
Neural Process Lett (2007) 26:177–189
DOI 10.1007/s11063-007-9050-0

Convergence Analysis of Batch Gradient Algorithm
for Three Classes of Sigma-Pi Neural Networks

Chao Zhang · Wei Wu · Yan Xiong

Published online: 5 September 2007
© Springer Science+Business Media, LLC 2007

Abstract Sigma-Pi (�-�) neural networks (SPNNs) are known to provide more powerful
mapping capability than traditional feed-forward neural networks. A unified convergence
analysis for the batch gradient algorithm for SPNN learning is presented, covering three
classes of SPNNs: �-�-�, �-�-� and �-�-�-�. The monotonicity of the error function
in the iteration is also guaranteed.

Keywords Convergence · Sigma-Pi-Sigma neural networks · Sigma-Sigma-Pi neural
networks · Sigma-Pi-Sigma-Pi neural networks · Batch gradient algorithm · Monotonicity

Mathematics Subject Classification (2000) 92B20 · 68Q32 · 74P05

Abbreviation:

SPNN Sigma-Pi neural network

1 Introduction

SPNNs may be configured into feed-forward neural networks that consist of Sigma-Pi (�-�)
units (cf. [1]). These networks are known to provide inherently more powerful mapping capa-
bility than traditional feed-forward networks with multiple layers of summation nodes in all
the non-input layers [2,3]. The gradient algorithm is possibly the most popular optimization
algorithm to train feed-forward neural networks [4,5]. Its convergence has been studied in
e.g. [6–9] for traditional feed-forward neural networks. In this paper, we prove the conver-
gence for the gradient learning methods for Sigma-Pi-Sigma neural networks. The proof is
presented in a unified manner such that it also applies to other two classes of SPNNs, namely,

C. Zhang · W. Wu (B) · Y. Xiong
Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China
e-mail: wuweiw@dlut.edu.cn

123

178 C. Zhang et al.

Input layerξ1 ξ2 ξ3

∏ ∏ ∏ ∏ ∏ ∏ ∏ ∏
Product layer

∑
Summation layer

y

86754321

1 1

w1 w8

Fig. 1 A fully connected Sigma-Pi unit

Sigma-Sigma-Pi and Sigma-Pi-Sigma-Pi neural networks. It even applies to Sigma-Sigma
neural networks, that is the ordinary feed-forward neural networks with a hidden layer.

The organization of the rest of this paper is as follows. Section 2 introduces the Sigma-
Pi units, discusses the equivalence of the three classes of Sigma-Pi neural networks, and
describes the working and learning procedures of �-�-� neural networks. The main con-
vergence results are presented in Sect. 3. Section 4 is an appendix, in which details of the
proofs are provided.

2 Sigma-Pi Neural Networks

2.1 Sigma-Pi Units

A Sigma-Pi unit consists of an output layer with only one summation node, an input layer and
a hidden layer of product nodes. The function of the product layer is to implement a polyno-
mial expansion for the components of the input vector ξ = (ξ1, ξ2, . . . , ξN)

T . To do this, each
product node is connected with certain nodes (say {1, 2}, {1, 3}, or {1, 2, 4}) of the input layer
and corresponds to a particular monomial (say, correspondingly, ξ1ξ2, ξ1ξ3 or ξ1ξ2ξ4). The N
input nodes and the product nodes can be fully connected as shown in Fig. 1 with N = 3, with
the number of the product nodes being C0

N + C1
N + C2

N +· · ·+ C N
N = 2N and the number of

the weights between the input and product layers being cN = C1
N ∗1+C2

N ∗2+· · ·+C N
N ∗ N .

The N input nodes and the product nodes are sparsely connected if the number of the product
nodes is less than 2N and/or the number of the weights between the input and product layers
is less that cN . These monomials, i.e. the outputs of the product nodes, are used to form a
weighted linear combination such as w1ξ1ξ2 + w2ξ1ξ3 + w3ξ1ξ2ξ4 + · · · , by the operation
of the summation layer.

Definition 1 Denote by NP and NI the numbers of nodes in the product and the input lay-
ers, respectively. Define �i (1 ≤ i ≤ NP) as the set of the indexes of all the input nodes
connected with the i-th product node, and Vj (1 ≤ j ≤ NI) the set of the indexes of all the
product nodes connected with the j-th input node.

For example, in Fig. 1, the 1st product node, corresponding to the bias w1, does not con-
nect with any input node, so �1 = ∅. And we have �3 = {2}, �6 = {2, 3}, �8 = {1, 2, 3},
V1 = {2, 5, 7, 8}, etc. We also note that �i ⊆ {1, 2, . . . , NI } and Vj ⊆ {1, 2, . . . , NP }.
Different definitions of {�i } and {Vj } result in different structures of a Sigma-Pi unit. For
an arbitrary set A, let ϕ(A) be the number of the elements in A. Then, we have

123

Convergence Analysis of Batch Gradient Algorithm 179

NP∑

i=1

ϕ(�i) =
NI∑

j=1

ϕ(Vj), (1)

which will be used later in our proof.
We mention that arbitrary Boolean functions can be realized by a single fully connected

Sigma-Pi unit, showing the great inherent power of Sigma-Pi units [2].

2.2 Equivalence of Sigma-Pi Neural Networks

Sigma-Pi unit can be used as a building block to construct many kinds of SPNNs: �-�,
�-�-�, �-�-� and �-�-�-� (cf. [1], [10], [11] and [12], respectively.), etc., where �
and � stand for a summation layer and a product layer, respectively. The Sigma-Pi unit
shown in Fig. 1 is actually a special �-� network with a single output node. The structure
of �-�-� is shown in Fig. 2a.

Figure 2b shows a �-�-�-� structure, where the weights between the input layer and
�1 and between�1 and�2 are fixed to 1. The output of�1, which is also the input to�1, is
determined solely by the input vector. Thus, we can ignore the original input layer and take
�1 as the input layer. In this sense, �-�-�-� is equivalent to �-�-� as far as the learning
procedure and the convergence analysis are concerned.

In a �-�-�-�, if �2 contains the same number of nodes as �1, and the value of each
node of �2 copies the value of the corresponding node of �1 (i.e. the connection between
�2 and �1 is a one-to-one connection), then such a �-�-�-� becomes a �-�-�. Hence,
�-�-� shown in Fig. 2c is a special case of �-�-�-�.

To sum up, in this paper, we shall concentrate our attention to�-�-�, and the convergence
results are also valid for �-�-�-� and �-�-�. The key point here is that our convergence
analysis allows any kind of connection (cf. �i and Vj for a Sigma-Pi Unit) between �-�.

Note that the output of� in a�-�-�, which is also the input to�1, is determined solely
by the input layer since the weights between � and the input layer are fixed. Thus, one
can even show that a �-� (cf. Fig. 2d), which is actually the ordinary feed-forward neural
networks with a hidden layer, is equivalent to �-�-� as far as the learning procedure and
the convergence analysis are concerned.

2.3 �-�-� Neural Networks

Let us describe the working procedure of a �-�-� (cf. Fig. 2a). M , N and Q stand for
the numbers of the nodes of the input layer, the �1 layer and the � layer respectively. We
denote the weight vector connecting � and �2 by w0 = (w0,1, . . . , w0,Q)

T ∈ R
Q , and the

weight matrix connecting the input layer and �1 by W̃ = (w1, . . . , wN)
T ∈ R

N×M , where
wn = (wn1, . . . , wnM)

T (1 ≤ n ≤ N) is the weight vector connecting the input layer and
the n-th node of �1. Set W = (wT

0 , w
T
1 , . . . , w

T
N) ∈ R

Q+N M . The weights connecting �
and �1 are fixed to 1.

Assume that g : R → R is a given sigmoid activation function which squashes the outputs
of the summation nodes. For any z = (z1, . . . , zN)

T ∈ R
N , we define

G(z) = (g(z1), g(z2), . . . , g(zN))
T . (2)

Let ξ ∈ R
M be an input vector. Then the output vector ζ of �1 is computed by

ζ = G(W̃ξ) = (g(w1 · ξ), g(w2 · ξ), . . . , g(wN · ξ))T . (3)

123

180 C. Zhang et al.

ξ1 ξ2 ξM ξ ∈ R
MInput

∑ ∑
ζ ∈ R

N
∑

1

1
∏ ∏ ∏

τ ∈ R
Q

∏

∑∑
2

y

w1,1 w2,M

w0 ,1

1 1

w0,2 w0 3 w0,4

ξ1 ξ2 Input

1
∏ ∏

1

∑ ∑ ∑
1

1
∏ ∏ ∏ ∏

∏ ∏

2

∑
2

y

w1,1 w2,M

1 1

1 1

w0,1 w0,2 w0,3 w0,4

Σ-Π-Σ structure (N = 2, Q =4) Σ-Π-Σ-Π structure

ξ1 ξ2Input

1 1

1
∏ ∏ ∏∏

∑ ∑ ∑∑
1

w1,1 wN,M

w0,1 w0,2 w0↪N

∑∑
2

y

ξ1 ξ2 ξM Input

w1,1 wN,M

∑ ∑ ∑ ∑ ∑
1

w0,1 w0,2 w0,N −1 w0,N

∑
2

y

Σ-Σ-Π structure (M =4) Σ-Σ structure

∑

∑

a b

dc

,

Fig. 2 Four classes of network structures

Denote the output vector of � by τ = (τ1, . . . , τQ)
T . The component τq (1 ≤ q ≤ Q) is a

partial product of the components of the vector ζ . As before, we denote by�q (1 ≤ q ≤ Q)
the index set composed of the indexes of vector ζ ’s components connected with τq . Then,
the output τq is computed by

τq =
∏

λ∈�q

ζλ, 1 ≤ q ≤ Q. (4)

The final output of the �-�-� network is

y = g(w0 · τ). (5)

2.4 Batch Gradient Learning Algorithm for �-�-�

Let the network be supplied with a given set of learning samples {ξ j , O j }J
j=1 ⊂ R

M × R.

Let y j ∈ R (1 ≤ j ≤ J) be the output for each input ξ j ∈ R
M . The usual square error

function is as follows:

E(W) = 1

2

J∑

j=1

(y j − O j)2 ≡
J∑

j=1

g j (w0 · τ j), (6)

123

Convergence Analysis of Batch Gradient Algorithm 181

where

g j (t) = 1

2

(
g(t)− O j

)2
, t ∈ R, 1 ≤ j ≤ J, (7)

τ j = (τ
j

1 , τ
j

2 , . . . , τ
j

Q)
T =

⎛

⎝
∏

λ∈�1

ζ
j
λ ,

∏

λ∈�2

ζ
j
λ , . . . ,

∏

λ∈�Q

ζ
j
λ

⎞

⎠
T

, (8)

ζ j = (ζ
j

1 , ζ
j

2 , . . . , ζ
j

N) = G(W̃ ξ j)

=
(

g(w1 · ξ j), g(w2 · ξ j), . . . , g(wN · ξ j)
)T
. (9)

Then, the partial gradient of the error function E(W) with respect to w0 is

Ew0(W) =
J∑

j=1

g′
j (w0 · τ j)τ j . (10)

Moreover, for any 1 ≤ n ≤ N and 1 ≤ q ≤ Q,

dτq

dwn
=

⎛

⎝
∏

λ∈�q\{n}
ζλ

⎞

⎠ g′(wn · ξ)ξ, if n ∈ �q ; (11)

and if n /∈ �q , dτq
dwn

= 0.

Ewn (W) =
J∑

j=1

g′
j (w0 · τ j)

⎛

⎝
Q∑

q=1

w0,q
dτ j

q

dwn

⎞

⎠ , 1 ≤ n ≤ N , (12)

where
dτ j

q
dwn

denotes the value of dτq
dwn

at ζλ = ζ
j
λ and ξ = ξ j in (11). According to (4), (11)

and (12), for any 1 ≤ n ≤ N , we have

Ewn (W) =
J∑

j=1

g′
j (w0 · τ j)

⎛

⎝
∑

q∈Vn

w0,q

⎛

⎝
∏

λ∈�q\{n}
ζ

j
λ

⎞

⎠ g′(wn · ξ j)ξ j

⎞

⎠ , (13)

where Vn is the index set composed of the indexes of vector τ j ’s components connected
with ζn .

The purpose of the network learning is to find W ∗ such that

E
(
W ∗) = min E (W) . (14)

A common simple method to solve this problem is the gradient algorithm. Starting from an
arbitrary initial values W 0, we proceed to refine the the weights after each cycle of learning
iteration. There are two ways of adapting the weights, updating the weights after presenta-
tion of each input vector or a batch of input vectors, referred to as online or batch versions,
respectively. This paper adheres to the batch version. So in the iteration process, we refine
the weights as follows:

W k+1 = W k +	W k , k = 0, 1, 2, . . . , (15)

123

182 C. Zhang et al.

where 	W k = (wk
0,	w

k
1, . . . , 	w

k
N),

	wk
0 = −ηEw0(W) = −η

J∑

j=1

g′
j (w

k
0 · τ j)τ j , k = 0, 1, 2, . . . , (16)

and, according to (13), for any 1 ≤ n ≤ N and k = 0, 1, 2, . . . ,

	wk
n = −ηEwn (W)

= −η
J∑

j=1

g′
j (w

k
0 · τ j)

⎛

⎝
∑

q∈Vn

wk
0,q

⎛

⎝
∏

λ∈�q\{n}
ζ

j
λ

⎞

⎠ g′(wk
n · ξ j)ξ j

⎞

⎠ . (17)

η > 0 here stands for the learning rate.

3 Main Results

A set of assumptions (A) are first specified:

(A1) |g(t)|, |g′(t)| and |g′′(t)| are uniformly bounded for any t ∈ R;
(A2) ‖wk

0‖∞
k=0 are uniformly bounded;

(A3) The learning rate η is small enough such that (47) below is valid;
(A4) There exists a bounded set D such that {W k}∞k=0 ⊂ D, and the set D0 = {W ∈ D :

EW (W) = 0} contains finite points.

If Assumptions (A1)–(A2) are valid, we can find a constant C > 0 such that

max
t∈R,k∈N

{
‖wk

0‖, |g(t)|, |g′(t)|, |g′′(t)|
}

≤ C. (18)

In the sequel, we will use C for a generic positive constant, which may be different in different
places.

Now we are in a position to present the main theorems.

Theorem 1 Let the error function E(W) be defined in (6), and the sequence {W k} be gen-
erated by the �-�-� neural network (15)–(17) with W 0 being an arbitrary initial guess. If
Assumptions (A1)–(A3) are valid, then we have
(i) E(W k+1) ≤ E(W k), k = 0, 1, 2, . . .;
(i i) limk→∞

∥∥Ewn (W
k)

∥∥ = 0, 0 ≤ n ≤ N ;
Furthermore, if Assumption (A4) also holds, there exists a point W ∗ ∈ D0 such that
(i i i) limk→∞ W k = W ∗.

Theorem 2 The same conclusions as in Theorem 1 are valid for �-�-�-�, �-�-� and
�-� neural networks.

4 Appendix

In this appendix, we first present two lemmas, then we use them to prove the main theorems.

Lemma 1 Suppose that f : RQ −→ R is continuous and differentiable on a compact set
D̃ ⊂ RQ, and that � = {z ∈ D̃|∇ f (z) = 0} has only finite number of points. If a sequence

123

Convergence Analysis of Batch Gradient Algorithm 183

{zk}∞k=1 ⊂ D̃ satisfies

lim
k→∞ ‖zk+1 − zk‖ = 0, lim

k→∞ ‖∇ f (zk)‖ = 0,

then there exists a point z∗ ∈ � such that limk→∞ zk = z∗.

Proof This result is almost the same as Theorem 14.1.5 in [13] (cf. [14]), and the detail of
the proof is omitted. �

For any k = 0, 1, 2, . . . , 1 ≤ j ≤ J and 1 ≤ n ≤ N , we define the following notations.

τ k, j = τ(W̃ kξ j), ψk, j = τ k+1, j − τ k, j , φ
k, j
0 = wk

0 · τ k, j , φ
k, j
n = wk

n · ξ j . (19)

Lemma 2 Suppose Assumptions (A1)–(A2) hold, then we have

|g′
j (t)| ≤ C, |g′′

j (t)| ≤ C, t ∈ R; (20)

‖ψk, j‖2 ≤ C
N∑

n=1

‖	wk
n‖2, 1 ≤ j ≤ J, k = 0, 1, 2 . . . ; (21)

J∑

j=1

g′
j (φ

k, j
0)(wk

0 · ψk, j) ≤ −
N∑

n=1

η‖Ewn (W
k)‖2 + Cη2

N∑

n=1

‖Ewn (W
k)‖2; (22)

J∑

j=1

g′
j (φ

k, j
0)(τ k, j ·	wk

0) = −η‖Ew0(W
k)‖2; (23)

J∑

j=1

g′
j (φ

k, j
0)(wk

0 · ψk, j) ≤ Cη2
N∑

n=0

‖Ewn (W
k)‖2; (24)

1

2

J∑

j=1

g′′
j (sk, j)(φ

k+1, j
0 − φ

k, j
0)2 ≤ Cη2

N∑

n=0

‖Ewn (W
k)‖2. (25)

where C is independent of k, and sk, j ∈ R lies on the segment between φk, j
0 and φk+1, j

0 .

Proof By (7),

g′
j (t) = g′(t)(g(t)− O j),

g′′
j (t) = g′′(t)(g(t)− O j)+ (g′(t))2, 1 ≤ j ≤ J, t ∈ R.

Then, (20) follows directly from Assumption (A1).
In order to prove (21), we need the following identity, which can be shown by an induction

argument.

N∏

n=1

an −
N∏

n=1

bn =
N∑

n=1

(
n−1∏

s=1

as

) (
N∏

t=n+1

bt

)
(an − bn), (26)

123

184 C. Zhang et al.

where we have made the convention that
∏0

s=1 as ≡ 1 and
∏N

t=N+1 bt ≡ 1. By (19), (8), (9)
and (26), we have for any 1 ≤ q ≤ Q that

ψ
k, j
q = τ

k+1, j
q − τ

k, j
q =

∏

n∈�q

g(φk+1, j
n)−

∏

n∈�q

g(φk, j
n)

=
∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t)

⎞

⎠
(

g(φk+1, j
n)− g(φk, j

n)
)
, (27)

where �′
q,n = {r |r < n, r ∈ �q} and �′′

q,n = {r |r > n, r ∈ �q}. Here we have made the
convention that

∏

s∈�′
q,n

g(φk, j
s) ≡ 1;

∏

t∈�′′
q,n

g(φk+1, j
t) ≡ 1,

when �′
q,n = ∅ and �′′

q,n = ∅, respectively.
It follows from (27), Assumption (A1), the Mean Value Theorem and the Cauchy–Sch-

wartz Inequality that for any 1 ≤ j ≤ J and k = 0, 1, 2, . . . ,

∥∥∥ψk, j
∥∥∥

2 ≤ C

∥∥∥∥∥∥∥

⎛

⎝
∑

n∈�1

∣∣∣g(φk+1, j
n)− g(φk, j

n)

∣∣∣ , . . . ,
∑

n∈�Q

∣∣∣g(φk+1, j
n)− g(φk, j

n)

∣∣∣

⎞

⎠
T
∥∥∥∥∥∥∥

2

= C

∥∥∥∥∥∥∥

⎛

⎝
∑

n∈�1

∣∣∣g′(tk, j,n)(w
k
n · ξ j)

∣∣∣ , . . . ,
∑

n∈�Q

∣∣∣g′(tk, j,n)(w
k
n · ξ j)

∣∣∣

⎞

⎠
T
∥∥∥∥∥∥∥

2

= C
Q∑

q=1

⎛

⎝
∑

n∈�q

∣∣∣g′(tk, j,n)(w
k
n · ξ j)

∣∣∣

⎞

⎠
2

≤ C
N∑

n=1

‖	wk
n‖2, (28)

where tk, j,n is on the segment between φk+1, j
n and φk, j

n . This proves (21).
Next, we prove (22). Using the Taylor expansion and (19), we have

g(φk+1, j
n)− g(φk, j

n) = g′(φk, j
n)(wk

n · ξ j)+ 1

2
g′′(t̃k, j,n)(w

k
n · ξ j)2, (29)

where t̃k, j,n is on the segment between φk+1, j
n and φk, j

n . According to (27), we have

wk
0 · ψk, j =

Q∑

q=1

wk
0,q

∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t)

⎞

⎠
(

g(φk+1, j
n)− g(φk, j

n)
)
.

(30)

The combination of (29) and (30) leads to

J∑

j=1

g′
j (φ

k, j
0)(wk

0 · ψk, j) = δ1 + δ2, (31)

123

Convergence Analysis of Batch Gradient Algorithm 185

where

δ1 =
J∑

j=1

g′
j (φ

k, j
0)

Q∑

q=1

wk
0,q

∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t)

⎞

⎠

× g′(φk, j
n)(ξ j ·	wk

n), (32)

δ2 = 1

2

J∑

j=1

g′
j (φ

k, j
0)

Q∑

q=1

wk
0,q

∑

n∈�q

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t)

⎞

⎠

× g′′(t̃k, j,n)(ξ
j ·	wk

n)
2, (33)

and�′
q,n = {r |r < n, r ∈ �q},�′′

q,n = {r |r > n, r ∈ �q}. For any 1 ≤ q ≤ Q and n ∈ �q ,
we define

π1(q, n) =
⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t)

⎞

⎠ g′(φk, j
n)(ξ j ·	wk

n), (34)

π2(q, n) =
⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk, j
t)

⎞

⎠ g′(φk, j
n)(ξ j ·	wk

n)

=
⎛

⎝
∏

λ∈�q\{n}
ζ

j
λ

⎞

⎠ g′(wk
n · ξ j)(ξ j ·	wk

n). (35)

Let us re-write (32) as

δ1 =
J∑

j=1

g′
j (φ

k, j
0)

Q∑

q=1

wk
0,q

∑

n∈�q

(π2(q, n)+ (π1(q, n)− π2(q, n))) . (36)

According to (1), (13) and (17), we can get

J∑

j=1

g′
j (φ

k, j
0)

Q∑

q=1

wk
0,q

∑

n∈�q

π2(q, n)

=
J∑

j=1

g′
j (φ

k, j
0)

N∑

n=1

⎛

⎝
∑

q∈Vn

wk
0,qπ2(q, n)

⎞

⎠

=
N∑

n=1

Ewn (W
k) ·	wk

n = −η
N∑

n=1

‖Ewn (W
k)‖2. (37)

123

186 C. Zhang et al.

Then using (26) and the Mean Value Theorem, we have
∏

t∈�′′
q,n

g(φk+1, j
t)−

∏

t∈�′′
q,n

g(φk, j
t)

=
∑

λ∈�′′
q,n

⎛

⎜⎝
∏

s∈ϒ ′
q,n,λ

g(φk, j
s)

⎞

⎟⎠

⎛

⎜⎝
∏

t∈ϒ ′′
q,n,λ

g(φk+1, j
t)

⎞

⎟⎠
(

g(φk+1, j
λ)− g(φk, j

λ)
)

=
∑

λ∈�′′
q,n

⎛

⎜⎝
∏

s∈ϒ ′
q,n,λ

g(φk, j
s)

⎞

⎟⎠

⎛

⎜⎝
∏

t∈ϒ ′′
q,n,λ

g(φk+1, j
t)

⎞

⎟⎠ g′(tk, j,λ)(ξ
j ·	wk

λ), (38)

where tk, j,λ is on the segment between φk+1, j
λ and φk, j

λ , ϒ ′
q,n,λ = {r |r < λ, r ∈ �′′

q,n}, and
ϒ ′′

q,n,λ = {r |r > λ, r ∈ �′′
q,n}. By (34), (35), (38) and (18), we have the following estimate:

|π2(q, n)− π1(q, n)|

=
∣∣∣∣∣∣

⎛

⎝
∏

s∈�′
q,n

g(φk, j
s)

⎞

⎠

⎛

⎝
∏

t∈�′′
q,n

g(φk+1, j
t)−

∏

t∈�′′
q,n

g(φk, j
t)

⎞

⎠ g′(φk, j
n)(ξ j ·	wk

n)

∣∣∣∣∣∣

≤ C

⎛

⎝
∑

λ∈�′′
q,n

‖	wk
λ‖

⎞

⎠ ‖	wk
n‖, (39)

where 1 ≤ q ≤ Q and n ∈ �q . In terms of (1), (18), (20), (38) and (39), we have

J∑

j=1

g′
j (φ

k, j
0)

Q∑

q=1

wk
0,q

∑

n∈�q

(π1(q, n)− π2(q, n))

=
J∑

j=1

g′
j (φ

k, j
0)

N∑

n=1

∑

q∈Vn

wk
0,q (π1(q, n)− π2(q, n))

≤ C
N∑

n=1

∑

q∈Vn

⎛

⎝

⎛

⎝
∑

λ∈�′′
q,n

‖	wk
λ‖

⎞

⎠ ‖	wk
n‖

⎞

⎠

= C

(
N∑

n=1

‖	wk
n‖

) (
N∑

n=1

‖	wk
n‖

)
≤ C

N∑

n=1

‖	wk
n‖2. (40)

It follows from (36), (37) and (40) that

δ1 ≤ −η
N∑

n=1

‖Ewn (W
k)‖2 + Cη2

N∑

n=1

‖Ewn (W
k)‖2. (41)

Employing (33), (18) and (17), we obtain

δ2 ≤ C
N∑

n=1

‖	wn
k‖2 = Cη2

N∑

n=1

‖Ewn (W
k)‖2. (42)

Now, (22) results from (31), (41), and (42).
(23) is a direct consequence of (10) and (16).

123

Convergence Analysis of Batch Gradient Algorithm 187

Using (18), (21), (16) and (17), we can show (24) as follows:

J∑

j=1

g′
j (φ

k, j
0)(wk

0 · ψk, j) ≤ C
J∑

j=1

‖	wk
0‖‖ψk, j‖

≤ C
J∑

j=1

(‖	wk
0‖2 + ‖ψk, j‖2) ≤ Cη2

N∑

n=0

‖Ewn (W
k)‖2. (43)

Similarly, a combination of (18), (19), (21), (16) and (17) leads to

1

2

J∑

j=1

g′′
j (sk, j)(φ

k+1, j
0 − φ

k, j
0)2 ≤ C

J∑

j=1

|φk+1, j
0 − φ

k, j
0 |2

= C
J∑

j=1

|(wk+1
0 − wk

0) · τ k+1, j + wk
0 · (τ k+1, j − τw, j)|2

≤ C
J∑

j=1

(
‖	wk

0‖ + ‖ψk, j‖
)2 ≤ Cη2

N∑

n=0

‖Ewn (W
k)‖2. (44)

This proves (25) and completes the proof. �

Now we are ready to prove the main theorems in terms of the above two lemmas.

Proof to Theorem 1 We firstly consider the proof to (i). Using the Taylor expansion, (19),
(23), (22) and (25), we have

E(W k+1)− E(W k) =
J∑

j=1

(
g j (φ

k+1, j
0)− g j (φ

k, j
0)

)

=
J∑

j=1

(
g′

j (φ
k, j
0)(φ

k+1, j
0 − φ

k, j
0)+ 1

2
g′′

j (sk, j)(φ
k+1, j
0 − φ

k, j
0)2

)

=
J∑

j=1

g′
j (φ

k, j
0)

(
τ k, j ·	wk

0 + wk
0 · ψk, j +	wk

0 · ψk, j
)

+1

2

J∑

j=1

g′′
j (sk, j)(φ

k+1, j
0 − φ

k, j
0)2

≤ −η‖Ew0(W
k)‖2 − η

N∑

n=1

‖Ewn (W
k)‖2 + Cη2

N∑

n=0

‖Ewn (W
k)‖2

= −(η − Cη2)

N∑

n=0

‖Ewn (W
k)‖2, (45)

where sk, j ∈ R lies on the segment between φk, j
0 and φk+1, j

0 . Let β = η − Cη2, then

E(W k+1) ≤ E(W k)− β

N∑

n=0

∥∥Ewn (W
k)

∥∥2
. (46)

123

188 C. Zhang et al.

We require the learning rate η to satisfy (C is the constant in (45))

0 < η <
1

C
. (47)

This together with (46) leads to

E(W k+1) ≤ E(W k), k = 0, 1, 2, . . .

Next, we prove (i i). By (46), we can get

E(W k+1) ≤ E(W k)− β

N∑

n=0

∥∥Ewn (W k)
∥∥2

≤ · · · ≤ E(w0, V 0)− β

k∑

t=0

(
N∑

n=0

∥∥Ewn (W
t)

∥∥2

)
.

Since E(W k+1) ≥ 0, we have

β

k∑

t=0

(
N∑

n=0

∥∥Ewn (W
t)

∥∥2

)
≤ E(W 0).

Letting k → ∞ results in

∞∑

t=0

(
N∑

n=0

∥∥Ewn (W
t)

∥∥2

)
≤ E(W 0) < ∞.

So

∞∑

k=0

∥∥Ewn (W
k)

∥∥2 ≤
∞∑

k=0

(
∥∥

N∑

n=0

∥∥Ewn (W
k)

∥∥2

)
< ∞.

This immediately gives

lim
k→∞

∥∥Ewn (W
k)

∥∥ = 0, 0 ≤ n ≤ N .

Finally, we prove (i i i). It follows from (16), (17) and (i i) of Theorem 1 that

lim
k→∞ ‖	wk

n‖ = 0, 0 ≤ n ≤ N . (48)

Note that the error function E(W) defined in (6) is continuously differentiable. Using (48),
Assumptions (A3)–(A4) and Lemma 1, we immediately get the desired result. This completes
the proof. �

Proof to Theorem 2 Note that�-�-�-� is equivalent to�-�-� by taking�1 in�-�-�-�
as the input layer as explained in Subsect. 2.2. So Theorem 1 applies to�-�-�-�. Similarly,
Theorem 1 applies to �-�-� which is a special case of �-�-�-�, and in turn applies to
�-� which is a special case of �-�-�. This completes the proof. �

Acknowledgements Wei Wu’s work was partly supported by the National Natural Science Foundation of
China (10471017).

123

Convergence Analysis of Batch Gradient Algorithm 189

References

1. Rumelhart DE, McClelland JL (1986) Parallel distributed processing, explorations in the microstructure
of cognition. MIT Press, Cambridge

2. Li JY, Yu YL (1995) The realization of arbitrary Boolean function by two layer higher-order neural
network. J South China Univ Techn 23:111–116

3. Lenze B (2004) Note on interpolation on the hypercube by means of sigma-pi neural networks. Neuro-
computing 61:471–478

4. Bertsekas DP, Tsiklis J (1996) Neuro-dynamic programming. Athena Scientific, Boston, MA
5. Kushner HJ, Yang J (1995) Analysis of adaptive step size SA algorithms for parameter rates. IEEE Transac

Automat Control 40:1403–1410
6. Shao HM, Wu W, Li F, Zheng GF (2004) Convergence of gradient algorithm for feedforward neural

network training. Proceed Int Symposium Comput Inform 2:627–631
7. Wu W, Feng G, Li X (2002) Training multilayer perceptrons via minimization of sum of ridge functions.

Adv Computat Math 17:331–347
8. Liang YC et al (2002) Successive approximation training algorithm for feedforward neural networks.

Neurocomputing 42:311–322
9. Wu W, Feng G, Li Z, Xu Y (2005) Deterministic convergence of an online gradient method for BP neural

networks. IEEE Transac Neural Networks 16:533–540
10. Durbin R, Rumelhart D (1989) Product units: a computationally powerful and biologically pausible exten-

sion to backpropagation networks. Neural Comput 1:133–142
11. Lenze B (1994) How to make sigma-pi neural networks perform perfectly on regular training sets. Neural

Networks 7:1285–1293
12. Heywood M, Noakes P (1995) A Framework for improved training of sigma-pi networks. IEEE Transac

Neural Networks 6:893–903
13. Yuan Y, Sun W (2001) Optimization theory and methods. Science Press, Beijing
14. Wu W, Shao HM, Qu D (2005) Strong convergence for gradient methods for BP networks training.

Proceedings of the International Conference on on Neural Networks and Brains (ICNNB’05),
pp 332–334

123

	Convergence Analysis of Batch Gradient Algorithm for Three Classes of Sigma-Pi Neural Networks
	Abstract
	Introduction
	Sigma-Pi Neural Networks
	Sigma-Pi Units
	Equivalence of Sigma-Pi Neural Networks
	-- Neural Networks
	Batch Gradient Learning Algorithm for --
	Main Results
	Appendix
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

