relation was not
strictly monotonic.

IMPUTATION METHODS AND PREDICTORS

Table 2 summarizes the imputation methods used in this
article to “fill in” the missing values for cholesterol. Each
will be described in detail subsequently. All but one uses
other variables to predict the missing values of cholesterol.
Some methods require assumptions to be made about the
distribution of cholesterol and its predictor variables.
Furthermore, some (the “multiple” methods) proceed by
imputing each missing value several (m) times, therefore
generating several independent, completed data sets. Each
completed data set is analyzed by using standard methods,
leading to m sets of estimates and standard errors that are
then combined by using Rubin’s equations (1, 3, 4). The
combined standard errors will include both between- and
within-imputation components. Usually, m is taken to be
between three and five (4), but data sets with a high rate of
missingness need both more iterations and more imputa-
tions, so we chose m = 10 in the current analyses.

All of the imputation methods used assume that the data
are missing at random, a hypothesis that cannot be verified
since there is no knowledge of the unobserved data. Never-
theless, the more predictors the imputation model includes,
the more the assumption of missing at random is likely to
hold because the uncertainty associated with missingness is
reduced (4). Imputation models should ideally include all
covariates that are related to the missing data mechanism,
have distributions that differ between the respondents and
nonrespondents, are associated with cholesterol, and will be
included in the analyses of the final complete data sets (1, 3,
4, 11). Predictors with a high rate of missingness are proba-
bly best omitted because they would increase the variabil-
ity about the estimates of interest rather than provide
information.

The candidate predictors in the APCSC studies were age,
sex, SBP, DBP, body mass index, smoking, diabetes,
survival time, CHD death, and death from any cause. Prelim-
inary descriptive analyses indicated that cholesterol was
associated with all of them, although in a different fashion
across studies. Predictor variables were also found to have
different distributions by missingness status, and, overall,
participants for whom cholesterol values were missing were
at increased risk of mortality compared with those for whom
cholesterol had been measured. These differences indicate
that complete participant analysis might well have generated
biased results and that all of the predictors considered may
be important for specifying a proper imputation model. We
therefore considered models with all predictors as well as
models restricted to predictors without missing values.

Mean imputations

With unconditional mean imputation ( ), study-specific
mean cholesterol is substituted for each missing cholesterol
value. Since all imputations are the same, this method will
underestimate the variance for cholesterol (12) and result in
test statistics that are too often significant. Correlations with
other variables could also be underestimated (13, 14)
because of the bias in the variance and because values are
imputed independently of any predictor.

U



36   Barzi and Woodward

 Am J Epidemiol   2004;160:34–45

With conditional mean imputation ( ), also called “cold
deck,” the population is cross-classified according to levels
of the predictor variables, and the imputed value for anyone

for whom cholesterol information is missing is taken as the
observed mean cholesterol within that person’s cross-class.
Here, cross-classification occurred by sex, seven age catego-

TABLE 1.   Total number of subjects and total number of coronary heart disease deaths per study, by geographic area and overall, 
Asia Pacific Cohort Studies Collaboration*

* The percentages of missing cholesterol, body mass index, smoking, and diabetes values are also shown, as are the percentages of
coronary heart disease deaths excluded from survival analyses by using cholesterol as the explanatory variable with the complete participant
analysis method.

† J, Japan; C, China (China-Taiwan-Singapore); K, Korea; ANZ, Australia and New Zealand; CP, complete participant analysis; KMIC,
Korean Medical Insurance Corporation.

Study
Geographic 

area† Study name
Total no. of 

subjects

Data missing (% of total no. of subjects) Coronary heart disease 
deaths

Cholesterol Body mass 
index

Smoking Diabetes Total no. % excluded 
with CP†

1 J Shirakawa 4,638 0.0 100.0 0.1 100.0 44 0.0

2 C Xi’an 1,687 0.0 100.0 0.0 100.0 35 0.0

3 K KMIC† 183,600 0.0 0.1 46.3 100.0 114 0.0

4 J Saitama 3,624 0.0 0.7 0.2 0.0 24 0.0

5 C Singapore 92 3,332 0.1 0.4 0.0 0.0 22 0.0

6 J Akabane 1,828 0.1 0.2 0.1 0.0 7 0.0

7 J Civil Service Workers 9,318 0.1 0.1 0.8 0.0 1 0.0

8 J Shigaraki 3,757 0.2 0.7 0.7 0.0 3 0.0

9 C Anzhen 02 4,152 0.3 0.0 0.0 0.0 1 0.0

10 ANZ Melbourne Cancer 41,286 0.4 0.1 0.0 0.0 161 0.0

11 J Tanno/Soubetsu 1,977 0.4 0.1 0.3 1.0 23 0.0

12 J Kounan Town 1,226 0.5 2.8 0.0 0.0 3 0.0

13 J Shibata 2,350 0.9 0.9 0.0 0.0 67 0.0

14 ANZ Fletcher Challenge 10,326 1.0 0.4 0.9 0.0 70 2.9

15 J Aito Town 1,718 2.7 0.5 34.2 0.0 16 6.3

16 C Huashan 1,648 3.2 1.0 0.1 0.0 3 0.0

17 J Hisayama 1,595 3.2 5.8 0.8 0.0 50 0.0

18 C CVDFACTS 5,729 3.3 0.5 0.0 0.0 13 7.7

19 C Shanghai Factory Workers 9,334 3.5 100.0 0.0 0.0 86 5.8

20 ANZ Perth 10,227 4.9 0.1 0.0 0.1 194 4.1

21 ANZ Busselton 7,881 6.1 5.4 1.0 33.0 688 2.9

22 C Capital Iron and Steel 
Company 5,255 9.1 4.2 1.1 100.0 41 2.4

23 J Ohasama 2,240 14.9 2.0 0.0 0.0 7 42.9

24 C Six Chinese 19,384 25.2 0.3 0.0 0.0 37 48.6

25 C Seven Cities 37,619 52.1 0.5 0.0 0.7 79 21.5

26 C Yunnan Tin Miner 6,570 60.1 0.2 0.0 0.0 17 70.6

27 J Miyama 1,077 61.6 4.4 0.5 0.6 2 100.0

28 C Fangshan 2,597 68.6 0.8 0.2 0.0 0

Area totals

K 183,600 0.0 0.1 46.3 100.0 114 0.0

ANZ 69,720 1.8 0.7 0.2 3.7 1,113 2.7

J 35,348 3.3 14.0 2.1 13.2 247 2.4

C 97,307 32.1 11.9 0.1 7.4 334 16.2

Total 385,975 8.7 4.5 22.3 51.3 1,808 5.0

C
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ries, and five SBP categories. Compared with ,  should
improve estimation of the variance and maintain associa-
tions with the predictors used. The variance estimates will
still be underestimates because no account is taken of
residual (error) variance, a disadvantage also encountered
with other deterministic imputation methods such as median
imputation and linear regression imputation.

Multiple hot deck imputation

Hot deck imputation uses the same setup as , but persons
for whom values are missing in any cross-class receive a
value from a donor selected from all those without missing
values in that cross-class (rather than the mean). In each
cross-class, selection proceeds by first taking a random
sample, with replacement, of the same size as the population
without missing values; then, the required donors are
randomly taken with replacement (14, 15) from the sample.
In multiple hot deck imputation, the whole process is
repeated several times; we used STATA (16) software to
generate 10 completed data sets. This method has the advan-
tage of introducing variability into the analysis consistent
with the range of values observed. It shares with other
multiple imputation approaches (such as MI) the advantage
of taking account of the variability of the imputed choles-
terol values across the imputations, resulting in larger stan-

dard errors reflecting the uncertainty about the missing
values. In contrast, single imputation methods treat the
imputed values as true observations, therefore yielding arti-
ficially small standard errors. A disadvantage of both types
of deck imputations is that they require categorical,
completely observed, predictor variables.

Expectation maximization (EM) imputation

EM (and also MI) requires specifying a joint probability
distribution for the variable to be imputed and the predictor
variables (1, 4). It provides maximum likelihood estimates in
the presence of missing data. The first E step fills in the
missing values based on the observed values and on initial
values of the parameters of the imputation model. Then, the
first M step reestimates the parameters by using the observed
and imputed values. The algorithm iterates from E to M steps
until the log-likelihood converges to a stationary point. The
number of cycles required depends on the fraction of nonre-
sponse data. The covariance matrix takes into account the
residual variance from the regression on the E step, thereby
correcting for the underestimation of variance typical of
mean imputations. Implementation of EM in the current
application took age, sex, SBP, DBP, survival time, and
death by cause (no death/CHD/other cause) as predictor vari-
ables and assumed a normal distribution for each, condi-

TABLE 2.   Summary of the imputation methods used to “fill in” the missing values for cholesterol, Asia Pacific Cohort Studies 
Collaboration

* m, no. of complete data sets imputed.
† Conditional distribution for the predictors of cholesterol. The conditional distribution of cholesterol was always assumed to be normal.
‡ SAS, Statistical Analysis System (SAS Institute, Inc., Cary, North Carolina); SBP, systolic blood pressure; DBP, diastolic blood pressure;

CHD, coronary heart disease; BMI, body mass index.
§ Stata Corporation, College Station, Texas.
¶ Insightful Corporation, Seattle, Washington.

Abbreviation 
used

Imputation 
approach m*

Predictors of 
cholesterol

Distributional 
assumptions†

Software 
used

Unconditional mean 1 None SAS‡ 8.2

Conditional mean 1 Categorical: age (<30, 30–39, …, ≥80 years) and 
SBP‡ (<120, 120–139, …, ≥180 mmHg); 
binary: sex

None SAS 8.2

MHD Multiple hot deck 10 Categorical: age (<30, 30–39, …, ≥80 years) and 
SBP (<120, 120–139, …, ≥180 mmHg); 
binary: sex

None STATA§ Hotdeck 
command

EM Expectation 
maximization

1 Continuous: age, SBP, DBP‡, survival time; 
binary: sex; categorical: outcome (no death/
CHD‡/other cause)

All normal SAS 8.2 PROC MI

SI Single imputation 1 Continuous: age, SBP, DBP, survival time; 
binary: sex; categorical: outcome (no death/
CHD/other cause)

All normal SAS 8.2 PROC MI

MI Multiple imputation 10 Continuous: age, SBP, DBP, survival time; 
binary: sex; categorical: outcome (no death/
CHD/other cause)

All normal SAS 8.2 PROC MI

MI+ Multiple imputation 10 Continuous: age, SBP, DBP, BMI‡, survival time; 
binary: sex, diabetes, smoking status; 
categorical: outcome (no death/CHD/other 
cause)

All normal SAS 8.2 PROC MI

MI+MIX Multiple imputation 10 Continuous: age, SBP, DBP, BMI, survival time; 
binary: sex, diabetes, smoking status; 
categorical: outcome (no death/CHD/other 
cause)

Normal for 
continuous; 
log-linear for binary 
and categorical

S-PLUS¶ MIX 

U

C

U C

C
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tional on all other variables. The imputation model for
cholesterol, conditional on the set of predictors (P), is
Cholesterol|P = α + β1age + β2SBP + β3DBP + β4survival_
time + β5sex + β6CHD_death + β7other_death + ε, where α
is an intercept, the βs are regression coefficients, ε is a
normal error term, and all of the predictors are assumed to be
normally distributed. The categorical variable for death by
cause has been replaced with two dummy variables. Use of
the normal distribution for the binary variables (death by
cause and sex) represents a crude approximation.

MI

MI follows from EM, introducing a random component to
the imputation process. Variance and covariance are
adjusted by adding to the imputed values a random draw
from the residual distribution of each imputed variable. In
this application, the random draws were achieved by using
data augmentation, an algorithm suitable for arbitrary
missing data patterns (4). Very similar to EM, data augmen-
tation is a Bayesian technique in which the deterministic iter-
ative E and M steps are replaced by stochastic equivalents.
For a sufficient number of iterations, k, the algorithm
converges to the Bayesian posterior distribution of the
parameters. EM provides data augmentation with a good
starting point for the parameters’ values, and, when prior
information about their distribution is not available (as in
this application), a noninformative prior distribution is used.
The number of iterations required for EM to converge gives
an approximate value for k. Several software programs are
currently available for EM and MI (through data augmenta-
tion), including 1) a series of S-Plus functions, each suiting
different types of data: NORM, CAT, MIX, PAN (17); 2)
PROC MI and PROC MIANALYZE in SAS (18); and 3)
SOLAS, software designed specifically for analysis of data
sets with missing information (http://www.statsolusa.com).
Other software implements MI through the method of
sampling importance resampling (3).

We imputed missing values by using four different formu-
lations of MI, the simplest of which was “single imputation”:
MI ran only once. As noted earlier, for all other implementa-
tions of MI, 10 runs were made. In each case, imputations
were obtained by running independent chains of k = 10,000
iterations. Convergence of cholesterol means and standard
errors to their posterior distributions was explored through
time-series and autocorrelation function plots (4).

The models denoted here as single imputation and MI used
the same imputation model for cholesterol as for EM. The
extended-predictors model, MI+, additionally included in the
set of predictors the partially missing variables body mass
index, smoking, and diabetes, imputed simultaneously to
cholesterol (or excluded from the model for the studies in
which they are not available). Imputations with these three
models were carried out by using PROC MI, which assumes
a normal distribution for each variable, conditional on all
others. PROC MIANALYZE was used to combine the 10
individual estimates for MI and MI+. Although deviations
from the normal assumption are said to be unimportant,
particularly when no values are missing for the predictor
variables (4), this issue was addressed through the model

MI+
MIX, implemented by using the S-Plus package function

MIX and taking the same predictors as MI+. Here, the condi-
tional distributions of death by cause, sex, diabetes, and
smoking were taken to be log-linear; all other distributions
were still assumed to be conditional normal. Specification of
such a model generally requires estimating a parameter for
every cell of the contingency table created by the categorical
variables; for the means of the continuous variables, free to
vary across cells; and for the covariance matrix, constant
across cells. Since the size of some APCSC studies could not
support specification of this “saturated” model, we restricted
the parameter space, adopting a model in which the categor-
ical variables are marginally independent (no interaction
terms are allowed) and the means of the continuous variables
vary marginally with each categorical variable.

The imputation model for cholesterol, conditional on the
set of predictors (P), is Cholesterol|P = α + β1age + β2SBP +
β3DBP + β4body mass index + β5survival_time + δ1sex +
δ2diabetes + δ3smoking + δ4CHD_death + δ5other_death + ε,
where α is an intercept; the βs are the regression coefficients
for the continuous variables, normally distributed; the δs are
the regression coefficients for the binary variables, log-
normally distributed; and ε is a normal error term.

CRITERIA FOR COMPARISON

For each study, differences between the imputation
methods and complete participant analysis were explored by
comparing the mean and standard deviation of cholesterol
and the CHD mortality hazard ratios, and corresponding 95
percent confidence intervals, for a unit increase in choles-
terol. The hazard ratios for each study were obtained from
time-dependent Cox proportional hazards models, adjusted
for age at risk and stratified by sex, given by S(tR) =
[S0

(sex)]exp(β
1

cholesterol + β
2
SBP + β

3
age(t)), where S(tR) is the proba-

bility of surviving without death from CHD to time t given
the set of risk factors R; S0

(sex)
 is the baseline survivor func-

tion, different for men and women; the βs are the regression
coefficients for the risk factors; and age(t) is age at time t.

Random effects meta-analyses of the cholesterol-CHD
relation were performed by geographic area and for the total
APCSC (19). The imputations of cholesterol were carried
out for each study separately because of heterogeneity in
relations between predictors and cholesterol missingness.

SENSITIVITY ANALYSIS

The validity of the missing at random assumption cannot
be tested empirically. However, the variability of the results
across different imputation methods and different MI models
describes the sensitivity of the results to the mechanism of
missingness (10, 20). We also assessed how the results
would be biased if nonresponders had systematically higher
or lower cholesterol values than those imputed by assuming
that they were missing at random by increasing or decreasing
the values imputed with MI+

MIX by a perturbation factor, δ
(δ = 0 is equivalent to missing at random) (9, 10). Since the
overall standard deviation for cholesterol was 1 mmol/liter
(7), we considered perturbation factors, δ, of –1, –0.5, 0, 0.5,
and +1 mmol/liter.
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RESULTS

Estimates of mean cholesterol

With the exception of those for the two studies in which 61
percent or more values were missing, the cholesterol means
estimated by using the different imputation methods and
complete participant analysis were very similar. However,
compared with complete participant analysis,  markedly
underestimated the standard deviation when more than 10
percent of cholesterol values were missing, and the underes-
timation deteriorated as the rate of missingness increased
(results not shown). Standard deviations obtained from 
were equivalent to those from complete participant analysis;
those from EM and single imputation were larger but still
less than those from multiple hot deck imputation and the MI
models when more than 10 percent of cholesterol values
were missing. Figure 1 displays the results for each study’s
cholesterol mean and standard deviation for complete partic-
ipant analysis and after imputing cholesterol by using
multiple hot deck and the MI models MI+ and MI+

MIX. For
studies 27 and 28, the high rate of nonresponse created

extreme uncertainty about the imputed values that resulted in
very high standard deviations; with the data augmentation
algorithm, there were problems in reaching convergence to
the posterior distribution of cholesterol. Therefore, for these
two studies, results obtained from any analysis involving
cholesterol should be treated with caution.

Estimates of hazard ratios for CHD death

Figure 2 shows the hazard ratios for CHD death under
complete participant analysis and after imputing cholesterol
with multiple hot deck and the MI models MI+ and MI+

MIX
(results from other methods not shown). Study 28 was
omitted because no CHD deaths were recorded. Differences
were apparent for only those studies in which more than 10
percent of cholesterol values were missing and then
depended on a combination of several study-specific factors,
including the proportion of cholesterol values missing, the
total number of CHD deaths, the proportion of CHD deaths
omitted by the complete participant analysis, and relations
between cholesterol and the mechanism of missingness of

U

C

FIGURE 1. Study-specific cholesterol mean and standard deviation from the complete participant (CP) analysis and after imputation with mul-
tiple hot deck (MHD) and multiple imputation models MI+ and MI+MIX, Asia Pacific Cohort Studies Collaboration.
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FIGURE 2. Hazard ratios and 95% confidence intervals for coronary heart disease death for a 1-mmol/liter increase in cholesterol, adjusted for
age at risk and sex, from the complete participant (CP) analysis and after imputation with multiple hot deck (MHD) and multiple imputation models
MI+ and MI+MIX, Asia Pacific Cohort Studies Collaboration. Studies in which less than 1 percent of cholesterol values were missing (studies 1–13)
have only one hazard ratio and 95% confidence interval since these were invariant to the method used. Arrows indicate that the confidence
intervals exceed the range 0.2–2. NA, not available; HR, hazard ratio; CI, confidence interval.
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cholesterol and its predictors. Thus, differences between
imputation methods were more accentuated for study 23 (15
percent missing cholesterol values) than for studies 24 and
25 (substantially more values missing). Furthermore,
although study 24 had both more missing cholesterol values
and more CHD deaths omitted by complete participant anal-
ysis than study 23 did, the confidence intervals nevertheless
expanded much more when missing values were not imputed
(i.e., complete participant analysis) for study 23 than for
study 24. These differences are explained by the fact that
study 23 recorded many fewer CHD deaths than either study
24 or 25 did (table 1).

Figure 3 shows the results for the meta-analyses in which
complete participant analysis and all of the imputation
methods were used. Within geographic areas, hazard ratios
and their confidence intervals did not change appreciably
with different approaches to dealing with missingness. As
expected from the high rate of missingness, the largest
differences were found for China.

Sensitivity analyses

Figure 4 shows the sensitivity of the hazard ratios and their
confidence intervals to over- or underestimation of choles-
terol when MI+

MIX was used. Again, there were important
differences for only those studies in which more than 10
percent of the cholesterol values were missing, where the
anticipated effects were sometimes substantial. There was no
effect on the overall meta-analysis and little effect for the
area-specific meta-analyses (not shown).

DISCUSSION

APCSC provides an unusual opportunity to assess the
possible bias induced regarding point and variance estimates
by using complete participant analyses and to compare the
results obtained with different imputation techniques in the
presence of different levels of missing information.
Although missingness for cholesterol was clearly not
completely random in APCSC, the complete participant
analysis was not importantly different for studies with low
rates of missingness (below 10 percent), and results derived
from different imputation approaches were also very similar
for these studies. This finding is consistent with previous
reports (9, 21). In contrast, for those studies in which more
than 10 percent of the values were missing, differences were
more evident, particularly for the standard deviation of
cholesterol, and became increasingly more important as
missingness became more frequent.

Compared with the other imputation methods used here,
MI is the most appealing because it allows for any type and
number of variables and should give the most reliable vari-
ance estimates. MI is known to yield estimates with theoret-
ical properties that the other imputation methods do not
provide when the missing at random assumption is satisfied.
In addition, it is robust to departures from the data model,
unless large amounts of data are imputed. Several authors
(22–24) who have tested the performance of various imputa-
tion techniques through simulation have recommended MI.
Similar to MI, multiple hot deck is expected to be more reli-

able than the simpler imputation approaches used here (25,
26), but its ability to deal with continuous predictors is
limited. APCSC results suggest that MI would be the method
of choice when missingness is above 10 percent but that
complete participant analysis is otherwise acceptable.

At present, MI implementation in SAS software is limited to
assuming normally distributed data, clearly not a valid
assumption for the categorical and binary variables used in
some prediction models here. However, only for those studies
with many missing values and for the result in China (32
percent missing) did there appear to be a difference between
MI obtained through specifying a multivariate normal model
(MI+) and through a model more suitable to mixed types of
data (MI+

MIX). These results agree with simulation studies (4)
showing that MI is generally robust to departures from
normality and generally to model misspecification when the
amounts of missing data are not large. For studies where it was
possible, we drew imputations under a model for mixed data
that allowed for all interactions between covariates; again, the
results did not change. When predictors of moderate impor-
tance are left out of MI models, inferences should still remain
valid, although the between-imputations variance will
increase (13). We examined this issue by comparing MI and
MI+, the latter having the extra predictors body mass index,
smoking, and diabetes; important differences were found only
when rates of missingness were greater than 10 percent.

All of the models assume that cholesterol was missing at
random. There was, once again, evidence that the association
between cholesterol and CHD death was sensitive to system-
atic error in this assumption only for those studies in which
more than 10 percent of cholesterol values were missing. In
such cases, special models for mechanisms of missingness
that are not missing at random (27) might be used. Since we
lacked specific information about the process of missingness
in APCSC, we could not fit such models. Without ancillary
information, use of such models would lead to results that
can hardly be considered less biased than those obtained by
using models that assume missing at random (14).

Differences between imputation methods depend not only
on the amount of missing cholesterol data but also on a
number of factors including the relations between missing-
ness of cholesterol and the predictors used. We found no
systematic relation, from study to study, between missing-
ness of cholesterol and any of the predictor variables
described in this article (results not shown). This lack of
consistency is an important finding, suggesting that there is
no standard missing value mechanism and thus no simple
recipe for handling missingness of cholesterol. In every situ-
ation, preliminary descriptive analyses are essential for iden-
tifying the type of missingness and of important predictors
and therefore to specifying a correct imputation model.
Analyses such as those shown in figures 2 and 4 indicate to
what extent the results depend on the missing values, and
they are useful for diagnosing specific problems. Monitoring
of time-series and autocorrelation function plots and warn-
ings of lack of convergence, available in SAS PROC MI, are
very helpful for indicating when estimates are likely to be
unreliable.

With each imputation method, we observed between-
study heterogeneity for the estimated association between
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cholesterol and CHD mortality. For example, unexpected
hazard ratio estimates of less than one were found, for
complete participant analysis and all of the imputation

approaches, in four studies. This variability is likely to be
due to sampling variation or to the high rate of missingness
in some studies rather than to any real differences. Only

FIGURE 3. Hazard ratios and 95% confidence intervals for coronary heart disease death for a 1-mmol/liter increase in cholesterol, adjusted for
age at risk, sex, and study, Asia Pacific Cohort Studies Collaboration. Results are shown by geographic area and overall for complete participant
analysis and for each imputation method used. The size of the black squares is proportional to the standard error of the log hazard ratio. HR,
hazard ratio; CI, confidence interval; ANZ, Australia and New Zealand; CP, complete participant; , unconditional mean imputation; , condi-
tional mean imputation; MHD, multiple hot deck; EM, expectation maximization; SI, single imputation; MI, MI+, and MI+MIX, multiple imputation
models; China, China-Taiwan-Singapore.
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one study had both a hazard ratio of less than one and
reasonably tight confidence limits (even then, unity was
within these limits).

An important and reassuring finding, key to APCSC,
was the similarity of the area-specific and overall meta-
analyses results obtained with complete participant anal-

FIGURE 4. Sensitivity analyses showing the effects of a perturbation, delta, equal to –1 or +1 mmol/liter on cholesterol imputed with MI+MIX (a
multiple imputation model): hazard ratios and 95 percent confidence intervals for coronary heart disease death for a 1-mmol/liter increase in
cholesterol, adjusted for age at risk and sex, Asia Pacific Cohort Studies Collaboration. Arrows indicate that the confidence intervals exceed the
range 0.4–2. HR, hazard ratio; CI, confidence interval.
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ysis and the different imputation models (figure 3),
presumably due to averaging out the different mechanisms
leading to missingness as well as diluting the proportional
representation of missing values. This finding suggests an
extra advantage of meta-analysis in observational epide-
miology, where missing values are common. In addition to
the well-known advantage of reducing random noise,
pooled analyses may be less prone to bias due to missing
values.
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