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Abstract

Many researchers see the need for reject inference in credit scoring models to come from a sample selection problem
whereby a missing variable results in omitted variable bias. Alternatively, practitioners often see the problem as one of
missing data where the relationship in the new model is biased because the behaviour of the omitted cases differs from that
of those who make up the sample for a new model. To attempt to correct for this, differential weights are applied to the
new cases. The aim of this paper is to see if the use of both a Heckman style sample selection model and the use of sampling
weights, together, will improve predictive performance compared with either technique used alone. This paper will use a
sample of applicants in which virtually every applicant was accepted. This allows us to compare the actual performance
of each model with the performance of models which are based only on accepted cases.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Those who build and apply credit scoring models
are often concerned about the fact that these models
are typically designed and calibrated on the basis
only of those applicants who were previously con-
sidered adequately creditworthy to have been
granted credit. The ability of such models to distin-
guish good prospects from bad requires the inclu-
sion of delinquent credit payers in the data base.
Such delinquent applicants are unlikely to have
characteristics that differ radically from good appli-
cants, yet the ability to discern those differences is
the critical feature of a good model. Reject inference
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is a term that distinguishes attempts to correct mod-
els in view of the characteristics of rejected
applicants.

Augmentation and sample selection offer poten-
tially complementary corrections for model deficien-
cies that arise from the omission of rejected
applicants from data bases used to build credit
scoring models. Both implicitly acknowledge model
deficiency arising from the unavailability of the
repayment behaviour of rejected applicants. Sample
selection correction may be thought of as correction
for variables denied the model on account of
rejected cases. For example, a variable may affect
the probability that a case is accepted but is not
included in the new model to replace it. Augmenta-
tion may be thought of as correcting for other
aspects of model misspecification arising out of
missing cases, particularly those having to do with
.
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the model’s functional form. For example, a linear
function of some variable may quite adequately
describe repayment prospects over the range of that
variable observed among accepted applicants, but a
hint of curvature among the less reliable applicants
may seem inadequate for reliable modelling. This
paper considers whether both corrections may be
used simultaneously and entertains the possibility
that each correction may be enhanced in the pres-
ence of the other.

Banasik et al. (2003) considered the efficacy of
sample selection correction using a bivariate probit
model on the basis of a rare sample where virtually
all applicants were accepted. Applicants were never-
theless distinguished as to whether they would nor-
mally be accepted, so that the performance of
models based on all applicants could be compared
with those based only on accepted applicants. This
provides a basis for discerning the scope for reject
inference techniques. That paper reported distinct
but modest scope for reject inference, and that the
bivariate probit model achieved only a slight
amount of it. Subsequent experiments using the
same sample with augmentation are reported in
Crook and Banasik (2004) and Banasik and Crook
(2005). These suggested that augmentation actually
undermined predictive performance of credit scor-
ing models. In the discussion that follows these
results are revisited in experiments slightly revised
to enhance comparability and are compared with
results arising from joint deployment of the two
techniques. After explaining both techniques, the
character of the data and its adaptation for its pres-
ent application will be discussed. Then the results of
the techniques used in isolation and then together
will be reported.

2. Sample selection

A large literature has developed on missing data
mechanisms; see for example Smith and Elkan
(2003) for a Bayesian belief network approach. In
this section, we concentrate only on those types of
missing data mechanisms that are relevant to reject
inference and which were proposed by Little and
Rubin (1987). Let Di ¼ 1 if a borrower i defaults
and Di ¼ 0 if he/she repays on schedule. Let
Ai ¼ 1 indicate that case i was accepted in the past
and Ai ¼ 0 if that case was not accepted. Let Dobs

denote the values of D for cases where the repay-
ment performance is observed, that is for cases
where Ai ¼ 1, and let Dmiss denote values of D for
cases where repayment performance is missing, that
is for cases where Ai ¼ 0. Little and Rubin classify
missing mechanisms into three categories, two of
which are relevant in this context (Hand and Hen-
ley, 1994). These are as follows.

2.1. Missing at random (MAR)

This occurs if

P ðAjDobs;Dmiss;/Þ ¼ PðAjDobs;/Þ; ð1Þ

where / is the vector of parameters of the missing
data mechanism. This can be written

P ðAjD;X 2Þ ¼ P ðAjX 2Þ; ð2Þ

where X2 is a set of variables that will be used to
model P(A). The probability that an applicant is re-
jected (and his repayment performance is missing),
given values of X2, does not depend on his repay-
ment performance. Since we are interested in
P(DjX1) where X1 is a set of variables that will be
used to model P(D) we note that Eqs. (1) and (2)
are equivalent to

P ðDjX 1;A ¼ 1Þ ¼ P ðDjX 1Þ: ð3Þ

The parameters we estimate from a posterior prob-
ability model (for example logistic regression) using
the accepted cases only are unbiased estimates of the
parameters of the population model for all cases,
not merely for the accepts, assuming the same model

applies to all cases. However, since the parameter
estimates are based only on a sub sample their esti-
mated values may be inefficient.

2.2. Missing not at random (MNAR)

This occurs if P(Ai) is not independent of Dmiss so
Dmiss cannot be omitted from P ðAjDobs;Dmiss;/Þ so

P ðAjDobs;Dmiss;/Þ 6¼ PðAjDobs;/Þ: ð4Þ

This implies D cannot be omitted from P ðAjD;X 2Þ
so

P ðAjD;X 2Þ 6¼ P ðAjX 2Þ: ð5Þ

The probability that an application is rejected, given
values of X2, depends on repayment performance.

In MNAR we cannot deduce Eq. (3). To see this
write

P ðDjX 1Þ ¼ P ðDjX 1;A ¼ 1Þ � PðA ¼ 1jX 1Þ
þ P ðDjX 1;A ¼ 0Þ � P ðA ¼ 0jX 1Þ: ð6Þ
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Since in MNAR
PðDjX 1;A ¼ 1Þ 6¼ P ðDjX 1;A ¼ 0Þ; ð7Þ

PðDjX 1Þ 6¼ P ðDjX 1;A ¼ 1Þ: ð8Þ
To parameterise P(DjX1) we must model the process
which generates the missing data as well. If we do
not, the estimated parameters of P(DjX1) are biased.
An example of such a procedure is Heckman’s
model (Heckman, 1976) which, if D were continu-
ous and the residuals normally distributed, would
yield consistent estimates. A more appropriate
model is that of Meng and Schmidt (1985) where
P(DjX1) is modelled rather the E(DjX1), again
assuming normally distributed residuals. The Meng
and Schmidt model is the ‘bivariate probit model
with sample selection’ (BVP).

To proceed further it is efficient to set up the
scoring problem as follows:
d�i ¼ f1ðX i1; ei1Þ; ð9Þ

a�i ¼ f2ðX i2; ei2Þ; ð10Þ
where d�i is a continuous random variable describing
the degree of default such that when d�i P 0;Di ¼ 1
and when d�i < 0;Di ¼ 0. a�i is a continuous random
variable such that when a�i P 0, Ai ¼ 1 and Di is
observed, and when a�i < 0, Ai ¼ 0 and Di is unob-
served. We wish to parameterise P(Di). If we further
assume Eðei1Þ ¼ Eðei2Þ ¼ 0, covðei1; ei2Þ ¼ q; ðei1;ei2Þ �
bivariate normal then we have the BVP model.

Now consider various cases.

Case 1. Model 10 fits the data to be used to
parameterise the new model perfectly. For example,
in the past, the bank followed a scoring rule
precisely for every applicant. Here ei2 ¼ 0 and so
qei1;ei2

¼ 0 for all cases. Is this MAR? This depends
on whether, given X1, P(Di) in the population
depends on whether the case is observed. Here we
can consider two sub cases.

Case 1a. Suppose there are variables in X2, which
are excluded from X1 but which affect P(Di). Then
Eq. (7) holds and we have MNAR. If P(Di), given
X1, does not differ between the observed and miss-
ing cases, we have MAR. In the credit scoring
context variables which are correlated with P(Ai)
and which may be in the X2 set, but not in the
X1 set, include the possession of a County Court
Judgement (CCJ). An applicant with a CCJ may
be rejected so the possession of a CCJ does not
appear in X1 for the purpose of estimation. Notice
that in this case the Meng and Schmidt Heckman-
type model (BVP) will not make the estimated
parameters more consistent than a single equation
model because the source of the inconsistency that
the BVP model corrects for occurs only when
qei1;ei2 6¼ 0.

Case 1b. Here there is no variable in X2 which is
omitted from X1 and which causes P(Di), given
X1, to differ between the observed and missing
cases. We have MAR, not MNAR.

Case 2. Now suppose Eq. (10) does not perfectly fit
the data to be used to parameterise the new model.
This may occur because variables additional to
those in X2 were used to predict P(Ai). In the credit
scoring context such variables include those used to
override the values of Ai predicted by the original
scoring model. Again consider sub cases.

Case 2a. Suppose these additional variables are (a)
not included in X1 and (b) do affect P(Di). Then Eq.
(7) holds and we have MNAR. Also, given (a) and
(b) and that these variables (c) are not included in
X2, but (d) do affect P(Ai), qei1;ei2 may not equal
zero. In this case the BVP approach may yield con-
sistent parameters for Eq. (9) which will not be
given by a single equation model.

Case 2b. Suppose the additional variables referred
to in Case 2a are (a) included in X1 and (b) affect
P(Di). Then Eq. (3) holds instead of Eq. (7) and
we have MAR, not MNAR. Further, qei1;ei2 ¼ 0
and the BVP model does not yield more consistent
estimates than a single equation posterior probabil-
ity model.

Case 2c. In this case, the additional variables are
(a) included in X1 and (b) do not affect P(Di). Again
Eq. (3) holds instead of Eq. (7) we have MAR not
MNAR, qei1;ei1 ¼ 0 and the BVP model does not
increase the consistency of the parameter estimates.
In short, if the assumptions of the BVP hold
the technique will increase the efficiency of the
estimated parameters over that achieved in a sin-
gle model posterior probability model only in Case
2a.
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It is worth noting, that apart from augmentation,
to be described in the next section, the literature
contains experiments to assess the performance of
a small number of other algorithms to estimate
application scoring models in the presence of
rejected cases. One example is the EM algorithm
(Feelders, 2000). However, implementations of the
EM algorithm, like those of other imputation tech-
niques such as Markov chain Monte Carlo methods
(MCMC), have typically (but not always) assumed
the missing mechanism is MAR rather than MNAR
(see Schafer, 1997). In addition, the application of
these techniques has been either on simulated data,
which may miss the data structures typical of credit
application data, or on data which does not allow a
meaningful benchmark all-applicant model to be
estimated.

3. Augmentation

Augmentation is a well-used technique that
involves weighting accepted applicants in such a
way as to synthesize a sample that fully represents
rejected applicants. Its use involves tacit admission
of model inadequacy whereby no single parameter
set governs all applicants. Fig. 1 illustrates this intu-
itively by revisiting some basic principles of linear
regression analysis, assuming the prevalence of a
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Fig. 1. Illustration of estimation scenarios for a linear relationship: (a) e
range; (c) estimation with weighting to reflect character of missing obs
linear relationship. Part (a) suggests that extreme
values in the range of an explanatory variable min-
imize the standard errors of the estimated parame-
ters, but often this sample range is not a
discretionary matter. Should it be restricted as in
part (b) as is potentially the case for characteristics
observed among accepted credit applicants, then
one must be satisfied with the line estimated by
those points as the best available. To weight sample
observations to reflect better the mean of the
explanatory variable within the general population
as in part (c) is effectively to cluster observations
and thereby to sacrifice efficiency. There was no bias

to reduce in the first place and none after the
weighting, but more error in the model parameters
estimates probably attends such weighting. Obvi-
ously, one would not indulge in this weighting were
linearity to be believed.

Fig. 2 illustrates a non-linear situation modelled
linearly. Part (a) makes clear that available data
do not support the discernment of curvature. Part
(b) illustrates the effect of estimating with weights,
presuming the presence of curvature. That might
seem sensible in the credit scoring context, since
the ranking of marginal applicants deserves special
attention. This special concentration on marginal
applicants depends on the benefits of exploiting cur-
vature exceeding the loss of efficiency that comes
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Fig. 2. Illustration of weighting to characterize different X ranges: (a) slope estimated over observed range; (b) slope simulates inclusion of
lower X range.

1 The present analysis differs from that presented in Crook and
Banasik (2004) and in Banasik and Crook (2005) where the GB
model variable set was used for the AR model in spite of
awareness that the AR process depended on exclusive resort to
some additional variables. In any case, an attempt to avoid bias
altogether seems a vain endeavour, since augmentation is only
ever reasonably used when the GB model is presumed to suffer
from misspecification bias hidden by the absence of rejected
applicants.

2 An override is a case for which one or more variables
additional to those in the scoring model have been used to make a
decision. Of course the inclusion of such variables into an AR
equation which includes merely the variables of the parameterised
statistical model would improve the predictive performance of
such a model. For example if a person is not on the electoral
register because they have recently moved from another country
and such a circumstance, when known, increased the chance of
acceptance, a variable to represent this period of living abroad
should be included.
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from effectively clustering attention on a narrow
range of observations.

The derivation of weighting used in the variant of
augmentation deployed here was explained in
Crook and Banasik (2004). In brief, it requires first
the estimation of an Accept–Reject (AR) model that
predicts the probability that any applicant will be
among those accepted in a population. The inverse
of the estimated probability equals the number of
cases each accepted case in the sample represents
and can be regarded as a sampling weight in the esti-
mation of the GB model. Those accepts which have
relatively low probabilities of acceptance will have
relatively high weights, and since their probabilities
are relatively low they may be expected to have
characteristics more similar to those cases that were
originally rejected than to cases which have a high
probability of acceptance. Accordingly, a Good–
Bad (GB) model may be estimated weighting each
accepted case by the inverse of its probability arising
out of the AR model. That should provide the GB
model with much of the character it would have
were the repayment behaviour of rejected applicants
to be known and included.

Notice that since augmentation is not correcting
for the possible validity of Eq. (7) it is not correcting
for a missing mechanism which is MNAR. Instead
it assumes the mechanism is MAR.

A couple of caveats deserve particular note in the
present context of considering both sample selection
and augmentation together. First, as explained
above bias from omitted variables will occur
(MNAR) unless the variable set of the GB model
encompasses that of the AR model. However, in
the analysis that follows both the AR and GB mod-
els are estimated with some variables denied the
other. This permits comparable results for augmen-
tation and sample selection, since the exclusive
resort of the AR model to certain explanatory vari-
ables in sample selection is a vital feature of sample
selection.1 Secondly, augmentation is not feasible in
Case 1 above, where the AR process can be mod-
elled perfectly. Even were the probit or logistic
regression equation to be estimable, it would gener-
ate unit probabilities for all accepted cases and
hence undefined weights. This ability of perfect
knowledge about the AR process to scuttle reject
inference is a paradoxical feature augmentation
shares with sample selection. As a practical matter
the AR process generally depends on exclusive
resort to some variables, or there are overrides2 (a
particular instance of a missing variable) in its mod-
el’s application.
4. Banded data methodology

The sample available for the present analysis had
virtually no rejected applicants but it did have an
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indication of which applicants would normally be
rejected. The credit supplier would occasionally
absorb the cost of accepting poor applicants so as
to have a data base that would have no need for
reject inference. Table 2 demonstrates the large pro-
portion of very poor applicants accepted on such
occasions. Unfortunately, this data set indicated
no scope for reject inference. Models built only
upon those applicants who would normally be
accepted predicted repayment behaviour of all
applicants every bit as well as models built on all
applicants. This probably reflected the normal
acceptance threshold which would see two-thirds
of applicants accepted of whom nearly 30% were
‘‘bad’’ in the sense used for development of the
GB models analysed here. Such applicants were
defined as those who had accounts transferred for
debt recovery within 12 months of credit first being
taken. Evidently models built on such accepted
Table 1
Variables included in the Accept–Reject and Good–Bad models

Variable description Good–Bad model A

Time at present address X

B1 X

Weeks since last county court judgement
(CCJ)

X

B2 X

B3 X X

Television area code X X

B4 X X

Age of applicant (years) X X

Accommodation type X X

Number of children under 16 X X

P1 X X

Has telephone X X

P2 X X

B5 X X

B6 X X

P3 X X

B7 X

B8 X

B9 X

Type of bank/building society accounts X

Occupation code X

P4 X

Current electoral roll category X

Years on electoral roll at current address X

B10 X

P5 X

B11 X

B12 X

B13 X

Number of searches in last 6 months X

Bn = bureau variable n; Pn = proprietary variable n; X denotes variab
applicants already incorporated insights about the
nature of very bad applicants as to make reject
inference redundant. The influence of the accep-
tance threshold in determining the scope for useful
application of reject inference thus became a central
concern.

The credit provider supplied only the raw data,
including good–bad status, and its normal accept–
reject decision for each applicant. Except that most
relevant variables were provided, little useful infor-
mation was indicated about the nature of the nor-
mal acceptance process, so that shifting the
acceptance threshold required fabrication of an
acceptance process. More elaborate detail about
this fabrication process appears in Banasik et al.
(2003). For the present purposes suffice it to say that
AR and GB variable sets described in Table 1 were
determined from a process of stepwise logistic
regressions using relevant dependent variables.
ccept–Reject model Coarse categories Minimum frequency

8 281
4 242
6 244

5 324
6 453
5 26
6 496
6 201
5 180
6 130
3 377
3 1883
6 611
4 239
5 320
4 516
6 1108
6 407
6 1443
6 188
6 129
6 1108
5 458
6 458
6 403
3 379
6 324
4 1163
4 1291

4 406

le is included.



Table 2
Sample accounting

All sample case Good rate
(%)

Training sample cases Hold-out sample cases

Good Bad Total Good Bad Total Good Bad Total

Cases not cumulated into English acceptance threshold bands to show good rate variety

Band 1 1725 209 1934 89.2 1150 139 1289 575 70 645
Band 2 1558 375 1933 80.6 1039 250 1289 519 125 644
Band 3 1267 667 1934 65.5 844 445 1289 423 222 645
Band 4 1021 912 1933 52.8 681 608 1289 340 304 644
Band 5 868 1066 1934 44.9 579 711 1290 289 355 644

English 6439 3229 9668 66.6 4293 2153 6446 2146 1076 3222
Scottish 1543 997 2540 60.7

Total 7982 4226 12,208 65.4

Cases cumulated into English acceptance threshold bands for analysis

English sample cases

Band 1 1725 209 1934 89.2 1150 139 1289 575 70 645
Band 2 3283 584 3867 84.9 2189 389 2578 1094 195 1289
Band 3 4550 1251 5801 78.4 3033 834 3867 1517 417 1934
Band 4 5571 2163 7734 72.0 3714 1442 5156 1857 721 2578
Band 5 6439 3229 9668 66.6 4293 2153 6446 2146 1076 3222

3 In Banasik et al. (2003) this classification was used alterna-
tively to define binary variables and weights of evidence, and both
approaches gave very similar results for models without reject
inference. In this respect, the following analysis of the sample
selection procedure in this paper differs from the earlier one.
However, on account of collinearity problems, only the weights
of evidence were used in this analysis for reject inference. A
critical feature of the banding approach was that English
applicants were scored using the less restrictive binary variable
approach. In that earlier paper two variables were removed from
both the AR and GB set in the mistaken presumption that this
would be necessary to avoid a nearly perfect fit for the AR model,
since the AR scores were simply fitted values using the AR
variable set.
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Normally, an AR model reflects an older GB model
that determined the cases available for the new GB
model. In fabricating an AR process nationality
appeared as a metaphor for time. The GB behaviour
of the 2540 Scottish applicants’ was modelled using
the variables selected for the AR model. Using the
AR variable set and parameters calibrated on Scot-
tish applicants, the remaining 9668 English and
Welsh (hereafter English) applicants then received
AR scores by which they were ranked and banded
into five acceptance thresholds. All subsequent
modelling would be restricted to English applicants.

English applicants were ranked into five bands of
nearly equal size from each of which stratified
random sampling determined that training and
hold-out samples would have virtually the same
good–bad rate. The upper part of Table 2 demon-
strates the range of repayment behaviour available
in the data with repayment performance in the top
band nearly double that in the bottom one. All sub-
sequent analysis uses the data as described in the
lower part of Table 2 where each band includes
cases in the band above it. Each of these cumulated
bands then appears as a distinct potential grouping
of accepted applicants. The all-inclusive Band 5 pro-
vides the basis for benchmark models against which
less inclusive ‘‘accepted’’ applicant samples models
– with and without reject inference – may be judged.

The coarse classification used in this analysis was
not a feature of the provided data, but reflected pre-
liminary analysis of GB performance over variable
intervals, taking account of natural breaks among
all applicants and among applicants designated as
normally acceptable by the data provider.3 For the
Scottish model that was used to score and rank Eng-
lish applicants the coarse categories for all variables
were represented by binary variables. However,
both the AR and GB models that were subsequently
developed for the English applicants used the
weights of evidence approach whereby coarse cate-
gories within each variable appeared as specific val-
ues in that variable. This switch from a binary
variable approach to a weights of evidence
approach between the Scottish AR scoring process
and the English AR model used to represent it pre-
vents even a nearly perfect fit in the latter model. In
spite of resort to the same variables logistic regres-
sion provides correct classification for the top four
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bands of only 84–95% of cases. The imperfect fit
required to simulate AR model overrides was thus
achieved without the need to exclude from the Eng-
lish AR model variables that were used in the Scot-
tish AR process.
5. Model assessment

Classification performance depends on two fea-
tures of the modelling process: its ability to rank
cases and its ability to indicate or at least use an
appropriate cut-off point. Overall ranking of appli-
cants in terms of likely repayment performance is
interesting, but more critical is the ranking among
marginal applicants with repayment prospects that
will attract deliberation. Ranking among very good
applicants certain to receive credit and among very
poor applicants certain to be rejected matters little
unless the ranking mechanism is to be used to deter-
mine the amount of credit to give to the customer
(for example setting the customer’s credit limit on
a credit card).

The nature of the analysis that follows may be
illustrated by interpretation of Table 3 in which
the application of a model’s parameters estimated
by each band’s training sample appears. The third
column represents classification success where the
cut-off has been selected to equate actual and pre-
dicted numbers of goods in each band’s training
sample. The fourth column standardizes the results
by using instead the band’s hold-out sample to
equate these numbers. This slightly illicit resort to
the hold-out sample to obtain a parameter estimate
affects results very little. The sixth column indicates
the usefulness of each band’s training sample rank-
ing and cut-off applied to all applicants, including
those of all lower bands. Finally, column seven
shows how performance of each band’s model
might be improved in all-applicant prediction were
the cut-off that equalizes actual and predicted good
performance among the all-applicant hold-out sam-
Table 3
Classification using simple logistic regression

Predicting
model

Own band hold-out prediction

Number of
cases (%)

Own band training
cut-off (%)

Own band hold-ou
cut-off (%)

Band 1 645 89.30 89.77
Band 2 1289 83.40 83.86
Band 3 1934 79.21 79.42
Band 4 2578 75.37 75.56
Band 5 3222 73.68 73.49
ple to be known. Such would be approximately the
case were one to somehow know what proportion of
the whole applicant population is bad.

From the standpoint of reject inference two types
of comparison are pertinent. First, for each band
comparison of the column six result to that col-
umn’s Band 5 result indicates the scope for improve-
ment by reject inference, since it is the difference
that results from availability of repayment perfor-
mance by all rejected applicants. Secondly, compar-
ison between each band’s column six and seven
results indicates the benefit to be had by simple
awareness of the appropriate cut-off. If this cut-off
is known simple modelling with accepted cases can
provide this result. Column six demonstrates con-
siderable scope for reject inference in each of the
top four rows where the absence of information
on rejected applicants can undermine performance.
Column seven suggests that the bulk of this
improvement could be had simply from awareness
of the cut-off implied by knowledge of the repay-
ment behaviour by rejected applicants. For exam-
ple, the Band 1 scope for benefit from reject
inference is 3.48% (i.e. 73.68–70.20) of which
2.36% (i.e. 70.20–72.56) could be obtained by
knowledge of the appropriate cut-off point. To that
extent one need know only the likely repayment
proportion of all applicants and not the particular
relationships between attributes of unacceptable
applicants and repayment performance.
6. Reject inference results

Joint application of augmentation and the bivar-
iate probit model requires a specified weighting for
all cases, accepted and rejected alike. For accepted
applicants the weights used for simple augmentation
were scaled to have an average value of 1.0, the
weight assigned to all rejected cases. Thus if the first
0 . . . n cases are accepts and the following
ðnþ 1Þ . . . k cases are rejects:
All-applicant hold-out prediction

t Number of
cases (%)

Own band training
cut-off (%)

All band hold-out
cut-off (%)

3222 70.20 72.56
3222 70.58 72.75
3222 71.97 73.49
3222 72.47 73.81
3222 73.68 73.49



Table 4
Overall ranking performance by area under ROC

Own band training sample Own band hold-out All-applicant hold-out

Number of cases Area under ROC Number of cases Area under ROC Number of cases Area under ROC

Simple logistic regression

Band 1 1289 .8884 645 .8654 3222 .7821
Band 2 2578 .8373 1289 .8249 3222 .7932
Band 3 3867 .8141 1934 .8175 3222 .8009
Band 4 5156 .8003 2578 .8108 3222 .8039
Band 5 6446 .7934 3222 .8049 3222 .8049

Weighted logistic regression (Augmentation)

Band 1 1289 .8468 645 .8446 3222 .7362
Band 2 2578 .7733 1289 .7647 3222 .7083
Band 3 3867 .7812 1934 .7911 3222 .7808
Band 4 5156 .7977 2578 .8097 3222 .8027
Band 5 6446 .7934 3222 .8049 3222 .8049

Simple probit

Band 1 1289 .8893 645 .8693 3222 .7842
Band 2 2578 .8377 1289 .8252 3222 .7936
Band 3 3867 .8142 1934 .8176 3222 .8008
Band 4 5156 .8003 2578 .8107 3222 .8039
Band 5 6446 .7934 3222 .8048 3222 .8048

Bivariate probit with selection (BVP)

Band 1 1289 .8892 645 .8674 3222 .7844
Band 2 2578 .8375 1289 .8256 3222 .7935
Band 3 3867 .8141 1934 .8178 3222 .8010
Band 4 5156 .8003 2578 .8108 3222 .8039
Band 5 6446 .7934 3222 .8048 3222 .8048

Weighted bivariate probit with selection (weighted BVP)

Band 1 1289 .7695 645 .7324 3222 .7502
Band 2 2578 .7706 1289 .7599 3222 .7001
Band 3 3867 .7831 1934 .7936 3222 .7830
Band 4 5156 .7978 2578 .8093 3222 .8025
Band 5 6446 .7934 3222 .8048 3222 .8048

4 This may seem somewhat constraining. However, the afore-
mentioned study also considered an alternative resort to binary
variables and produced similar results.
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wi ¼ p�1
i

�
n�1
Xn

i¼0

p�1
i if i 2 accepts;

wi ¼ 1 if i 2 rejects;

ð11Þ

where pi = the predicted probability of acceptance,
case i.

In this way, the relative weighting among
accepted cases was maintained without affecting
the relative weighting between accepted and rejected
cases. Permitting the inverse of the probability of
acceptance to be the weighting applied to rejected
cases would have implied monumentally dispropor-
tionate attention to be given to the least acceptable
cases among the rejects. Since use of the weighted
BVP implies estimation of both an AR and a GB
model, in principle the new AR model should be
used to revise the weightings in a process that could
iterate toward convergence. Had there been more
classification success at the end of the initial itera-
tion, this might have been attempted. However,
the process of reweighting is mainly to focus atten-
tion toward more risky accepted cases, and the
approximate replication of the character of all
applicants is only an incidental byproduct.

Table 4 records, for each modelling approach,
the area under the ROC curve which indicates the
overall ranking performance achieved without refer-
ence to any arbitrary cut-off point. Logistic regres-
sion is the benchmark against which augmentation
may be assessed and the comparably performing
simple probit model is the benchmark for simple
BVP and for weighted BVP. All results considered
here deal with estimation using weights of evidence
calibrated to the particular training-sample band.4



Table 5
Error correlation arising from bivariate probit with selection
estimation

Simple bivariate probit
with selection

Weighted bivariate probit
with selection

q Significance q Significance

Band 1 �.0321 .840 �.9908 .014
Band 2 �.0636 .645 .0355 .449
Band 3 �.1000 .303 �.0888 .722
Band 4 �.0101 .918 .1916 .348
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For simple BVP resort to binary variables as an
alternative to weights of evidence was impeded by
collinearity problems.

Consistent with the results reported in Crook and
Banasik (2004) augmentation by itself provides
ROC curve results quite inferior to those achieved
without it. The results for BVP roughly confirm
those reported in Banasik et al. (2003) except that
now the slight performance improvement is non-
existent. Table 5 indicates that this reflects a virtu-
ally complete absence of correlation between the
AR and GB model errors even more so than
previously.

The weighted BVP results represent considerable
deterioration compared to a situation of no reject
inference at all. The most that can be said for them
is that BVP seems to have redeemed to some small
extent the overall ranking results that would have
occurred under simple augmentation.
Table 6
Performance by correct classification

Own band hold-out prediction

Number of
cases

Own band training
cut-off (%)

Own band hold-ou
cut-off (%)

Simple logistic regression

Band 1 645 89.30 89.77
Band 2 1289 83.40 83.86
Band 3 1934 79.21 79.42
Band 4 2578 75.37 75.56
Band 5 2578 73.68 73.49

Weighted logistic regression (Augmentation)

Band 1 645 87.75 87.60
Band 2 1289 81.54 81.23
Band 3 1934 79.16 79.42
Band 4 2578 75.64 75.72
Band 5 2578 73.68 73.49

Simple probit

Band 1 645 89.30 89.77
Band 2 1289 83.32 84.02
Band 3 1934 79.16 79.63
Band 4 2578 75.41 75.41
Band 5 2578 73.77 73.81

Bivariate probit with selection (BVP)

Band 1 645 89.30 89.77
Band 2 1289 83.32 84.02
Band 3 1934 79.06 79.63
Band 4 2578 75.45 75.41
Band 5 2578 73.77 73.81

Weighted bivariate probit with selection (weighted BVP)

Band 1 645 84.50 84.50
Band 2 1289 81.54 81.69
Band 3 1934 79.21 79.32
Band 4 2578 75.33 75.56
Band 5 3222 73.77 73.81
Table 6 also confirms earlier results. In terms of
classification results augmentation produces gener-
ally inferior results and in particular tends to under-
mine, for the upper two Bands, an ability to make
good use of the Band 5 cut-off. The exception to this
pattern is Band 4 where the training sample cut-off
produces slightly better results and the Band 5
cut-off produces slightly worse results. For the
All-applicant hold-out prediction

t Number of
cases

Own band training
cut-off (%)

All band hold-out
cut-off (%)

3222 70.20 72.56
3222 70.58 72.75
3222 71.97 73.49
3222 72.47 73.81
3222 73.68 73.49

3222 69.24 68.84
3222 68.34 67.47
3222 71.94 72.44
3222 72.84 73.49
3222 73.68 73.49

3222 70.11 72.75
3222 70.79 72.69
3222 71.88 73.56
3222 72.50 73.74
3222 73.77 73.81

3222 69.77 72.69
3222 70.36 72.56
3222 71.88 73.56
3222 72.53 73.74
3222 73.77 73.81

3222 56.80 70.64
3222 68.03 66.91
3222 71.88 72.50
3222 72.66 73.43
3222 73.77 73.81
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simple unweighted BVP the results are very slightly
worse, reflecting apparently inefficient resort to AR
errors. Again Band 4 is the exception and again only
insofar as the Band’s own cut-off is used (as it nor-
mally would be).

The classification performance for weighted BVP
seems very poor for the top two bands and again
Band 4 provides the only exception to a finding of
generally inferior performance compared to no
reject inference at all. Taking Tables 4 and 6
together makes apparent what explicit crosstabula-
tion of actual and predicted performance would
convey. Overall ranking is somewhat undermined,
and the indicated cut-off point serves very badly
for Bands 1 and 2. Moreover, ranking in the critical
region where decisions are made is also undermined
by resort to this technique as indicated by compar-
ison between the results from the simple probit with
own-band cut-offs with a weighted BVP with Band 5
cut-offs. Even with that advantage this reject infer-
ence technique performs only marginally better in
Band 1 (i.e. 70.64 vs. 70.11) and rather worse in
Band 2.

7. The trouble with augmentation

Table 7 illustrates application of the weighting
principles. The training-sample cases are ordered
by acceptance probability determined by the AR
model in such a way that each interval has about
Table 7
Reweighting illustration using Band 1

Interval P(Accept) range
within interval

Total

Good Bad Accepts

1 .99997–1.0000 126 3 129
2 .99587–.99997 109 20 129
3 .98302–.99587 113 16 129
4 .96095–.98302 113 13 126
5 .93144–.96095 116 10 126
6 .88551–.93144 101 19 120
7 .82116–.88551 100 15 115
8 .72150–.82116 83 10 93
9 .60282–.72150 73 11 84
10 .48605–.60282 66 5 71

Subtotal 1122

11 .35984–.48605 48 3 51
12 .24927–.35984 34 2 36
13 .16051–.24927 20 3 23
14 .10240–.16051 17 3 20
15 .00000–.10240 31 6 37

Total 1289
129 ‘‘equivalent’’ probabilities. The top 1289 train-
ing cases are distinguished because these are the
ones that are predicted to be accepted. In this
way, the top 10 intervals include 167 rejected cases
predicted to be accepted and the intervals below this
include 167 accepted cases predicted to be rejected.
The acceptance proportions in each interval bear a
good likeness to each interval’s typical acceptance
probabilities given the relatively small number of
cases in each.

A couple of features are very evident from Table
7. First, while 1122 correctly classified accepted
cases (intervals 1–10) have the responsibility of rep-
resenting all 1289 accepted cases, a large burden is
put upon the 167 accepted cases wrongly predicted
as rejected cases (intervals 11–15). They must repre-
sent all 5157 rejected cases (the sum of column 7
intervals 11–15). Indeed it is conceivable in principle
that an accepted applicant could have an extremely
small estimated probability of acceptance and
thereby grab enormous attention in a weighted
logistic regression. Secondly, the repayment behav-
iour in all but the top 129 band does not diminish
radically as the acceptance cut-off point is
approached. Indeed even below this point the
good/bad ratio does not appear remarkably differ-
ent. Accordingly, increased focus on ‘‘unaccept-
able’’ accepted cases does not provide much
enhanced insight into the character of applicants
with very bad repayment propensities.
Training proportion Represented
by acceptsRejects Cases Accepted Weights

0 129 1.00000 1.00 129
0 129 1.00000 1.00 129
0 129 1.00000 1.00 129
3 129 .97674 1.02 129
3 129 .97674 1.02 129
8 128 .93750 1.07 128

14 129 .89147 1.12 129
36 129 .72093 1.39 129
45 129 .65116 1.54 129
58 129 .55039 1.82 129

167 1289 .87044 1289

78 129 .39535 2.53 129
93 129 .27907 3.58 129

106 129 .17829 5.61 129
109 129 .15504 6.45 129

4604 4641 .00797 125.43 4641

5157 6446 6446
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Augmentation will provide benefit particularly
when there are a large number of accepted appli-
cants judged by an AR model to be worthy of rejec-
tion and these cases have a distinctly poor
repayment performance. That should tend not to
happen when the rejection rate is large – which is
when reject inference seems most needed. This fea-
ture perhaps explains why Band 4 had some
instances of benefit, and only small benefit at that,
from reject inference.5

8. Conclusion

The two forms of reject inference considered here
appear to provide negligible benefit whether applied
in isolation or together. The nature of such negative
findings is that they cannot be presented as signifi-
cantly insignificant, but they arise from carefully
designed experiments devised with rare data partic-
ularly suited for them. Apparent scope for reject
inference in terms of the loss of accuracy that arises
from modelling with a data set comprising only the
more creditworthy applicants is clearly evident. In a
population in which 66.6% of applicants (see Table
2) are likely to repay, a model that correctly classi-
fies 70.2% represents a small improvement over sim-
ply accepting everyone, and the 3.48% scope for
improvement possible in Band 1 represents a sub-
stantial improvement over that. The challenge is
to achieve a substantial part of that scope.

An important feature of the two reject inference
techniques considered here is that they are both
mechanical and do not depend at all on modellers’
judgement about suitable parameters. While there
is nothing wrong with techniques that do depend
on such judgement, appraisal of their accuracy
may not easily be able to distinguish between the
improvement latent in the technique as opposed to
that contingent on good judgement. Even in the
experiments reported in this paper it might be pos-
sible to manipulate the experiments to affect the
results, for example by altering the variable selec-
tion for GB and AR models, but such arbitrary
judgements have been devised with a view to the
reliability of the experiment not the success of the
model. The two types of judgement are distinct.
Accordingly, the findings pertaining to the tech-
niques considered here are more definitive than
might be the case for others.
5 Another possible explanation could be sampling error.
The findings reported above reflect the features
of one data set corresponding to one context. Reject
inference may very well be applied with good effect
to various other contexts. Unfortunately, an ability
to assess the benefit will usually be absent, since the
opportunity cost of rejecting applicants can rarely
be known. The data set employed here has effec-
tively provided data on the repayment behaviour
latent in all rejected applicants.

In principle it seems that the feature required of
success for the two types of reject inference consid-
ered here, both separately and together, is a lot of
information in the acceptance decision that pertains
to the ‘‘goodness’’ of applicants yet is denied to the
variable set of the GB model. That should tend to
make focus at the lower range of acceptable appli-
cants worthwhile and should foster correlation
between the errors of the GB and AR models. These
are both observable features without knowledge of
the latent repayment behaviour of rejected appli-
cants, and so should be a good indication of the
prospects of benefit from applying reject inference.
Unfortunately, without the knowledge of this latent
behaviour, the extent of benefit will be difficult to
assess.

Considerable further research is suggested by this
paper. For example, it would be beneficial to exper-
iment to see how sensitive the results are to different
weighting formulae. Second one could try to relate
the approaches to reject inference to the actual
Bayesian network structure of the data. Third one
might try Bayesian inference (see for example Smith
and Elkan, 2003). Fourth one might try to identify
specific conditions under which the omission of per-
formance data for certain cases results in biased esti-
mates of parameters and use a particular reject
inference technique that is most beneficial under
each set of specific conditions.
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