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Abstract 
In the modern intensive care unit (ICU), the 

physiologic state of critically-ill patients is monitored 
through a diverse array of biosensors and laboratory 
measurements. The sheer volume of data that is collected 
has overwhelmed clinicians charged with assimilating 
and transforming the data into clinical hypotheses. The 
development of auiomated algorithms with vigilant 
monitoring and clinical decision-support capabilities 
would help to alleviate this "infolmation-overload" 
challenge. The inherent noise and measurement error is 
an added level of complication to the real-time analysis 
and interpretation of medical data. One class of "noise" 
in medical data can be characterized by the absence or 
unavailability of a desired measurement. We have 
analyzed a large collection of clinical Laboratory data 
(blood chemistry, blood gasses, complete blood counts) 
from over 600 ICU/CCU patients in the MIMIC I f  
database, An analysis of the frequency of missing data 
values across patient records for each measurement was 
completed. Furthermore, we have developed a novel 
method to estimate the values of missing data by the use 
of a weighted K-nearest neighbors aigorithm. We propose 
a weighting scheme that exploits the correlation between 
a "missing" dimension and available data values from 
other fields. We compare our technique with several 
popular missing value estiniation techniques: principal 
components analysis, least squares estimation, mean 
imputation, and classical k-nearest neighbors. The mean 
standardized imputation error ranges from a minimum of 
0.31 to a maximum of 0.75 depending an the imputed 
dimension. The mean standardized imputation error over 
all dimensions is 0.45. 

1. Introduction 
The modern intensive care unit (ICU) has an 

impressive array of biomedical sensors and monitoring 
systems to help clinicians assess the physiologic state of 
acutely-ill patients. These measurements vary in terms of 
their invasiveness, frequency by which they are measured 
(seconds to days), costs, measurement protocol 
simplicity, and measurement reliability. The results of 

these measurements aid in the diagnosis of disease and 
direction of therapy. 

Often, a measurement is most informative when 
interpreted with other complimentary diagnostic data. For 
example, scoring systems that utilize an array of 
diagnostic measurements have become a standard with 
which to risk-stratify critical care patients. 

One of the most widely accepted scoring system is the 
Acute Physiology, Age and Chronic Health Evaluation 
(APACHE) system. APACHE and others [2] derive an 
acuity score based upon a set of routinely measured 
variables obtained from vital signs, standardized 
automated blood tests and arterial blood gas tests. 

However, scoring systems usually cannot 
accommodate missing data and ad-hoc techniques are 
usually resorted to in order to overcome such challenges. 
This problem is not only encountered in real-time ICU 
monitoring, but also in retrospective analyses of clinical 
data. There are many possible explanations €or why a data 
value may be unavailable: the measurements were simply 
not made, human or machine error in processing a blood 
sample, and error in transmitting or storing data values 
into their respective patient records. 

When missing data are encountered, clinicians or 
researchers may often simply not derive any measurement 
or score for that patient. Alternatively, they may impute 
the missing value by assuming the vahe is "normal" and 
utilize ?he statistical mean value of that respective 
component across the total patient population 121. 
However, mean imputation methods ignore the statistical 
correlation that may be present between different 
components of a physidogic vector. Several methods 
have been proposed to exploit the statistical relationships 
between clinical data components. 

In this paper, we present a comparative analysis of the 
performance of several imputation techniques on ICU 
clinical data. We also present a novel algorithm that is 
capable of simultaneously estimating several missing 
components using a weighted K-nearest neighbors 
algorithm. In the next section, we describe the 
methodology we utilized for this study. We briefly 
describe the algorithms that we evaluated. We provide a 
detailed description of our novel algorithm and its 
performance on a rich clinical ICU data set. Then, we 
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discuss the major results of this study and suggest future 
extensions of this work. 

2. Methods 

Database Used 

The MIMIC 11 [3j database was used as a source of data 
for this study. MIMIC I1 includes recordings of 
waveforms, trend plots, ventilator settings, lab values, and 
text notes. The lab values are of critical significance in 
assessing the severity of a patient's condition. This, in 
addition to the fact that these data are frequently 
unavailable, makes imputing them of high importance in 
robust and accurate acuity scoring. The following Lab 
Values are used in the trial: 

PH 
PaCO2 
Pa02 
BUN 
WBC 
RBC 
Calcium 
Sodium 

Glucose 
Creatinine 
Hemoglobin 
Hematocrit 
Chloride 
Magnesium 
Potassium 
Platelets 

Creation of the Test and Training Sets 

As was mentioned, lab values are often missing. So, in 
order to create a test and training set, we took vectors 
only at times where a full complement of lab values was 
present. In MIMIC 11, this left us with 906 patients. We 
then split the patients up into 80% to be used as a training 
set, and 20% to be used as a test set. We randomly 
performed this split 10 times to ensure that the results 
reflected the database well and did not amplify the results 
for anomalous situations from a small number of patients. 

Algorithms 

In the dropout model that we selected, we remove from 
1 to 8 dimensions from the test set data. In a Monte Carlo 
fashion, we randomly select which of the 16 dimensions 
to remove 100 times for each number of missing 
dimensions. This ensures that the results are not 
dependent on random selections of data points and are 
reflective of the performance on the entire MIMIC I1 
database. 

In mean imputation, we simply calculate the dimension 
mean from the training set and replace all the missing 
values in the test set with their corresponding training set 
mean. 

Mean-Impu tation 

SVD 
In SVD imputation [ 5 ] ,  we calculate 16 eigenvectors 

from the training set. We then take the present 
dimensions from the test set and project them onto the 
eigenvectors in the space spanned by the present 
dimensions. This gives us the combination of the 
eigenvectors that produce the present dimensions of the 
vector to be imputed. We then take this combination and 
apply it to the eigenvectors in the missing dimensions and 
use this as the imputed values for the test set. 

KNN 
In KNN imputation [I] ,  we search the training set for 

the closest K neighbors in a Euclidean sense and in the 
present dimensions, to the vector we wish to impute. We 
then take the mean of these closest K vectors and replace 
the missing values with these means. 

Novel Approach - Weighted KNN 
Our novel approach seeks to add to the standard K" 

method by proposing that the calculation for how close a 
vector is to this vector should not be equally based on all 
of the present dimensions. For example, if pH is highly 
correlated with a missing dimension, such as PaC02, we 
weigh the pH dimension higher in the distance between 
two vectors, U] and u2, Therefore, in our distance metric, 
when imputing a missing dimension, m, we weight each 
dimension i by the respective correlation coefficient, pim. 
Thus, our distance metric D(ul ,v2)  for N-dimensional 
vectors is given by the following equation: 

where qm is proportional to pim and inversely 

proportional to the variance of the dimension i, oi2. A 
second addition to the standard KNN algorithm is the use 
of a weighting on how much a vector can contribute to 
the imputation based on how close it is to the vector we 
are trying to impute. The weighting that we are using for 
this is (1/D(vl,v2))2. The main advantage to using this 
weighting is that it reduces the dependence on the 
selection of K by making very dissimilar vectors 
contribute much less to the imputation. 

3. Results 
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Evaluation Criteria 

In order to evaluate our results, we are using 
normalized mean absolute error. For the trials with 
multiple missing dimensions, we average this over all 
these missing dimensions. 

Average Performance of Techniques 

0.76 of 
Cumpansan 01 Dflerenl Implation 'MBThcds 

- K" 

o::l , , , , , , , 1 
0.d 

0 1 2 9 4 6 6 7 8  
NumbsrofMissing Dimensions 

Figure 1: Estimation error as a function of the number of 
missing dimensions; 

Figure 1 demonstrates how each of the imputation 
methods performs as we increase the number of missing 
dimensions. We see that the average normalized error 
using mean imputation is .75. On this data, PCA 
imputation does only marginally better than imputing 
mean values. KNN also consistently does slightly better 
than mean imputation, but the gain is still minimal. 
Rather than a mean normalized error of -75, the error is 
around .72. The most significant feature in this 
comparison of imputation methods is how the 
performance of all methods other than Weighted-K" is 
relatively constant over the number of imputed 
dimensions. The fact that the performance is less related 
to the number of missing dimensions indicates that these 
methods are not using the information contained in the 
present dimensions to impute the missing dimensions. 
This is the main motivation behind the weighting we have 
chosen for our algorithm. 

Differences between Imputed Dimensions 

Since we are exploiting correlations between different 
dimensions in our Weighted-KNN distance metric, we 

expect that we will achieve better performance on the 
dimensions that exhibit high correlations with each other. 
This difference will be more peaked in the case where we 
drop out one dimension at a time and see how we11 the 
algorithm can estimate the missing dimension from the 
remaining dimensions. For example, note in figure 2 that 
red blood cells (RBC), hemagIobin, and hematocrit 
(dimensions 6 , l l  ,and 12) jointly have high correlation 
coefficients (a11 above ,851. This contributes to the 
algorithm's ability to effectively estimate these values. 
Figure 3 details the one-dimensional performance across 
all dimensions. For RBC, hemoglobin, and hematocrit, 
we observe a relatively low mean normalized error of 
between .3 and .37. As a second example, Sodium and 
Chloride have a high correlation coefficient of around .7. 
The algorithm imputes these dimensions with a mean 
normalized error between .5 and .55. Therefore, as per 
our expectation, dimensions that have higher correlations 
are easier to impute, and the Weighted-KNN algorithm 
exploits this more so than alternate algorithms. 

Corrclatinn Matr ix  

Figure 2: Correlation coefficient matrix to illustrate 
degree of correlation between different dimensions. 

4. Discussion and conclusions 
The W - K "  algorithm was demonstrated to have 

superior results over severai established imputation 
techniques. Further research is possible for improving the 
W - K "  algorithm. One might be able to factor in 
therapeutic knowledge into a distance metric. For 
example, if a particular patient is receiving a potassium- 
wasting diuretic, the relationship between potassium and 
other lab values may differ in comparison to the overall 
patient population. Thus, a framework that factored such 
information into imputation decision rules may have 
improved performance over techniques that ignore such 
knowledge. 
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Also, one may model the temporal information Address for correspondence 
between lab values from the same patient to predict future 
lab values as well as missing values using the W - K "  
algorithm. As more clinical data in the MIMIC-I1 
database is readily available, such techniques will be 
possible to develop and evaluate. 
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