
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

�Correspond
E-mail addr

1Partly supp

China (1047101

Please cite thi

(2008), doi:10
Neurocomputing] (]]]])]]]–]]]

www.elsevier.com/locate/neucom
Convergence of BP algorithm for product unit neural networks with
exponential weights

C. Zhang, W. Wu�,1, X.H. Chen, Y. Xiong

Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, PR China

Received 28 August 2007; received in revised form 30 November 2007; accepted 4 December 2007

Communicated by Z. Wang
Abstract

Product unit neural networks with exponential weights (PUNNs) can provide more powerful internal representation capability than

traditional feed-forward neural networks. In this paper, a convergence result of the back-propagation (BP) algorithm for training

PUNNs is presented. The monotonicity of the error function in the training iteration process is also guaranteed. A numerical example is

given to support the theoretical findings.

r 2008 Elsevier B.V. All rights reserved.

MSC: 92B20; 68Q32; 74P05

Keywords: Neural network; Product unit; Exponential weights; Back-propagation algorithm; Convergence
1. Introduction

Traditional feed-forward neural networks are con-
structed by using multiple layers of summation units.
These networks can effectively solve approximation and
classification problems [3,9]. However, usually it requires a
large number of summation units for a traditional feed-
forward neural network to approximate a complicated
function. Various kinds of ‘‘high order’’ neural networks
have been developed to overcome this drawback [6,7,4].
Among them, product unit neural networks with exponen-
tial weights (PUNNs) were proposed by Durbin and
Rumelhart [4], and studied in [12,11,10,19]. PUNNs are
used to solve regression problems in [16,17]. But we have
not found any theoretical analysis on the convergence of
the training methods for PUNNs, and this becomes our
main concern in this paper.

Back-propagation (BP) algorithm is possibly the most
popular optimization algorithm for training feed-forward
e front matter r 2008 Elsevier B.V. All rights reserved.

ucom.2007.12.004

ing author.

ess: wuweiw@dlut.edu.cn (W. Wu).

orted by the National Natural Science Foundation of

7).

s article as: C. Zhang, et al., Convergence of BP algorithm for p

.1016/j.neucom.2007.12.004
neural networks [21,22]. Unfortunately, the solution space
for PUNNs can be extremely convoluted, with numerous
local minima that trap the BP training (cf. [4,12,5]). Hence,
some global optimization algorithms such as Genetic
Algorithm [11], Random Search [12], Evolutionary Algo-
rithms [14,15,8], Particle Swarm Optimization and Leap
Frog Optimization [10], etc. have been used to train
PUNNs. But these global optimization algorithms usually
converge very slowly. So it seems natural that BP
algorithm, which is good at local optimization, has been
used to combine with some global search algorithms such
as the Random Search Algorithm (RSA), resulting in quite
satisfactory training [12]. In this strategy, BP is used to
move to the local minima, and if the training error is still
above the desired level, the RSA algorithm generates a new
set of random weights from which BP can start again. So
the convergence analysis of the BP algorithm for PUNN is
still useful as a theoretical support of the above training
strategy.
The organization of the rest of the paper is as follows.

Section 2 introduces PUNN. Section 3 describes the
learning procedures of BP for PUNN. The main conver-
gence results are presented in Section 4. Experimental
results are given in Section 5. Some conclusions are drawn
roduct unit neural networks with exponential weights, Neurocomputing

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.12.004
mailto:wuweiw@dlut.edu.cn
dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]]2
in Section 6. Appendix A is an appendix, in which the
details of the proofs are provided.

2. Product unit neural networks with exponential weights

In PUNN, the traditional summation units of the hidden
layer are replaced by the product units with exponential
weights:

XN

n¼1

wnxn !
YN
n¼1

xwn
n .

Due to the special exponential form, PUNNs have
some additional advantages. Durbin and Rumelhart [4]
empirically determined that the information capacity
of a single product unit (as measured by its capacity
for learning random boolean patterns) is approximately
3N, compared to 2N for a single summation unit [2],
where N is the number of inputs to the units. So, for a
given problem, PUNNs usually require relatively smaller
scale of networks than traditional feed-forward neural
networks and even some feed-forward networks with other
higher-order terms (cf. [12]). In [19], it has been demon-
strated that only one product unit in the hidden layer is
sufficient to solve the difficult symmetry problem and
parity problem.

Fig. 1 shows the PUNN structure considered in this
paper. It is a three-layer network with product units only in
the hidden layer and only one output node.

Let the numbers of input and hidden nodes be N and M þ

1 (including a bias unit with fixed output �1), respectively.
Write wm ¼ ðwm;1; . . . ;wm;N Þ

T
2 RN ð1pmpMÞ as the

input-to-hidden weight vector corresponding to the mth
hidden node. Similarly write wMþ1 ¼ ðwMþ1;0;wMþ1;1; . . . ;
wMþ1;MÞ

T
2 RMþ1 as the hidden-to-output weight vector,

where wMþ1;0 is the threshold. For simplicity, all the weight
vectors are incorporated into a total weight vector
W ¼ ððw1Þ

T; . . . ; ðwMþ1Þ
T
Þ
T
2 RMNþMþ1. Let a vector x ¼

ðx1; . . . ;xN Þ
T with nonzero components be an input to the

network shown in Fig. 1, with x1 ¼ �1 corresponding to a
Fig. 1. Structure of PUNN.

Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
bias unit, the complex output of the network is

y ¼ g
XM
m¼1

wMþ1;mh
YN
n¼1

xwm;n
n

 ! !
� wMþ1;0

 !
. (1)

Here, g is an activation function which squashes the output of
the summation unit. All the outputs of the product units are
squashed by an activation function h. A typical choice is
hðtÞ ¼ t. So we have

y ¼ g
XM
m¼1

wMþ1;m

YN
n¼1

xwm;n
n

 !
� wMþ1;0

 !
. (2)

We stress that as in e.g. [10,19], we have required that xna0
for 1pnpN. The complex output of the mth ð1pmpMÞ

hidden node is

YN
n¼1

xwm;n
n ¼ erm ðcosðpymÞ þ i sinðpymÞÞ,

where

rm ¼
XN

n¼1

wm;n ln jxnj; ym ¼
XN

n¼1

wm;nsn,

sn ¼
0 if xn40;

1 if xno0:

(
ð3Þ

Durbin and Rumelhart [10] have discovered in their
experiments that apart for the added complexity of working
in the complex domain (i.e. the doubling of equations and
weight variables), no substantial improvements in the results
were gained. So the imaginary part of the output is omitted
and the actual output for the mth hidden unit becomes
erm cosðpymÞ: But we mention a warning given by [18] that
omitting the imaginary part of the output might cause trouble
when this strategy was extended to real-valued (rather than
Boolean) inputs.
For a given input x 2 fRnf0ggN , define a multivariate

function f : RN � fRnf0ggN ! R by

f ðwM ;xÞ ¼ erm cosðpymÞ. (4)

It is obvious that f 2 C1. Next, denote by F the output
vector of the hidden layer with respect to a given input x,
then we have

F ¼ ð�1; f ðw1;xÞ; . . . ; f ðwM ;xÞÞ
T. (5)

Consequently, the actual output of the PUNN for a given
input x with nonzero components is the real part of the
complex output as follows:

y ¼ gðwMþ1 � FÞ

¼ g
XM
m¼1

wMþ1;mf ðwM ; xÞ

 !
� wMþ1;0

 !
. ð6Þ

3. BP algorithm for PUNN training

Let the network be supplied with a given set of training
examples fxj ;OjgJj¼1 � fRnf0gg

N � R. For each xj, once
roduct unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]] 3
being input into the above PUNN, the output of the
PUNN above is

yj ¼ gðwMþ1 � F
jÞ

¼ g
XM
m¼1

wMþ1;mf j
ðwmÞ

 !
� wMþ1;0

 !
, ð7Þ

where

f j
ðwÞ ¼ f ðw;xjÞ; Fj ¼ ð�1; f j

ðw1Þ; . . . ; f
j
ðwMÞÞ

T. (8)

The square error function of PUNN trained by the BP
algorithm can be represented as follows:

EðWÞ ¼
1

2

XJ

j¼1

ðyj �OjÞ
2
¼
XJ

j¼1

gjðwMþ1 � F
jÞ, (9)

where

gjðtÞ ¼
1
2
ðgðtÞ �OjÞ

2; t 2 R; 1pjpJ. (10)

So we have

qE

qwMþ1
ðWÞ ¼

XJ

j¼1

g0jðwMþ1 � F
jÞFj (11)

and

qE

qwm

ðWÞ ¼
XJ

j¼1

g0jðwMþ1 � F
jÞ

q
qwm

ðwMþ1 � F
jÞ

¼
XJ

j¼1

g0jðwMþ1 � F
jÞwMþ1;m

qf j

qw
ðwmÞ, ð12Þ

where, for any 1pjpJ and 1pmpM,

qf j

qw
ðwmÞ ¼

qf j

qw1
ðwmÞ; . . . ;

qf j

qwN

ðwmÞ

� �T

, (13)

qf j

qwn

ðwmÞ ¼ er
j
mððln jxj

njÞ cosðpy
j
mÞ � sj

np sinðpy
j
mÞÞ. (14)

The purpose of the network training is to find W� such that

EðW�Þ ¼ minEðWÞ.

Starting from an arbitrary initial value W0 and combining
(11) and (12), we proceed to refine the weights by the
training iteration as follows:

Wkþ1 ¼Wk þ DWk; k ¼ 0; 1; 2; . . . , (15)

where
DWk ¼ ððDwk

1Þ
T; . . . ; ðDwk

Mþ1Þ
T
Þ
T
¼ �ZðqE=qWÞðWkÞ, Z40

is the learning rate, and

Dwk
Mþ1 ¼ � Z

qE

qwMþ1
ðWkÞ

¼ � Z
XJ

j¼1

g0jðw
k
Mþ1 � F

jÞFj, ð16Þ
Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
Dwk
m ¼ � Z

qE

qwm

ðWkÞ

¼ � Z
XJ

j¼1

g0jðw
k
Mþ1 � F

jÞwk
Mþ1;m

qf j

qw
ðwk

mÞ, ð17Þ

where 1pmpM.

4. Convergence result

We need the following assumptions:
(A1)
roduc
there exists a constant C140 such that for all t 2 R

maxfjgðtÞj; jg0ðtÞj; jg00ðtÞjgpC1;
(A2)
 there exists a constant C240 such that kwk
mkpC2 for

all m ¼ 1; . . . ;M þ 1; k ¼ 0; 1; 2; . . . ;

(A3)
 the learning rate Z satisfies (A.18);

(A4)
 the set D0 ¼ fWjðqE=qWÞðWÞ ¼ 0g contains finite

points.
In this paper, k � k denotes the Euclidean norm.

Theorem 1. Let the error function EðWÞ be defined in (9),
and the sequence fWkg be generated by (15)–(17) with W0

being an arbitrary initial guess. If Assumptions (A1)–(A3)
are valid, then we have
(i)
 EðWkþ1ÞpEðWkÞ; k ¼ 0; 1; 2; . . .;

(ii)
 limk!1kðqE=qWÞðWkÞk ¼ 0.

Furthermore, if Assumption (A4) also holds, there

exists a point W� 2 D0 such that
(iii)
 limk!1W
k ¼W�.
The statement (i) of Theorem 1 shows the monotonicity
of error function EðWÞ in the learning iteration process.
The weak convergence of the weight sequence fWkg is
presented in (ii), i.e., starting from arbitrary W0 and
generated in accordance with (15)–(17), the sequence fWkg

will satisfy limk!1kðqE=qWÞðWkÞk ¼ 0. The conclusion
(iii) points out that if the number of stationary points is
finite, the sequence fWkg will converge to a local minimum,
which implies the feasibility of the combination of a global
search algorithm and BP. If there are finite number of
stationary points (i.e. local minima) in the search space, the
neighborhood of the global minimum may be detected by
the global search algorithm (e.g. RSA), and then the global
minimum W� will be located by BP.
5. Experimental results

This section illustrates the performance of BP for
training PUNNs. The 5-Parity problem is used as the
test problem. This problem can be solved theoretically
by a single product unit (cf. [19]), so we can easily compare
the theoretical solution with the numerical results.
t unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]]4
The network has six inputs (N ¼ 6 in Fig. 1) including a
constant input of �1 (the bias unit), two hidden product
units (M ¼ 2) plus a bias unit, and one summation output
unit. The learning rate is fixed to 0:05 for all the simulation.

First, we check the convergence for an arbitrary initial
weight, i.e., starting from an arbitrary guess, the weight
sequence generated by (15)–(17) satisfy EðWkþ1ÞpEðWkÞ

and limk!1kðqE=qWÞðWkÞk ¼ 0. A typical picture of such
a learning iteration process is given in Fig. 2, which clearly
supports the theoretical convergence result, namely, the
weight sequence will always converge to a local minimum
of the error function.

Next, we investigate the convergence near the global
minimum of the error function, that is, the optimal
weights of the network. As in [19], we can find explicitly
0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

Error Curve
Derivative Curve

Fig. 2. Convergence behavior from an arbitrary initial weight.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Error Curve
Derivative Curve

Fig. 3. Convergence behavior from an initial weight near the global

minimum.

Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
the optimal weights of the network for the 5-Parity
problem: w1 ¼ ð1; 1; 1; 1;�1Þ

T, w2 ¼ ð0; 0; 0; 0; 0Þ
T and

w3 ¼ ð0; 5; 0Þ
T. Then we randomly initialize the weights

within a neighborhood, with 0:05 radius, of the optimal
weights. Fig. 3 shows that, in spite of the oscillation in the
early epochs, both the error curve and the derivative curve
finally tend to zero.
The weight sequence will converge to a local minimum

with the initial weight being an arbitrary guess. In
particular, when the initial weight falls into a small
neighborhood of a local (or global) minimum, the weight
sequence will converge quickly to the local (or global)
minimum. This supports our idea that, if a neighborhood
of the local (or global) minimum is detected through some
other approaches, the corresponding local (or global)
minimum will be located efficiently by BP algorithm.
6. Conclusion

Product unit neural networks with exponential weights
(PUNNs) were proposed in order to improve the efficiency
of traditional feed-forward neural networks [4]. Unfortu-
nately, the solution space for PUNNs can be extremely
convoluted, with numerous local minima that trap the BP
training. Hence, some global optimization algorithms such
as Genetic Algorithm, etc. have been used to train PUNNs.
But these global optimization algorithms usually converge
very slowly. So it seems natural that BP algorithm, which is
good at local optimization, has been used to combine with
some global search algorithms, resulting in quite satisfac-
tory training. So the convergence analysis of the BP
algorithm for PUNN is still useful as a theoretical support
of this training strategy.
In this paper, a convergence result of BP algorithm for

training PUNNs is presented. The monotonicity of the
error function in the training iteration process is also
guaranteed. An up-bound of the learning rate Z is provided
to guarantee the monotonicity and the convergence. A
numerical example is given to support the theoretical
findings.
We mention that the convergence results in this paper

can be easily extended to a more general case that the
network has several outputs. Also, it seems promising to
apply the idea of PUNN to some more complex and
capable neural networks such as stochastic neural networks
and neural networks with delays (cf. [13,20]).
Appendix A

In this appendix, we first present some lemmas and then
prove Theorem 1.
The Euclidean norm of a vector w ¼ ðw1; . . . ;wN Þ

T
2 RN is

defined by kwk ¼ ð
PN

n¼1 w2
nÞ

1=2, and the corresponding
induced norm of a matrix H 2 RN�N by kHk ¼

supwa0 ðkHwk=kwkÞ. The following properties of the norms
are well-known: kHwkpkHkkwk; jwTHwjpkwkkHkkwk.
roduct unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]] 5
Lemma 2. Suppose that E : RMNþMþ1! R is continuous

and differentiable on a compact set D � RMNþMþ1, and that

D0 ¼ fW 2 DjðqE=qWÞðWÞ ¼ 0g has only finite number of

points. If a sequence fWkg1k¼1 � D satisfies

lim
k!1
kWkþ1 �Wkk ¼ 0; lim

k!1

qE

qW
ðWkÞ

����
���� ¼ 0,

then there exists a point W� 2 D0 such that

lim
k!1

Wk ¼W�.

Proof. This result is basically the same as Theorem 14.1.5
in [24] (cf. [23]), and the detailed proof is thus omitted. &

For any 1pjpJ, 1pmpM and k ¼ 0; 1; 2; . . . , write
(cf. (8))

f k;j
m ¼ f j

ðwk
mÞ; Fk;j ¼ ð�1; f k;j

1 ; . . . ; f
k;j
M Þ

T,

wk;j
¼ Fkþ1;j � Fk;j ; fk;j

¼ wk
Mþ1 � F

k;j . ðA:1Þ

Denote the Hessian matrix of f j
ðwÞ (cf. (8)) by

HjðwÞ ¼

q2f j

qw1 qw1
ðwÞ � � �

q2f j

qw1 qwN

ðwÞ

..

. . .
. ..

.

q2f j

qwN qw1
ðwÞ � � �

q2f j

qwN qwN

ðwÞ

0
BBBBBB@

1
CCCCCCA
. (A.2)

HjðwÞ is symmetric, since f j
ðwÞ 2 C1. Specifically, for any

p; q 2 f1; . . . ;Ng,

q2f j

qwp qwq

ðwÞ

¼ e
PN

n¼1
wn ln jx

j
nj ½ðln jxj

pjÞðln jx
j
qjÞ � sj

ps
j
qp

2� cos p
XN

n¼1

wnsj
n

 !(

�½psj
qðln jx

j
pjÞ þ psj

pðln jx
j
qjÞ� sin p

XN

n¼1

wnsj
n

 !)
, ðA:3Þ

where sj
n is defined similarly as in (3).

Lemma 3. Suppose Assumptions (A1)–(A2) hold, then for

any 1pjpJ and k ¼ 0; 1; 2; . . ., we have

kOjkpC0; kF
k;jkpC0, (A.4)

qf j

qw
ðwÞ

����
����pC3; kH

jðwÞkpC3,

8w 2 fw 2 RN j kwkpC2g, ðA:5Þ

jg0jðtÞjpC4; jg
00
j ðtÞjpC4; t 2 R, (A.6)

kwk;j
k2pC5

XM
m¼1

kDwk
mk

2, (A.7)

XJ

j¼1

g0jðf
k;j
ÞðDwk

Mþ1 � F
k;jÞ ¼ �Z

qE

qwMþ1
ðWkÞ

����
����
2

, (A.8)
Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
XJ

j¼1

g0jðf
k;j
Þðwk

Mþ1 � w
k;j
Þp� Z

XM
m¼1

qE

qwm

ðWkÞ

����
����
2

þ C6Z2
XM
m¼1

qE

qwm

ðWkÞ

����
����
2

, ðA:9Þ

XJ

j¼1

g0jðf
k;j
ÞDwk

Mþ1 � w
k;jpC7Z2

XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

, (A.10)

1

2

XJ

j¼1

g00j ðt
k;jÞðfkþ1;j

� fk;j
Þ
2

pC8Z2
XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

, ðA:11Þ

XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

¼
qE

qW
ðWkÞ

����
����
2

, (A.12)

where Ci ði ¼ 0; 3; . . . ; 8Þ are constants independent of k and

j, and each tk;j 2 R lies on the segment between fk;j and

fkþ1;j.

Proof. If the set of samples is fixed and Assumption (A2) is
valid, according to (8), (13)–(14) and (A.1)–(A.3), the
validations of (A.4) and (A.5) can be easily got.
By (10), for any 1pjpJ and t 2 R,

g0jðtÞ ¼ g0ðtÞðgðtÞ �OjÞ,

g00j ðtÞ ¼ g00ðtÞðgðtÞ �OjÞ þ ðg0ðtÞÞ2.

Then, (A.6) follows directly from Assumption (A1) and
C4 ¼ C1ðC1 þ C0Þ þ ðC1Þ

2.
It follows from (A.1), (A.5), the Cauchy–Schwartz

Inequality and the Mean-Value Theorem for multivariate
functions [1] that for any 1pjpJ and k ¼ 0; 1; 2; . . . ,

kwk;j
k2 ¼ kFkþ1;j � Fk;jk2

¼

0

f j
ðwkþ1

1 Þ � f j
ðwk

1Þ

..

.

f j
ðwkþ1

M Þ � f j
ðwk

M Þ

0
BBBBBB@

1
CCCCCCA

������������

������������

2

¼

0

qf j

qw
ðs

k;j
1 Þ � Dw

k
1

..

.

qf j

qw
ðs

k;j
M Þ � Dw

k
M

0
BBBBBBBBB@

1
CCCCCCCCCA

���������������

���������������

2

¼
XM
m¼1

qf j

qw
ðsk;j

m Þ � Dw
k
m

����
����

� �2

pC5

XM
m¼1

kDwk
mk

2,

where C5 ¼ ðC3Þ
2 and sk;j

m is an intermediate point on the
line segment between the two points wkþ1

m and wk
m.
roduct unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]]6
According to (11) and (16), for any k ¼ 0; 1; 2; . . . , we
can get

XJ

j¼1

g0jðf
k;j
ÞðDwk

Mþ1 � F
k;jÞ ¼

XJ

j¼1

g0jðf
k;j
ÞðFk;jÞ

TDwk
Mþ1

¼
qE

qwMþ1
ðWkÞ � Dwk

Mþ1

¼ � Z
qE

qwMþ1
ðWkÞ

����
����
2

.

Next, we prove (A.9). Using (13), (A.1) and the Taylor
expansion for multivariate functions [1], for any 1pjpJ,
1pmpM and k ¼ 0; 1; 2; . . . , we have that

f kþ1;j
m � f k;j

m ¼
qf j

qw
ðwk

mÞ

� �T

Dwk
m

þ
1

2
ðDwk

mÞ
THjðsk;j

m ÞðDw
k
mÞ, ðA:13Þ

where sk;j
m is an intermediate point on the line segment

between the two points wkþ1
m and wk

m. Then, in terms of
(12), (17), (A.1) and (A.13), for any k ¼ 0; 1; 2; . . ., we get
that

XJ

j¼1

g0jðf
k;j
Þðwk

Mþ1 � w
k;j
Þ

¼
XJ

j¼1

XM
m¼1

g0jðf
k;j
Þwk

Mþ1;mðf
kþ1;j
m � f k;j

m Þ

¼
XJ

j¼1

XM
m¼1

g0jðw
k
Mþ1 � w

k;j
Þwk

Mþ1;m

�
qf j

qw
ðwk

mÞ

� �T

Dwk
m þ d1

¼
XM
m¼1

qE

qwm

ðWkÞ � Dwk
m þ d1

¼ �Z
XM
m¼1

qE

qwm

ðWkÞ

����
����
2

þ d1, ðA:14Þ

where

d1 ¼
1

2

XJ

j¼1

XM
m¼1

g0jðw
k
Mþ1 � w

k;j
Þ

�wk
Mþ1;mðDw

k
mÞ

THjðsk;j
m ÞDw

k
m.

A combination of Assumptions (A2), (A.5) and (A.6)
leads to

d1pC6

XM
m¼1

kDwk
mk

2 ¼ C6Z2
XM
m¼1

qE

qwm

ðWkÞ

����
����
2

, (A.15)

where C6 ¼ ðJ=2ÞC2C3C4. Finally, (A.9) results from
(A.14) and (A.15).
Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
According to (A.1), (A.6), (A.7) and the Cauchy–
Schwartz Inequality, we have that

XJ

j¼1

g0jðf
k;j
ÞDwk

Mþ1 � w
k;j

pC4

XJ

j¼1

kDwk
Mþ1kkw

k;j
k

p
1

2
C4

XJ

j¼1

ðkDwk
Mþ1k

2 þ kwk;j
k2Þ

p
J

2
C4 kDwk

Mþ1k
2 þ C5

XM
m¼1

kDwk
mk

2

 !

pC7Z2
XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

and

1

2

XJ

j¼1

g00j ðt
k;jÞðfkþ1;j

� fk;j
Þ
2

p
C4

2

XJ

j¼1

ðfkþ1;j
� fk;j

Þ
2

¼
C4

2

XJ

j¼1

ððwkþ1
Mþ1 � wk

Mþ1Þ � F
kþ1;j

þ wk
Mþ1 � ðF

kþ1;j � Fk;jÞÞ
2

p
C4

2
maxfðC0Þ

2; ðC2Þ
2
g

�
XJ

j¼1

kDwk
Mþ1k þ kw

k;j
k

� �2

pC8 kDwk
Mþ1k

2 þ
XM
m¼1

kDwk
mk

2

 !

pC8Z2
XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

,

where C7 ¼ ðC4J=2Þmaxf1;C5g and C8 ¼ ðC4J=2Þ
maxfðC0Þ

2; ðC2Þ
2
gmaxf1;C5g. So we obtain (A.10) and

(A.11).
It follows from the definition of Euclidean norm that

XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

¼
XMþ1
m¼1

qEðWkÞ

qwm;1

� �2

þ � � � þ
qEðWkÞ

qwm;N

� �2
 !

¼
XMþ1
m¼1

XN

n¼1

qEðWkÞ

qwm;n

� �2

¼
qE

qW
ðWkÞ

����
����
2

.

This confirms (A.12) and completes the proof. &

Now, we use the above two lemmas to prove Theorem 1.
roduct unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]] 7
Proof of Theorem 1. (i) By (A.8)–(A.12) and the Taylor
Expansion we have

EðWkþ1Þ � EðWkÞ

¼
XJ

j¼1

ðgjðf
kþ1;j
Þ � gjðf

k;j
ÞÞ

¼
XJ

j¼1

g0jðf
k;j
Þðfkþ1;j

� fk;j
Þ þ

1

2
g00j ðt

k;jÞðfkþ1;j
� fk;j

Þ
2

� �

¼
XJ

j¼1

g0jðf
k;j
ÞðDwk

Mþ1 � F
k;j þ wk

Mþ1 � w
k;j
þ Dwk

Mþ1 � w
k;j
Þ

þ
1

2

XJ

j¼1

g00j ðt
k;jÞðfkþ1;j

� fk;j
Þ
2p� Z

XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

þ C6Z2
XM
m¼1

qE

qwm

ðWkÞ

����
����
2

þ ðC7 þ C8ÞZ2
XMþ1
m¼1

qE

qwm

ðWkÞ

����
����
2

p� ðZ� C9Z2Þ
qE

qW
ðWkÞ

����
����
2

, ðA:16Þ

where C9 ¼ C6 þ C7 þ C8 and tk;j 2 R is on the segment
between fk;j and fkþ1;j. Let b ¼ Z� C9Z2, then we have

EðWkþ1ÞpEðWkÞ � b
qE

qW
ðWkÞ

����
����
2

. (A.17)

Obviously, if the learning rate Z is chosen to satisfy that

0oZo
1

C9
, (A.18)

then there will hold that

EðWkþ1ÞpEðWkÞ; k ¼ 0; 1; 2;

(ii) Using (A.17), we have that

EðWkþ1ÞpEðWkÞ � b
qE

qW
ðWkÞ

����
����
2

p � � �pEðW0Þ � b
Xk

t¼0

qE

qW
ðWtÞ

����
����
2

.

Since EðWkþ1ÞX0, there holds that

b
Xk

t¼0

qE

qW
ðWtÞ

����
����
2

pEðW0Þ.

Let k!1, then

X1
t¼0

qE

qW
ðWtÞ

����
����
2

pEðW0Þo1.

So there holds that

lim
k!1

qE

qW
ðWkÞ

����
���� ¼ 0.

(iii) It follows from (15)–(17) and (ii) in Theorem 1 that

lim
k!1
kDWkk ¼ 0. (A.19)
Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
Note that the error function EðWÞ defined in (9) is
continuously differentiable. Using (A.19), Assumption
(A4) and Lemma 2, we immediately get the desired result.
This completes the proof to Theorem 1. &
References

[1] R. Courant, F. John, Introduction to Calculus and Analysis, Wiley,

New York, 1974.

[2] T. Cover, Geometrical and statistical properties of systems of linear

inequalities with application in pattern recognition, IEEE Trans.

Electron. Comput. 14 (1965) 326–334.

[3] G. Cybenko, Continuous-valued neural networks with two hidden

layers are sufficient, Technical Report, Department of Computer

Science, Tufts University, Medford, MA, 1989.

[4] R. Durbin, D. Rumelhart, Product units: a computationally powerful

and biologically plausible extension to backpropagation networks,

Neural Comput. 1 (1989) 133–142.

[5] A.P. Engelbrecht, Computational Intelligence: An Introduction,

Wiley, New York, 2003.

[6] C.L. Giles, Learning, invariance, and generalization in higher-order

neural networks, Appl. Opt. 26 (1987) 4972–4978.

[7] K.N. Gurney, Training nets of hardware realizable Sigma-Pi units,

Neural Networks 5 (1992) 289–303.

[8] C. Hervs̈, F.J. Martänez-Estudillo, P.A. Gutir̈rez, Classification by

means evolutionary product-unit neural networks, in: International

Joint Conference on Neural Networks (IJCNN 2006), 2006,

pp. 1525–1532.

[9] K. Hornik, Multilayer feedforward networks are universal approx-

imators, Neural Networks 2 (1989) 359–366.

[10] A. Ismail, A.P. Engelbrecht, Global optimization algorithms for

training product unit neural networks, in: The Proceedings of

the IEEE-INNS-ENNS International Joint Conference on Neural

Networks, vol. 1, 2000, pp. 132–137.

[11] D.J. Janson, J.F. Frenzel, Training product unit neural networks with

genetic algorithms, IEEE Expert Mag. 8 (1993) 26–33.

[12] L.R. Leerink, C.L. Giles, B.G. Horne, M.A. Jabri, Learning with

product units, Adv. Neural Inform. Process. Syst. 7 (1995) 537.

[13] Y.R. Liu, Z.D. Wang, X.H. Liu, On global exponential stability of

generalized stochastic neural networks with mixed time delays,

Neurocomputing 70 (2006) 314–326.

[14] A.C. Martänez-Estudillo, C. Hervs̈-Martänez, F.J. Martänez-

Estudillo, N. Garcäa-Pedrajas, Hybridation of evolutionary algo-

rithms and local search by means of a clustering method, IEEE

Trans. Syst. Man Cybern. Part. B Cybern. 36 (2006) 534–546.

[15] A.C. Martänez-Estudillo, F.J. Martänez-Estudillo, C. Hervs̈-

Martänez, N. Garcäa-Pedrajas, Evolutionary product unit based

neural networks for regression, Neural Networks 19 (2006) 477–486.

[16] K. Saito, R. Nakano, Law discovery using neural networks, in:

Proceedings of the 15th International Joint Conference on Artificial

Intelligence (IJCAI97), 1997, pp. 1078–1083.

[17] K. Saito, R. Nakano, Extracting regression rules from neural

networks, Neural Networks 15 (2002) 1279–1288.

[18] M. Schmitt, On the complexity of computing and learning with

multiplicative neural networks, Neural Comput. 14 (2001) 241–301.

[19] J.H. Wang, Y.W. Yu, J.H. Tsai, On the internal representations of

product units, Neural Process. Lett. 12 (2000) 247–254.

[20] Z.D. Wang, Y.R. Liu, X.H. Liu, On global asymptotic stability of

neural networks with discrete and distributed delays, Phys. Lett.

A 345 (2005) 299–308.

[21] W. Wu, G. Feng, X. Li, Training multilayer perceptrons via

minimization of sum of ridge functions, Adv. Comput. Math. 17

(2002) 331–347.

[22] W. Wu, G. Feng, Z. Li, Y. Xu, Convergence of an online gradient

method for BP neural networks, IEEE Trans. Neural Networks 16

(2005) 533–540.
roduct unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

ARTICLE IN PRESS
C. Zhang et al. / Neurocomputing] (]]]])]]]–]]]8
[23] W. Wu, H.M. Shao, D. Qu, Strong convergence for gradient methods

for BP networks training, in: Proceedings of the International

Conference on Neural Networks and Brains, 2005, pp. 332–334.

[24] Y. Yuan, W. Sun, Optimization Theory and Methods, Science Press,

Beijing, 2001.

Chao Zhang was born in Dalian, PR China. He

received B.S. in applied mathematics in 2004 and

received M.S. degrees in computational mathe-

matics in 2005, respectively, both from Dalian

University of Technology. Now he is pursuing

Ph.D. in computational mathematics in Dalian

University of Technology. His research interests

lie in the areas of neural networks and uncon-

strained optimization.
Wei Wu received the M.S. degree from Jilin

University, Changchun, China, in 1981 and the

D.Phil. degree from Oxford University, Oxford,

UK, in 1987. He is now a professor of the

Applied Mathematics Department of Dalian

University of Technology, Dalian, China.

He serves as associate editors for the Journal

of Information & Computational Science, Nu-

merical Mathematics—A Journal of Chinese
Please cite this article as: C. Zhang, et al., Convergence of BP algorithm for p

(2008), doi:10.1016/j.neucom.2007.12.004
Universities, and Journal of Mathematical Research and Exposition. His

research interests include numerical analysis and neural network

computation.

Xianhua Chen, borned in Heilongjiang province

in 1984, has received B.S. degree in applied

mathematics from Shandong Normal University

in 2006. Now he is pursuing M.S. degree in

computational mathematics in Dalian University

of Technology. His current interest is focused on

artificial neural networks and finite elements.
Yan Xiong received M.S. degree in Applied

Mathematics with an emphasis on genetic algo-

rithm from Northeastern University in 2003.

Then she received Ph.D. in computational

mathematics in Dalian University of Technology

in 2007. Her research interests include the

convergence analysis and structural optimization

of neural networks, especially in higher order

neural networks.
roduct unit neural networks with exponential weights, Neurocomputing

dx.doi.org/10.1016/j.neucom.2007.12.004

	Convergence of BP algorithm for product unit neural networks with exponential weights
	Introduction
	Product unit neural networks with exponential weights
	BP algorithm for PUNN training
	Convergence result
	Experimental results
	Conclusion
	References

