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Abstract Sigma-Pi (�-�) neural networks (SPNNs) are known to provide more powerful
mapping capability than traditional feed-forward neural networks. A unified convergence
analysis for the batch gradient algorithm for SPNN learning is presented, covering three
classes of SPNNs: �-�-�, �-�-� and �-�-�-�. The monotonicity of the error function
in the iteration is also guaranteed.
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Abbreviation:

SPNN Sigma-Pi neural network

1 Introduction

SPNNs may be configured into feed-forward neural networks that consist of Sigma-Pi (�-�)
units (cf. [1]). These networks are known to provide inherently more powerful mapping capa-
bility than traditional feed-forward networks with multiple layers of summation nodes in all
the non-input layers [2,3]. The gradient algorithm is possibly the most popular optimization
algorithm to train feed-forward neural networks [4,5]. Its convergence has been studied in
e.g. [6–9] for traditional feed-forward neural networks. In this paper, we prove the conver-
gence for the gradient learning methods for Sigma-Pi-Sigma neural networks. The proof is
presented in a unified manner such that it also applies to other two classes of SPNNs, namely,
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Fig. 1 A fully connected Sigma-Pi unit

Sigma-Sigma-Pi and Sigma-Pi-Sigma-Pi neural networks. It even applies to Sigma-Sigma
neural networks, that is the ordinary feed-forward neural networks with a hidden layer.

The organization of the rest of this paper is as follows. Section 2 introduces the Sigma-
Pi units, discusses the equivalence of the three classes of Sigma-Pi neural networks, and
describes the working and learning procedures of �-�-� neural networks. The main con-
vergence results are presented in Sect. 3. Section 4 is an appendix, in which details of the
proofs are provided.

2 Sigma-Pi Neural Networks

2.1 Sigma-Pi Units

A Sigma-Pi unit consists of an output layer with only one summation node, an input layer and
a hidden layer of product nodes. The function of the product layer is to implement a polyno-
mial expansion for the components of the input vector ξ = (ξ1, ξ2, . . . , ξN )

T . To do this, each
product node is connected with certain nodes (say {1, 2}, {1, 3}, or {1, 2, 4}) of the input layer
and corresponds to a particular monomial (say, correspondingly, ξ1ξ2, ξ1ξ3 or ξ1ξ2ξ4). The N
input nodes and the product nodes can be fully connected as shown in Fig. 1 with N = 3, with
the number of the product nodes being C0

N + C1
N + C2

N +· · ·+ C N
N = 2N and the number of

the weights between the input and product layers being cN = C1
N ∗1+C2

N ∗2+· · ·+C N
N ∗ N .

The N input nodes and the product nodes are sparsely connected if the number of the product
nodes is less than 2N and/or the number of the weights between the input and product layers
is less that cN . These monomials, i.e. the outputs of the product nodes, are used to form a
weighted linear combination such as w1ξ1ξ2 + w2ξ1ξ3 + w3ξ1ξ2ξ4 + · · · , by the operation
of the summation layer.

Definition 1 Denote by NP and NI the numbers of nodes in the product and the input lay-
ers, respectively. Define �i (1 ≤ i ≤ NP ) as the set of the indexes of all the input nodes
connected with the i-th product node, and Vj (1 ≤ j ≤ NI ) the set of the indexes of all the
product nodes connected with the j-th input node.

For example, in Fig. 1, the 1st product node, corresponding to the bias w1, does not con-
nect with any input node, so �1 = ∅. And we have �3 = {2}, �6 = {2, 3}, �8 = {1, 2, 3},
V1 = {2, 5, 7, 8}, etc. We also note that �i ⊆ {1, 2, . . . , NI } and Vj ⊆ {1, 2, . . . , NP }.
Different definitions of {�i } and {Vj } result in different structures of a Sigma-Pi unit. For
an arbitrary set A, let ϕ(A) be the number of the elements in A. Then, we have
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NP∑

i=1

ϕ(�i ) =
NI∑

j=1

ϕ(Vj ), (1)

which will be used later in our proof.
We mention that arbitrary Boolean functions can be realized by a single fully connected

Sigma-Pi unit, showing the great inherent power of Sigma-Pi units [2].

2.2 Equivalence of Sigma-Pi Neural Networks

Sigma-Pi unit can be used as a building block to construct many kinds of SPNNs: �-�,
�-�-�, �-�-� and �-�-�-� (cf. [1], [10], [11] and [12], respectively.), etc., where �
and � stand for a summation layer and a product layer, respectively. The Sigma-Pi unit
shown in Fig. 1 is actually a special �-� network with a single output node. The structure
of �-�-� is shown in Fig. 2a.

Figure 2b shows a �-�-�-� structure, where the weights between the input layer and
�1 and between�1 and�2 are fixed to 1. The output of�1, which is also the input to�1, is
determined solely by the input vector. Thus, we can ignore the original input layer and take
�1 as the input layer. In this sense, �-�-�-� is equivalent to �-�-� as far as the learning
procedure and the convergence analysis are concerned.

In a �-�-�-�, if �2 contains the same number of nodes as �1, and the value of each
node of �2 copies the value of the corresponding node of �1 (i.e. the connection between
�2 and �1 is a one-to-one connection), then such a �-�-�-� becomes a �-�-�. Hence,
�-�-� shown in Fig. 2c is a special case of �-�-�-�.

To sum up, in this paper, we shall concentrate our attention to�-�-�, and the convergence
results are also valid for �-�-�-� and �-�-�. The key point here is that our convergence
analysis allows any kind of connection (cf. �i and Vj for a Sigma-Pi Unit) between �-�.

Note that the output of� in a�-�-�, which is also the input to�1, is determined solely
by the input layer since the weights between � and the input layer are fixed. Thus, one
can even show that a �-� (cf. Fig. 2d), which is actually the ordinary feed-forward neural
networks with a hidden layer, is equivalent to �-�-� as far as the learning procedure and
the convergence analysis are concerned.

2.3 �-�-� Neural Networks

Let us describe the working procedure of a �-�-� (cf. Fig. 2a). M , N and Q stand for
the numbers of the nodes of the input layer, the �1 layer and the � layer respectively. We
denote the weight vector connecting � and �2 by w0 = (w0,1, . . . , w0,Q)

T ∈ R
Q , and the

weight matrix connecting the input layer and �1 by W̃ = (w1, . . . , wN )
T ∈ R

N×M , where
wn = (wn1, . . . , wnM )

T (1 ≤ n ≤ N ) is the weight vector connecting the input layer and
the n-th node of �1. Set W = (wT

0 , w
T
1 , . . . , w

T
N ) ∈ R

Q+N M . The weights connecting �
and �1 are fixed to 1.

Assume that g : R → R is a given sigmoid activation function which squashes the outputs
of the summation nodes. For any z = (z1, . . . , zN )

T ∈ R
N , we define

G(z) = (g(z1), g(z2), . . . , g(zN ))
T . (2)

Let ξ ∈ R
M be an input vector. Then the output vector ζ of �1 is computed by

ζ = G(W̃ξ) = (g(w1 · ξ), g(w2 · ξ), . . . , g(wN · ξ))T . (3)
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Fig. 2 Four classes of network structures

Denote the output vector of � by τ = (τ1, . . . , τQ)
T . The component τq (1 ≤ q ≤ Q) is a

partial product of the components of the vector ζ . As before, we denote by�q (1 ≤ q ≤ Q)
the index set composed of the indexes of vector ζ ’s components connected with τq . Then,
the output τq is computed by

τq =
∏

λ∈�q

ζλ, 1 ≤ q ≤ Q. (4)

The final output of the �-�-� network is

y = g(w0 · τ). (5)

2.4 Batch Gradient Learning Algorithm for �-�-�

Let the network be supplied with a given set of learning samples {ξ j , O j }J
j=1 ⊂ R

M × R.

Let y j ∈ R (1 ≤ j ≤ J ) be the output for each input ξ j ∈ R
M . The usual square error

function is as follows:

E(W ) = 1

2

J∑

j=1

(y j − O j )2 ≡
J∑

j=1

g j (w0 · τ j ), (6)
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where

g j (t) = 1

2

(
g(t)− O j

)2
, t ∈ R, 1 ≤ j ≤ J, (7)

τ j = (τ
j

1 , τ
j

2 , . . . , τ
j

Q)
T =

⎛

⎝
∏

λ∈�1

ζ
j
λ ,

∏

λ∈�2

ζ
j
λ , . . . ,

∏

λ∈�Q

ζ
j
λ

⎞

⎠
T

, (8)

ζ j = (ζ
j

1 , ζ
j

2 , . . . , ζ
j

N ) = G(W̃ ξ j )

=
(

g(w1 · ξ j ), g(w2 · ξ j ), . . . , g(wN · ξ j )
)T
. (9)

Then, the partial gradient of the error function E(W ) with respect to w0 is

Ew0(W ) =
J∑

j=1

g′
j (w0 · τ j )τ j . (10)

Moreover, for any 1 ≤ n ≤ N and 1 ≤ q ≤ Q,

dτq

dwn
=

⎛

⎝
∏

λ∈�q\{n}
ζλ

⎞

⎠ g′(wn · ξ)ξ, if n ∈ �q ; (11)

and if n /∈ �q , dτq
dwn

= 0.

Ewn (W ) =
J∑

j=1

g′
j (w0 · τ j )

⎛

⎝
Q∑

q=1

w0,q
dτ j

q

dwn

⎞

⎠ , 1 ≤ n ≤ N , (12)

where
dτ j

q
dwn

denotes the value of dτq
dwn

at ζλ = ζ
j
λ and ξ = ξ j in (11). According to (4), (11)

and (12), for any 1 ≤ n ≤ N , we have

Ewn (W ) =
J∑

j=1

g′
j (w0 · τ j )

⎛

⎝
∑

q∈Vn

w0,q

⎛

⎝
∏

λ∈�q\{n}
ζ

j
λ

⎞

⎠ g′(wn · ξ j )ξ j

⎞

⎠ , (13)

where Vn is the index set composed of the indexes of vector τ j ’s components connected
with ζn .

The purpose of the network learning is to find W ∗ such that

E
(
W ∗) = min E (W ) . (14)

A common simple method to solve this problem is the gradient algorithm. Starting from an
arbitrary initial values W 0, we proceed to refine the the weights after each cycle of learning
iteration. There are two ways of adapting the weights, updating the weights after presenta-
tion of each input vector or a batch of input vectors, referred to as online or batch versions,
respectively. This paper adheres to the batch version. So in the iteration process, we refine
the weights as follows:

W k+1 = W k +	W k , k = 0, 1, 2, . . . , (15)
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where 	W k = (	wk
0,	w

k
1, . . . , 	w

k
N ),

	wk
0 = −ηEw0(W ) = −η

J∑

j=1

g′
j (w

k
0 · τ j )τ j , k = 0, 1, 2, . . . , (16)

and, according to (13), for any 1 ≤ n ≤ N and k = 0, 1, 2, . . . ,

	wk
n = −ηEwn (W )

= −η
J∑

j=1

g′
j (w

k
0 · τ j )

⎛

⎝
∑

q∈Vn

wk
0,q

⎛

⎝
∏

λ∈�q\{n}
ζ

j
λ

⎞

⎠ g′(wk
n · ξ j )ξ j

⎞

⎠ . (17)

η > 0 here stands for the learning rate.

3 Main Results

A set of assumptions (A) are first specified:

(A1) |g(t)|, |g′(t)| and |g′′(t)| are uniformly bounded for any t ∈ R;
(A2) ‖wk

0‖∞
k=0 are uniformly bounded;

(A3) The learning rate η is small enough such that (47) below is valid;
(A4) There exists a bounded set D such that {W k}∞k=0 ⊂ D, and the set D0 = {W ∈ D :

EW (W ) = 0} contains finite points.

If Assumptions (A1)–(A2) are valid, we can find a constant C > 0 such that

max
t∈R,k∈N

{
‖wk

0‖, |g(t)|, |g′(t)|, |g′′(t)|
}

≤ C. (18)

In the sequel, we will use C for a generic positive constant, which may be different in different
places.

Now we are in a position to present the main theorems.

Theorem 1 Let the error function E(W ) be defined in (6), and the sequence {W k} be gen-
erated by the �-�-� neural network (15)–(17) with W 0 being an arbitrary initial guess. If
Assumptions (A1)–(A3) are valid, then we have
(i) E(W k+1) ≤ E(W k), k = 0, 1, 2, . . .;
(i i) limk→∞

∥∥Ewn (W
k)

∥∥ = 0, 0 ≤ n ≤ N ;
Furthermore, if Assumption (A4) also holds, there exists a point W ∗ ∈ D0 such that
(i i i) limk→∞ W k = W ∗.

Theorem 2 The same conclusions as in Theorem 1 are valid for �-�-�-�, �-�-� and
�-� neural networks.

4 Appendix

In this appendix, we first present two lemmas, then we use them to prove the main theorems.

Lemma 1 Suppose that f : RQ −→ R is continuous and differentiable on a compact set
D̃ ⊂ RQ, and that � = {z ∈ D̃|∇ f (z) = 0} has only finite number of points. If a sequence
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{zk}∞k=1 ⊂ D̃ satisfies

lim
k→∞ ‖zk+1 − zk‖ = 0, lim

k→∞ ‖∇ f (zk)‖ = 0,

then there exists a point z∗ ∈ � such that limk→∞ zk = z∗.

Proof This result is almost the same as Theorem 14.1.5 in [13] (cf. [14]), and the detail of
the proof is omitted. �

For any k = 0, 1, 2, . . . , 1 ≤ j ≤ J and 1 ≤ n ≤ N , we define the following notations.

τ k, j = τ(W̃ kξ j ), ψk, j = τ k+1, j − τ k, j , φ
k, j
0 = wk

0 · τ k, j , φ
k, j
n = wk

n · ξ j . (19)

Lemma 2 Suppose Assumptions (A1)–(A2) hold, then we have

|g′
j (t)| ≤ C, |g′′

j (t)| ≤ C, t ∈ R; (20)

‖ψk, j‖2 ≤ C
N∑

n=1

‖	wk
n‖2, 1 ≤ j ≤ J, k = 0, 1, 2 . . . ; (21)

J∑

j=1

g′
j (φ

k, j
0 )(wk

0 · ψk, j ) ≤ −
N∑

n=1

η‖Ewn (W
k)‖2 + Cη2

N∑

n=1

‖Ewn (W
k)‖2; (22)

J∑

j=1

g′
j (φ

k, j
0 )(τ k, j ·	wk

0) = −η‖Ew0(W
k)‖2; (23)

J∑

j=1

g′
j (φ

k, j
0 )(	wk

0 · ψk, j ) ≤ Cη2
N∑

n=0

‖Ewn (W
k)‖2; (24)

1

2

J∑

j=1

g′′
j (sk, j )(φ

k+1, j
0 − φ

k, j
0 )2 ≤ Cη2

N∑

n=0

‖Ewn (W
k)‖2. (25)

where C is independent of k, and sk, j ∈ R lies on the segment between φk, j
0 and φk+1, j

0 .

Proof By (7),

g′
j (t) = g′(t)(g(t)− O j ),

g′′
j (t) = g′′(t)(g(t)− O j )+ (g′(t))2, 1 ≤ j ≤ J, t ∈ R.

Then, (20) follows directly from Assumption (A1).
In order to prove (21), we need the following identity, which can be shown by an induction

argument.

N∏

n=1

an −
N∏

n=1

bn =
N∑

n=1

(
n−1∏

s=1

as

) (
N∏

t=n+1

bt

)
(an − bn), (26)
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where we have made the convention that
∏0

s=1 as ≡ 1 and
∏N

t=N+1 bt ≡ 1. By (19), (8), (9)
and (26), we have for any 1 ≤ q ≤ Q that

ψ
k, j
q = τ

k+1, j
q − τ

k, j
q =

∏

n∈�q

g(φk+1, j
n )−

∏

n∈�q

g(φk, j
n )

=
∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t )

⎞

⎠
(

g(φk+1, j
n )− g(φk, j

n )
)
, (27)

where �′
q,n = {r |r < n, r ∈ �q} and �′′

q,n = {r |r > n, r ∈ �q}. Here we have made the
convention that

∏

s∈�′
q,n

g(φk, j
s ) ≡ 1;

∏

t∈�′′
q,n

g(φk+1, j
t ) ≡ 1,

when �′
q,n = ∅ and �′′

q,n = ∅, respectively.
It follows from (27), Assumption (A1), the Mean Value Theorem and the Cauchy–Sch-

wartz Inequality that for any 1 ≤ j ≤ J and k = 0, 1, 2, . . . ,

∥∥∥ψk, j
∥∥∥

2 ≤ C

∥∥∥∥∥∥∥

⎛

⎝
∑

n∈�1

∣∣∣g(φk+1, j
n )− g(φk, j

n )

∣∣∣ , . . . ,
∑

n∈�Q

∣∣∣g(φk+1, j
n )− g(φk, j

n )

∣∣∣

⎞

⎠
T
∥∥∥∥∥∥∥

2

= C

∥∥∥∥∥∥∥

⎛

⎝
∑

n∈�1

∣∣∣g′(tk, j,n)(	w
k
n · ξ j )

∣∣∣ , . . . ,
∑

n∈�Q

∣∣∣g′(tk, j,n)(	w
k
n · ξ j )

∣∣∣

⎞

⎠
T
∥∥∥∥∥∥∥

2

= C
Q∑

q=1

⎛

⎝
∑

n∈�q

∣∣∣g′(tk, j,n)(	w
k
n · ξ j )

∣∣∣

⎞

⎠
2

≤ C
N∑

n=1

‖	wk
n‖2, (28)

where tk, j,n is on the segment between φk+1, j
n and φk, j

n . This proves (21).
Next, we prove (22). Using the Taylor expansion and (19), we have

g(φk+1, j
n )− g(φk, j

n ) = g′(φk, j
n )(	wk

n · ξ j )+ 1

2
g′′(t̃k, j,n)(	w

k
n · ξ j )2, (29)

where t̃k, j,n is on the segment between φk+1, j
n and φk, j

n . According to (27), we have

wk
0 · ψk, j =

Q∑

q=1

wk
0,q

∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t )

⎞

⎠
(

g(φk+1, j
n )− g(φk, j

n )
)
.

(30)

The combination of (29) and (30) leads to

J∑

j=1

g′
j (φ

k, j
0 )(wk

0 · ψk, j ) = δ1 + δ2, (31)
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where

δ1 =
J∑

j=1

g′
j (φ

k, j
0 )

Q∑

q=1

wk
0,q

∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t )

⎞

⎠

× g′(φk, j
n )(ξ j ·	wk

n), (32)

δ2 = 1

2

J∑

j=1

g′
j (φ

k, j
0 )

Q∑

q=1

wk
0,q

∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t )

⎞

⎠

× g′′(t̃k, j,n)(ξ
j ·	wk

n)
2, (33)

and�′
q,n = {r |r < n, r ∈ �q},�′′

q,n = {r |r > n, r ∈ �q}. For any 1 ≤ q ≤ Q and n ∈ �q ,
we define

π1(q, n) =
⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t )

⎞

⎠ g′(φk, j
n )(ξ j ·	wk

n), (34)

π2(q, n) =
⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk, j
t )

⎞

⎠ g′(φk, j
n )(ξ j ·	wk

n)

=
⎛

⎝
∏

λ∈�q\{n}
ζ

j
λ

⎞

⎠ g′(wk
n · ξ j )(ξ j ·	wk

n). (35)

Let us re-write (32) as

δ1 =
J∑

j=1

g′
j (φ

k, j
0 )

Q∑

q=1

wk
0,q

∑

n∈�q

(π2(q, n)+ (π1(q, n)− π2(q, n))) . (36)

According to (1), (13) and (17), we can get

J∑

j=1

g′
j (φ

k, j
0 )

Q∑

q=1

wk
0,q

∑

n∈�q

π2(q, n)

=
J∑

j=1

g′
j (φ

k, j
0 )

N∑

n=1

⎛

⎝
∑

q∈Vn

wk
0,qπ2(q, n)

⎞

⎠

=
N∑

n=1

Ewn (W
k) ·	wk

n = −η
N∑

n=1

‖Ewn (W
k)‖2. (37)
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Then using (26) and the Mean Value Theorem, we have
∏

t∈�′′
q,n

g(φk+1, j
t )−

∏

t∈�′′
q,n

g(φk, j
t )

=
∑

λ∈�′′
q,n

⎛

⎜⎝
∏

s∈ϒ ′
q,n,λ

g(φk, j
s )

⎞

⎟⎠

⎛

⎜⎝
∏

t∈ϒ ′′
q,n,λ

g(φk+1, j
t )

⎞

⎟⎠
(

g(φk+1, j
λ )− g(φk, j

λ )
)

=
∑

λ∈�′′
q,n

⎛

⎜⎝
∏

s∈ϒ ′
q,n,λ

g(φk, j
s )

⎞

⎟⎠

⎛

⎜⎝
∏

t∈ϒ ′′
q,n,λ

g(φk+1, j
t )

⎞

⎟⎠ g′(tk, j,λ)(ξ
j ·	wk

λ), (38)

where tk, j,λ is on the segment between φk+1, j
λ and φk, j

λ , ϒ ′
q,n,λ = {r |r < λ, r ∈ �′′

q,n}, and
ϒ ′′

q,n,λ = {r |r > λ, r ∈ �′′
q,n}. By (34), (35), (38) and (18), we have the following estimate:

|π2(q, n)− π1(q, n)|

=
∣∣∣∣∣∣

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s )

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t )−

∏

t∈�′′
q,n

g(φk, j
t )

⎞

⎠ g′(φk, j
n )(ξ j ·	wk

n)

∣∣∣∣∣∣

≤ C

⎛

⎝
∑

λ∈�′′
q,n

‖	wk
λ‖

⎞

⎠ ‖	wk
n‖, (39)

where 1 ≤ q ≤ Q and n ∈ �q . In terms of (1), (18), (20), (38) and (39), we have

J∑

j=1

g′
j (φ

k, j
0 )

Q∑

q=1

wk
0,q

∑

n∈�q

(π1(q, n)− π2(q, n))

=
J∑

j=1

g′
j (φ

k, j
0 )

N∑

n=1

∑

q∈Vn

wk
0,q (π1(q, n)− π2(q, n))

≤ C
N∑

n=1

∑

q∈Vn

⎛

⎝

⎛

⎝
∑

λ∈�′′
q,n

‖	wk
λ‖

⎞

⎠ ‖	wk
n‖

⎞

⎠

= C

(
N∑

n=1

‖	wk
n‖

) (
N∑

n=1

‖	wk
n‖

)
≤ C

N∑

n=1

‖	wk
n‖2. (40)

It follows from (36), (37) and (40) that

δ1 ≤ −η
N∑

n=1

‖Ewn (W
k)‖2 + Cη2

N∑

n=1

‖Ewn (W
k)‖2. (41)

Employing (33), (18) and (17), we obtain

δ2 ≤ C
N∑

n=1

‖	wn
k‖2 = Cη2

N∑

n=1

‖Ewn (W
k)‖2. (42)

Now, (22) results from (31), (41), and (42).
(23) is a direct consequence of (10) and (16).
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Using (18), (21), (16) and (17), we can show (24) as follows:

J∑

j=1

g′
j (φ

k, j
0 )(	wk

0 · ψk, j ) ≤ C
J∑

j=1

‖	wk
0‖‖ψk, j‖

≤ C
J∑

j=1

(‖	wk
0‖2 + ‖ψk, j‖2) ≤ Cη2

N∑

n=0

‖Ewn (W
k)‖2. (43)

Similarly, a combination of (18), (19), (21), (16) and (17) leads to

1

2

J∑

j=1

g′′
j (sk, j )(φ

k+1, j
0 − φ

k, j
0 )2 ≤ C

J∑

j=1

|φk+1, j
0 − φ

k, j
0 |2

= C
J∑

j=1

|(wk+1
0 − wk

0) · τ k+1, j + wk
0 · (τ k+1, j − τw, j )|2

≤ C
J∑

j=1

(
‖	wk

0‖ + ‖ψk, j‖
)2 ≤ Cη2

N∑

n=0

‖Ewn (W
k)‖2. (44)

This proves (25) and completes the proof. �

Now we are ready to prove the main theorems in terms of the above two lemmas.

Proof to Theorem 1 We firstly consider the proof to (i). Using the Taylor expansion, (19),
(23), (22) and (25), we have

E(W k+1)− E(W k) =
J∑

j=1

(
g j (φ

k+1, j
0 )− g j (φ

k, j
0 )

)

=
J∑

j=1

(
g′

j (φ
k, j
0 )(φ

k+1, j
0 − φ

k, j
0 )+ 1

2
g′′

j (sk, j )(φ
k+1, j
0 − φ

k, j
0 )2

)

=
J∑

j=1

g′
j (φ

k, j
0 )

(
τ k, j ·	wk

0 + wk
0 · ψk, j +	wk

0 · ψk, j
)

+1

2

J∑

j=1

g′′
j (sk, j )(φ

k+1, j
0 − φ

k, j
0 )2

≤ −η‖Ew0(W
k)‖2 − η

N∑

n=1

‖Ewn (W
k)‖2 + Cη2

N∑

n=0

‖Ewn (W
k)‖2

= −(η − Cη2)

N∑

n=0

‖Ewn (W
k)‖2, (45)

where sk, j ∈ R lies on the segment between φk, j
0 and φk+1, j

0 . Let β = η − Cη2, then

E(W k+1) ≤ E(W k)− β

N∑

n=0

∥∥Ewn (W
k)

∥∥2
. (46)
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We require the learning rate η to satisfy (C is the constant in (45))

0 < η <
1

C
. (47)

This together with (46) leads to

E(W k+1) ≤ E(W k), k = 0, 1, 2, . . .

Next, we prove (i i). By (46), we can get

E(W k+1) ≤ E(W k)− β

N∑

n=0

∥∥Ewn (W k)
∥∥2

≤ · · · ≤ E(w0, V 0)− β

k∑

t=0

(
N∑

n=0

∥∥Ewn (W
t )

∥∥2

)
.

Since E(W k+1) ≥ 0, we have

β

k∑

t=0

(
N∑

n=0

∥∥Ewn (W
t )

∥∥2

)
≤ E(W 0).

Letting k → ∞ results in

∞∑

t=0

(
N∑

n=0

∥∥Ewn (W
t )

∥∥2

)
≤ E(W 0) < ∞.

So

∞∑

k=0

∥∥Ewn (W
k)

∥∥2 ≤
∞∑

k=0

(
∥∥

N∑

n=0

∥∥Ewn (W
k)

∥∥2

)
< ∞.

This immediately gives

lim
k→∞

∥∥Ewn (W
k)

∥∥ = 0, 0 ≤ n ≤ N .

Finally, we prove (i i i). It follows from (16), (17) and (i i) of Theorem 1 that

lim
k→∞ ‖	wk

n‖ = 0, 0 ≤ n ≤ N . (48)

Note that the error function E(W ) defined in (6) is continuously differentiable. Using (48),
Assumptions (A3)–(A4) and Lemma 1, we immediately get the desired result. This completes
the proof. �

Proof to Theorem 2 Note that�-�-�-� is equivalent to�-�-� by taking�1 in�-�-�-�
as the input layer as explained in Subsect. 2.2. So Theorem 1 applies to�-�-�-�. Similarly,
Theorem 1 applies to �-�-� which is a special case of �-�-�-�, and in turn applies to
�-� which is a special case of �-�-�. This completes the proof. �
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