
DOI 10.1007/s11257-004-7961-2
User Modeling and User-Adapted Interaction (2004) 14: 425–464 © Springer 2005

Knowledge Discovery with Genetic Programming
for Providing Feedback to Courseware Authors

CRISTÓBAL ROMERO1, SEBASTIÁN VENTURA1 and PAUL DE BRA2

1Department of Computer Sciences and Numerical Analysis, University of Córdoba, 14071
Córdoba, Spain. e-mail: {cromero, sventura}@uco.es
2Department of Computer Sciences, Eindhoven University of Technology, PO Box 513, 5600
MB Eindhoven, Netherlands. e-mail: debra@win.tue.nl

(Received: 26 February 2004; accepted in revised form: 11 December 2004)

Abstract. We introduce a methodology to improve Adaptive Systems for Web-Based Edu-
cation. This methodology uses evolutionary algorithms as a data mining method for dis-
covering interesting relationships in students’ usage data. Such knowledge may be very
useful for teachers and course authors to select the most appropriate modifications to
improve the effectiveness of the course. We use Grammar-Based Genetic Programming
(GBGP) with multi-objective optimization techniques to discover prediction rules. We pres-
ent a specific data mining tool that can help non-experts in data mining carry out the com-
plete rule discovery process, and demonstrate its utility by applying it to an adaptive Linux
course that we developed.

Key words. adaptive system for web-based education, data mining, evolutionary algorithms,
grammar-based genetic programming, prediction rules

1. Introduction

Web-based education has considerably gained in importance, spurred by the fact
that neither students nor teachers are bound to a specific location and that this
form of computer-aided instruction is virtually independent of any specific hard-
ware platform (Brusilovsky, 2001). Thousands of web courses have been deployed
in the past few years. However, most of them are merely a network of static web
pages. This led to orientation and comprehension problems in students since navi-
gation in such courses is completely unrestricted. Adaptive Systems for Web-based
Education (ASWE) provide a superior alternative (Brusilovsky, 1998). They are the
result of a joint evolution of Intelligent Tutoring Systems and Adaptive Hyper-
media Systems and have the most desirable characteristics of both, namely, they
increase students’ interaction with the educational system and adapt to the needs
of each individual student.

The development of an ASWE is a laborious activity (Hérin et al., 2002), and it
becomes even more complex when the number of adaptation possibilities increases.
The developer (usually the course teacher) has to choose the contents that will be
shown, decide on the structure of the contents, and determine which are the most

426 CRISTÓBAL ROMERO ET AL.

appropriate content elements for each type of potential user of the course. Due to
the complexity of these decisions, a one-shot design is hardly feasible, even when it
is carefully done. Instead, it will be necessary in most cases to evaluate and possi-
bly redesign the ASWE based on students’ usage information, preferably even in a
continuous manner (Ortigosa and Carro, 2002). To facilitate this we need methods
and tools to observe students’ behavior and to assist teachers in detecting possible
errors, shortcomings and possible improvements. A very promising area for such
methods and tool is data mining.

In the past few years, researchers have begun to investigate various knowledge
discovery and data mining methods (Zaı̈ane and Luo, 2001) to help teachers vali-
date ASWEs. These methods allow one to discover new knowledge based on stu-
dents’ usage data. The idea has already been successfully applied in e-commerce
systems where its use is now very popular (Spiliopoulou, 2000). Comparatively lit-
tle work in this direction has been conducted in Web-based Education yet. This is
the line of research that will be introduced in this paper.

Data mining (DM) is a multidisciplinary area in which several computing par-
adigms converge: decision tree construction, rule induction, artificial neural net-
works, instance-based learning, Bayesian learning, logic programming, statistical
algorithms, etc. (Klösgen and Zytkow, 2002). The objective of data mining is to
discover new interesting and useful knowledge. Evolutionary Algorithms (EAs) are
one of the newer methods for this purpose. The main advantages of EAs over the
classical greedy induction algorithms lie in their ability to perform a global search
and the way they treat the attribute interaction problem (Freitas, 2002). Evolu-
tionary algorithms have been inspired by Darwinian evolution (Darwin, 1859),
where each individual codifies a solution and evolves to a better individual by
means of genetic operators (mutation and crossover). Hence, evolutionary algo-
rithms perform a search in the space of the candidate individuals in a similar
manner as induction algorithms. The difference lies in the search strategy used.
Classical learning induction algorithms normally use a local greedy search strat-
egy, while evolutionary algorithms use a global search strategy. There are differ-
ent approaches to evolutionary computing. Specifically, we are going to adopt data
mining using grammar-based genetic programming (Wong and Leung, 2000).

The knowledge discovered by a data mining method should always be inter-
esting, novel and useful for the end-user (Bayardo and Agrawal, 1999). While
data mining algorithms usually discover comprehensible and exact rules, these are
often not interesting. “Interest” is also difficult to operationalize. Two types of
methods exist to select interesting rules, namely subjective and objective meth-
ods (Liu et al., 2000). Subjective methods are domain-dependent and user-directed
while objective methods are data-directed, domain-independent and use some eval-
uation measure. A large number of evaluation measures such as confidence, sup-
port, interest, gini, laplace, etc. have been described in the literature Lavrac et al.
1999; Tan et al. 2002; Yao and Zhong 1999; see Appendix A). But each of these
measures is focused on a specific aspect of the discovered rules and there is no

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 427

measure that is significantly better than the others in every application domain.
For this reason, it seems necessary to consider several measures simultaneously. A
simple way is to combine the weighted individual measures into a single metric.
However, this is not a good approach because the used measures can be in conflict
with each other and can be non-commensurable in the sense that they evaluate
very different aspects of a rule. This problem suggests the use of a multi-objec-
tive approach (Freitas, 2002) for rule discovery. In this case, the fitness value to
be optimized is not a unique value, but a vector of values, where each value mea-
sures a different aspect of the rule quality. Although there is a lot of literature
about Multi-Objective Evolutionary Algorithms (MOEA) (Coello et al., 2002; Deb,
2001), the use of MOEA for discovering rules seems to be relatively unexplored
(Ghosh and Nath, 2004). In this paper, we are going to use this approach.

We divided this paper into the following sections. We first review the back-
ground research related to the use of data mining in adaptive educational sys-
tems in Section 2. We then describe the specific knowledge discovery problem that
we want to resolve and our proposed methodology in Section 3. In Section 4,
we discuss the collection and preparation of usage data, using an ASWE that we
developed as a concrete example. In Section 5, we present the evolutionary algo-
rithms for rule discovery that we developed using multi-objective genetic program-
ming. Section 6 gives an overview of the rule discovery and visualization tool that
we developed, presents the experimental results of the different tests that we per-
formed, and describes rules that we discovered in our example ASWEs. Finally,
Section 7 summarizes the main results and conclusions, and indicates areas of
future research.

2. Related Work

The need to analyze the vast amount of information that is generated daily on the
web has spawned a considerable interest in web data mining. Web data mining is
the application of data mining methods to web data (Srivastava et al., 2000). Three
different types can be distinguished depending on the data used:

Web Content Mining tries to discover useful information from web content such
as metadata, documents, texts, audio, video, hyperlinks, etc.

Web Structure Mining mines the structure of web hyperlinks, which represent the
structure of web sites.

Web Usage Mining uses data generated by user interaction, such as access data
(log files), user profiles, transactions, queries, bookmarks, clicks, etc.

The major application areas of web usage mining are personalization, busi-
ness intelligence, usage characterization, systems improvement and site redesign
(Srivastava et al., 2000). The best developed applications are e-commerce systems
which try to understand clients’ interests to increase online sales (Spiliopoulou,
2000).

428 CRISTÓBAL ROMERO ET AL.

A more recent application of web usage mining is personalization (Pierrakos et
al., 2003), which enables information systems to adapt to users’ individual needs.
A special case is the deployment of web mining to personalize educational systems.
The use of data mining methods in e-learning systems can provide useful informa-
tion to evaluate and improve these systems. Although this research area is still in
its infancy, web-based educational systems that exploit the advantages of knowl-
edge acquisition are already being developed (Zaı̈ane and Luo, 2001).

Although discovery methods used in both areas (e-commerce and e-learning)
are similar, the objectives are different depending on the point of view. From a sys-
tem perspective, there are no differences since the objective of web mining in both
application areas is to study users’ behavior (namely of clients in e-commerce and
students in e-learning systems), evaluate this behavior, and improve the systems to
help the users. But from a user’s point of view there are differences, because the
e-commerce objective is to guide clients in purchasing while the e-learning objec-
tive is to guide students in learning. So, each of them has special characteristics
that require a different treatment of the web-mining problem.

Web mining in education is not new but was already successfully employed in
several web-based educational systems. Usually such applications consist in search-
ing users’ browsing patterns with one or more of the following algorithms:

• Association rule mining and sequential pattern analysis. These methods search
for associations among visited web pages, and analyze sequences of pages
that a user hits in a single visit or subsequent visits. In their pioneering arti-
cle, (Zaı̈ane and Luo, 2001) propose the discovery of useful patterns based
on restrictions, to help educators evaluate students’ activities in web courses.
They also use recommended agents for e-learning systems using association
rule mining (Zaı̈ane, 2002), to discover associations between user actions and
URLs. In other research (Yu et al., 2001) they use data mining technology to
find incorrect student behavior. They modify traditional web logs, and apply
fuzzy association rules to find out the relationships between each pattern of
learner’s behavior; included time spent on-line, numbers of articles read, num-
ber of articles published, number of questions asked, etc. Related research
has been carried out by (Pahl and Donnellan, 2002). Their work is based
on analyzing each student’s individual sessions. They first define the learning
period (of time) of each student and then split web server log files into indi-
vidual sessions, calculate session statistics, and search for session patterns and
time series. A third important piece of work is the one by (Wang, 2002), who
uses associative material clusters and sequences among them. This knowledge
allows teachers to study the dynamic browsing structure and to identify inter-
esting or unexpected learning patterns. To do this, he discovers two types of
relations: association relations and sequence relations between documents.

• Clustering and classification. These methods group users by navigation behav-
ior, group similar navigation behaviors, etc. This approach was developed by

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 429

Tang and McCalla (2002). They use data clustering for web learning to pro-
mote group-based collaborative learning and to provide incremental learner
diagnosis. Data clustering finds clusters of students with similar learning char-
acteristics based on the sequence and the contents of the pages they vis-
ited. (Minaei-Bidgoli and Punch, 2003) classify students based on features
extracted from the logged data, to predict their final grades. They use genetic
algorithms to optimize a combination of multiple classifiers by weighing fea-
ture vectors.

All these current approaches use the visited pages as input to the search, and
hence the discovered information describes relations between pages. In contrast, our
proposed method also searches for relations between concepts and chapter units of
web-based courses, and not only between pages. As we describe in more detail in the
next section, we aim at discovering relations to not only restructure the browsing
paths but also the curricula and contents of adaptive web-based courses.

3. Problem Description and Proposed Solution

The task of designing and developing an Adaptive Web-based Educational System
is arduous and laborious (Carro et al., 1999), due to the fact that the courseware
author must make important decisions regarding the following questions.

• How many chapters or lessons does a course contain, and which are the most
appropriate for each different knowledge level distinguished by the system
(e.g. expert, intermediate and beginning students)? What is the most adequate
organization (navigation scheme) of these chapters?

• How many concepts does a chapter include, and which ones are the most
appropriate for each student’s knowledge level? What is the most adequate
organization of these concepts?

• Which activities will be used to evaluate each concept and each chapter for
each student’s knowledge level? What is the most adequate organization of
these activities?

Due to all these decisions, it is very difficult to determine the most suitable
course structure, contents and activities for AWESs. In fact, it is very likely that
different authors would propose different curricula for the same course. Another
problem is the subjectivity when dividing the course into difficulty or accessibility
levels. These inherent difficulties in “getting ASWEs right in the first place” speak
for the merits of a different approach, namely to evaluate systems that have been
already developed based on students’ usage data, and to modify them based on
the resulting findings.

The evaluation of educational systems like ASWEs is a process of data gath-
ering to determine the value of the instruction. Currently there exist three main
evaluation paradigms (Arruabarrena et al., 2002), namely formative, summative

430 CRISTÓBAL ROMERO ET AL.

Adaptive System for
Web-based Education

ASWE
Authoring

Tool

Teacher

Students

Knowledge
Discovery

Tool Students Usage
Information

Figure 1. Proposed methodology to improve ASWEs.

and integrative evaluation. Three kinds of evaluation are commonly distinguished,
namely internal, external and global evaluation. Finally, ASWEs also lend them-
selves to special evaluation techniques, including

comparison, to evaluate the characteristics of the system vis-a-vis other systems
(that may be standards);

contact with users, to collect data about users’ behavior and attitude;
data analysis, for reviewing and assessing collected data about user’s interaction;

and
pilot testing, to study the performance of the system with potential end-users.

But teachers usually evaluate a course from a student’s point of view and focus
on evaluating students’ learning based on the scores they obtained. The course
itself is usually not modified after being published on the web, and if so, modifica-
tions are only based on teachers’ judgment or on the scores that students obtained
when using it (for example, modifications related to questions that many students
have failed). A deeper evaluation of students’ interaction needs to be carried out
though to improve a course.

Our suggested evaluation approach is based on data mining methods applied to
students’ usage data. As mentioned above, the originality of this work lies in the
type of knowledge that we aim to discover. Previous research that we described
above (Pahl and Donnellan, 2002; Tang and McCalla, 2002; Wang, 2002; Zaı̈ane
and Luo, 2001) aims at discovering associations between visited pages and thereby
analyzes sequences of pages, groups browsing patterns and/or students, etc. Our
aim is different though since we want to discover dependence relationships among
elements and not among pages. Such elements can be concepts, chapters, questions,
activities, etc. that are related to one or several different web pages in the course.
We propose a development methodology that enables us to evaluate and improve
ASWEs. Within this methodology, we added a specific evaluation step by using
data mining techniques.

The proposed methodology consists of four main steps (also see Figure 1):

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 431

1. Development of the ASWE. The teacher builds the Hypermedia Adaptive
Course, thereby providing the required information about the domain model,
the pedagogical model and the interface module (the tutor model is usually
constructed by the system itself and the data of the student model is acquired
during execution time). To this end, the teacher normally uses an authoring
tool, such as a general-purpose system like DreamWeaver, Toolbook and Direc-
tor, or a special-purpose authoring tool such as AHA! (De Bra et al., 2003),
HamWeb (De Castro and Romero, 2002), etc. After the course is completed the
ASWE becomes published on a web server.

2. Use of the ASWE. Students log in and navigate in the course using a web
browser. All information about system usage (times, levels and scores) is collected
in the background and is stored in students’ web server log files.

3. Knowledge Discovery. Students’ log files are preprocessed and transferred to a
database. Then knowledge discovery algorithms must be applied to discover
important relationships among the collected data (in our case, we want to dis-
cover rules that relate students knowledge levels, times and scores). This can be
done using a generic data mining tool like Weka (Witten and Frank, 2000), or
a specific tool like EPRules (Romero et al., 2002) that we developed. In EP-
Rules, a rule discovery algorithm must be selected as well as its parameters, and
both the objective and subjective restrictions that the discovered rules should
fulfill. After the algorithm terminates, the discovered rules are displayed, specifi-
cally the elements of the rule antecedents and consequents as well as the eval-
uation measures of each rule. The teacher then has to determine whether the
group of discovered rules is interesting or not, and which rules should be used
to advise on course modifications. This depends on their number, their qual-
ity with respect to the different measures, and their semantic meaning. If the
rules are not considered sufficiently interesting, then a different algorithm (or
the same algorithm with different parameters and restrictions) can be applied
to discover a more interesting group of rules.

4. Improving the ASWE. Based on the discovered relationships, the teacher can
perform the modifications that he considers most suitable for improving the
ASWE. For instance, he can modify the course’s structure (joining concepts,
changing the level of concepts or the chapter in which they are presented, etc.)
and modify the course content (eliminating or improving bad questions, bad
content pages, etc.). To do this, he can again use an authoring tool.

The described process can be repeated again and again as soon as enough infor-
mation from new students has been collected. This iterative process allows the
teacher to progressively improve the ASWE as more students use it.

Our aim is to discover important dependencies in the usage data that is
recorded during students’ learning sessions with ASWEs (e.g. the Linux course
described in Subsection 4.1). Specifically we aim at finding relationships that can
be expressed as IF-THEN rules. The IF-THEN rule is one of the most popular

432 CRISTÓBAL ROMERO ET AL.

forms of knowledge representation, due to its simplicity, comprehensibility and
expressive power (Klösgen and Zytkow, 2002). Depending on the represented
knowledge there are different types of rules. In the area of knowledge discovery
in databases, the most studied ones are:

Association rules The purpose of association rules (Agrawal et al., 1993) is to look
for relationships among attributes in databases (the respective attributes become
part of the antecedents and consequents of the rules). Association rules are typ-
ically used in e-commerce to model the clients’ preferences and purchases. Such
rules have the format: IF “user acquires product A” THEN “user also acquires
product B”, with values of support and confidence (Agrawal et al., 1993) higher
than a user-specified minimum threshold. In the more general form of these
rules, the rule antecedent and consequent can comprise more than one condi-
tion. The confidence of the rule is the percentage of transactions that contain
the consequent among transactions that contain the antecedent. The support of
the rule is the percentage of transactions that contain both antecedent and con-
sequent among all transactions in the data set.

Classification rules The function of classification rules (Quilan, 1987) is to obtain
the necessary knowledge to create a classification system (similar to a classifica-
tion tree). The antecedent of a rule contains requirements (in the form of con-
ditions), which match those object that belong to the class that is identified in
the consequent of the rule. From a syntactic point of view, the main difference
to association rules is that classification rules have a single condition in the con-
sequent which is the class identifier name.

Prediction rules The objective of prediction rules (Noda et al., 1999) is to pre-
dict a target attribute based on the values of other attributes. Like classification
rules, they only have a single condition in the consequent, which can however
be any attribute. Prediction rules are very popular in data mining because they
usually represent discovered knowledge at a high level of abstraction and it can
be used directly in the decision making process.

We are going to discover prediction rules through a dependence modeling task.
This data mining task consists of the prediction of relations between attributes,
which may or may not be specified by the user (Freitas, 2002). Dependence mod-
eling can be viewed as a generalization of classification rule discovery, or a spe-
cialization of association rule discovery. However, dependence modeling involves
a wider notion of dependence than is the case for classification, and it is usu-
ally associated with a much wider search space. Also, the classification task
is very asymmetric with regard to the attributes, since the target attribute or
class can only occur in the consequent and the prediction attributes only in the
antecedent. Although the association task is symmetric with the attributes, as
with prediction rules, several attributes may occur at the same time in the rule

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 433

consequent. Another difference is that association rule discovery tries to find only
the rules with at least some minimal support and confidence.

In order to demonstrate the value of our methodological proposal we have to
prove that there exist algorithms for prediction rule discovery that can yield useful
information for the improvement of an ASWE. We will show this by using data
from an adaptive course on Linux that we developed. In the following Section, we
will describe our ASWE, the usage data that we collect from it, and the data prep-
aration process to which we subject this data.

4. Collecting and Preparing Usage Information from our ASWE

4.1. a linux course based on aha!

Web servers normally log the requested files only, the times when the requests
were made, and the IP number of the requester. Even though this information is
commonly the basis of web mining, we need more information about each stu-
dent’s interaction (Heift and Nicholson, 2000): scores obtained in activities, times
for reading pages, knowledge level achieved in the assessment of students’ famil-
iarity with concepts and chapters, etc.

We developed an adaptive web-based course of Linux using AHA! version 1.0
(Romero et al., 2002) to obtain the usage information we needed. AHA! is a
general architecture for developing adaptive hypermedia applications. We selected
AHA! to build and enhance our course because: (a) it lets us convert any type
of web-based applications into adaptive versions, (b) it stores usage information
in log files, (c) it has an adaptive engine which uses adaptation techniques (con-
ditional inclusion of text fragments, and disabling or annotation of links), and (d)
its source code is available (De Bra et al., 2000). It has been necessary to modify
AHA! in order to be able to perform the adaptation depending on the knowledge
level of each particular student, in the following manner (Romero et al., 2002):

Domain Model. Like many other contemporary ITS systems, our course material
is stratified into several difficulty levels. A course consists of several chapters
that are organized in lessons. Each lesson includes several concepts, and each
concept is assigned to a difficulty level (namely HIGH, MEDIUM or LOW).

User Model. User models in AHA! consist of a set of concepts with attributes.
We changed students’ knowledge attribute for concepts and chapters: while it
ranges from 0 to 100 in AHA!, we only introduced the discrete values 0 (NOT
YET READ), 10 (BEGINNER), 50 (NORMAL) and 100 (EXPERT).

Adaptation Engine. We perform the adaptation from a chapter view point (see
Figure 2). Before they begin with a new chapter, students have to take an
initial adaptive test to determine their initial knowledge level. Then the sys-
tem presents only those concepts to them that have a suitable difficulty level.
Students have to read the instructional pages and perform the assessment
activities for each concept. Eventually they have to take a final test to evaluate

434 CRISTÓBAL ROMERO ET AL.

Initial Test
adaptive
with few

questions
about all
chapter

concepts

Set Initial
Level

and select
difficulty level

to present
chapter

Final Test
only

concept
with

difificulty
level 2

Activity

Set
concept level

INITIAL
EVALUATION Difficulty level 0

Difficulty level 1

Difficulty level 2

Concept 1.1

Activity

Concept 0.1 Activity

Concept 2.1

CONCEPTS EVALUATION
FINAL

EVALUATION

Chapter 2

COURSE

Chapter 1

Chapter 3

Chapter 2

Chapter N

Set
concept level

Set
concept level

Lesson 0.1

Lesson 1.1

Lesson 2.1

Lesson 2.2

Final Test
only

concept
with

difificulty
level 1

Set Final
Level

and select
next difficulty
level of the

same
chapter or
anothers
chapter

Lesson 1.2

Final Test
only

concept
with

difificulty
level 0

Lesson 0.2

Figure 2. Modified AHA! adaptation engine.

their knowledge about the chapter. Students may thereafter repeat the chapter
at the same level (if they obtained the BEGINNER level), go on to a higher
level for the same chapter, or pass to another chapter (if they obtained a NOR-
MAL or EXPERT level). This process repeated for every chapter.

Based on this modified AHA! version, we developed a course about the oper-
ating system Linux. Our changes to the original AHA! system enable us to adapt
the hypermedia presentation to the knowledge level of each student. In Figure 3,
the same chapter from the Linux course is shown at three different difficulty lev-
els: BEGINNER (left), NORMAL (middle) and EXPERT (right). Each version
starts with a different concept explanation that is suited to the respective knowl-
edge level. This presumed knowledge level is also expressed by the background
color of the pages and the text label: Nivel 0 (BEGINNER), Nivel 1 (NORMAL)
and Nivel 2 (EXPERT). The Linux course has been taken by 50 students in Com-
puter Science Engineering at the University of Córdoba.

The original AHA! (1.0) stores information about each students’ navigation and
knowledge in two different files. We added another log file to store the scores of
activities and test questions. For each student, the specific contents of these three
files are:

Log is a text file that contains information about the name and the time (in sec-
onds) of each visited page. It is similar to the traditional web log file.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 435

Figure 3. Three different levels of the Introduction Chapter of the Linux course.

Model is an XML file that records the knowledge levels that students have
attained for each concept and chapter, in a discrete numerical form (0, 10, 50
or 100).

Test is a text file with information about students’ successes or failures in the test
and activities questions (YES or NO value).

4.2. data preparation

All information in the three log files must be transformed and stored in (rela-
tional database) before data mining algorithms can be applied, to facilitate the
algorithms and increase their speed when searching for rules. The following pre-
processing tasks are being carried out during this process (Freitas, 2002).

4.2.1. Attribute Selection

The main goal of attribute selection is to choose a subset of relevant attributes
from all available attributes of the data being mined. We selected these attributes
manually, namely user name (student name), course (name of the course), name
(name of the page, concept or chapter), type (instructional page, activity page, test
page, concept or chapter), difficulty (assigned navigation level), repetition (number
of repetitions), time (interval time used), score (obtained success or failure), level
(obtained knowledge level).

4.2.2. Data Cleaning

This activity consists in looking for erroneous or irrelevant data and discarding
it. We discovered several types of errors: long times (longer than 10 minutes) and
incomplete data (incompletely visited chapters, and unfinished tests and activities).
We also discovered several types of irrelevant data: container pages (frame pages),

436 CRISTÓBAL ROMERO ET AL.

index pages (table of contents pages), help pages and log out pages. We discarded
all this information.

4.2.3. Transforming Continuous Attributes

This activity consists in transforming continuous attributes into discrete attributes
that can be treated as categorical attributes. The basic idea is to partition the
value domain of a continuous attribute into a small number of intervals. We can
choose among the following unsupervised global methods (Dougherty et al., 1995):
the equal-width method, equal-frequency method or the manual method (in which
you have to specify the cut-off points). We only transformed the attribute time
and assigned three values or labels to it (HIGH, MEDIUM and LOW), using the
equal-width method.

4.2.4. Data Integration

The goal of data integration is to group together all the data from different
sources. In our case, we gathered all preprocessed data from the three log files of
each student in a MySQL relational database (Dubois, 2003). We used MySQL
because it is portable, fast and free. In Figure 4 we show the relational scheme of
the students’ usage information database that we used.

5. Evolutionary Algorithms for Rule Discovery

Rule discovery is a classical problem, which has been approached using different
methods such as the construction of decision trees, inductive learning, instance-
base learning, and more recently neural nets and evolutionary algorithms (Witten
and Frank, 2000). Of these, decision tree construction is currently most frequently
used in data mining. These algorithms are very fast and surprisingly effective in
finding precise classifiers. As they use greedy heuristics to divide data, they may
however fail to find some multi-variable relationships. But there exists alternative
algorithms that aim at conducting more meticulous searches. One such example are
evolutionary algorithms (EAs), which can implicitly backtrack when searching a

Student

PK ID Student

Name
Password
Course

Element

PK ID Element

Name
Type
Difficulty

Student-Element

PK,FK1 ID Student
PK,FK2 ID Element
PK ID Repetition

Time
Score
Level

Figure 4. Database relational scheme.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 437

rule space. This ability allows them to find complex interactions among attributes
that other types of algorithms are not able to find.

In the context of rule discovery using EAs (Freitas, 1997), an individual rep-
resents a rule or a group of candidate rules. The fitness function corresponds to
some evaluation measure for the rule quality. A selection procedure uses the fitness
value to choose the best rules. Genetic operators transform the candidate rules
into new rules. The main advantages in adopting EAs are the ability to work in
a search space thoroughly, and the ability to allow arbitrary fitness functions in
the search (Dhar et al., 2000). Main disadvantages are their low speed and the
randomness of their initial population. The main motivation to use evolutionary
algorithms for rule discovery is that they perform a global search, and cope better
with attribute interaction than greedy rule algorithms commonly used in data min-
ing. Most data mining methods are based on rule induction, where the algorithm
usually performs a kind of local search. Also, the fitness function in evolutionary
algorithms evaluates the individual as a whole, i. e. all the interactions among attri-
butes are taken into account. In contrast, most rule induction methods select one
attribute at a time and evaluate partially constructed candidate rules, rather than
full candidate rules.

Prediction rule discovery with evolutionary algorithms can be carried out with
two different approaches: restricted or unrestricted. In the restricted approach (Fre-
itas, 2002), the problem is treated as classification rule discovery in which users
have to specify the attribute(s) that are to be predicted. That is, individuals only
represent the rule antecedent conditions. The objective is to discover the best
conditions that predict the previously set attributes. In the unrestricted approach
(Romero et al., 2002), the problem is treated as association rule discovery and the
individuals represent complete rules with the antecedent and the consequent condi-
tion. In this case, the objective is to discover the best rules that predict any attri-
bute. For our purposes we are going to use the unrestricted approach, but users
can still specify some filters to find certain types of rules (with or without a spe-
cific type of condition in the rule antecedent or consequent, a maximum number
of conditions in the rule, etc.)

5.1. grammar-based genetic programming for discovering prediction rules

Within Evolutionary Algorithms, several subtypes can be distinguished, such as
Evolutionary Programming, Evolutionary Strategies, Genetic Algorithms (GA) and
Genetic Programming. The latter two approaches are the most common for rule
discovery. GAs for rule discovery can be further divided into two main approaches
(Freitas, 2001), based on how rules are encoded in the population of individuals.
In the Michigan approach, each individual encodes a single prediction rule, and
in the Pittsburgh approach a set of prediction rules. The predominant approach is
Michigan, in which an individual is usually a linear string of rule conditions, where
each condition is often an attribute-value pair. This approach makes the encoding

438 CRISTÓBAL ROMERO ET AL.

of individuals simpler and syntactically shorter. In the Pittsburgh approach the
individual encoding is more complicated and syntactically longer, but the fitness
of an individual can be evaluated by considering its rule set as a whole.

Genetic Programming (Koza, 1992) is similar to a version of Genetic Algo-
rithms that uses trees to represent individuals. Although GA is a more widely used,
GP can be considered as the more open-ended search paradigm. In general, GP
has a higher expressivity and can discover interesting and surprising rules (Gilbert
et al., 1998). The search performed by GP can be very useful, since it can produce
many different combinations of attributes. A basic genetic programming system
consists of five components (Koza, 1992): representation for programs or genome
structure, a procedure to initialize a population of programs, a fitness function to
evaluate the performance of the program, genetic operators, and parameters.

In GP, an individual is usually represented by a tree, with rule conditions and/or
attributes values in the leaf nodes and functions in the internal nodes. However,
there is a problem when rules are encoded into a GP individual, due to the closure
property of GP (Freitas, 2001). This property requires that the output of a node in
a tree can be used as the input to any parent node in the tree (that is, both nodes
have to belong to the same type). There are different approaches of GP that cope
with the requirement of closure, such as Strongly Typed (or “Constrained-Syntax”)
Genetic Programming and Grammar-Based Genetic Programming (GBGP).

In GBGP, individuals are represented as a derivation tree of a user-defined
grammar to specify the problem solution space (Whigham, 1995). GBGP systems
use grammars to impose syntactical constrains on programs. The use of gram-
mars also helps one to overcome the closure requirement in canonical genetic pro-
gramming, which cannot always be readily met. The grammar can be used to
enforce elaborate semantic restrictions based on the domain knowledge provided
by a domain expert. We chose GBGP due to its expressivity and its ability to inter-
act with users, who can select different types of desired rules by restricting only the
grammar. GBGP demonstrated high performance on a number of problems and
has been considered as one of the most promising areas in genetic programming
(Nordin et al., 1998). In the following, we will describe several pieces of work on
the use of Genetic Programming for rule discovery.

One of the first systems that use GP for knowledge discovery is MASSON (Ryu
and Eick, 1996). It focuses on discovering the common characteristics of a set of
objects in an object-oriented database. The commonalities between a set of objects
are specified using object-oriented queries. MASSON employs GP to search inter-
esting queries and evaluates them to see whether queries compute the same set of
objects that are given by the user.

In related work, (Ratle and Sebag, 2000) use genetic programming for the dis-
covery of empirical laws. They propose a way for enforcing dimensional con-
straints through formal grammars, to restrict the GP search space to dimensionally
admissible laws. They use grammar rules to incorporate dimensionality constraints

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 439

into GP, and an initialization procedure based on dynamic pruning of the gram-
mar to generate only feasible trees of a prescribed derivation depth.

The LOGic grammar-based GENetic PROgramming system (LOGENPRO,
(Wong and Leung, 2000)) uses Inductive Logic Programming (ILP) and genetic
programming to impose syntactic and semantic restrictions. The authors describe a
framework, called GCP (Generic Genetic Programming), which integrates genetic
programming with a formalism of logic grammars. This formalism is powerful
enough to represent context-sensitive information and domain-dependent knowl-
edge. This knowledge can be used to increase the learning speed and/or improve
the quality of the knowledge induced.

In other research (Freitas, 1997) uses a genetic programming framework for
classification and generalized rule induction. He emphasizes the integration of
a GP algorithm with relational database systems, which leads to decrease data
redundancy, and to improved scalability, portability and control of data privacy.

Finally, (Bojarczuk et al., 2001) use genetic programming to discover classifica-
tion rules for diagnosing certain pathologies in medical databases. They employ
constrained-syntax GP, in which some restrictions must be satisfied to obtain a
valid rule. They use several medical databases (e.g. on chest pain, dermatology and
breast cancer) for discovering high-level comprehensible classification rules.

As we can see, most of the work using Genetic Programming for rule discovery
is focused on classification rules. In this specific approach, the rule consequent is
not a typical condition (attribute-value pair) but a single name (namely the name
of the class). Consequently, many approaches only encode the antecedent of the
rule in the individuals. Our approach is more general in that we want to discover
prediction rules that are more general than classification rules (see Section 3). The
main difference in our approach is that we encode both the antecedent and the
consequent of the rules in the individual. We are going to describe our approach
to GBGP for discovering prediction rules in the following.

5.2. encoding of individuals

In the encoding of individuals with Evolutionary Algorithms we have to distin-
guish between the phenotype and the genotype of individuals, especially in our
GBGP approach.

Genotype. The genotype is the genetic composition of the individual. In our case
the genotype is a syntax tree of instructions, which we implemented as a list of
integers (Ventura et al., 2002).

Phenotype. The phenotype is the meaning of the genetic material of the user. The
phenotype of our individuals are prediction rules. The meaning of these rules is
provided by a grammar. Each individual generated by the GBGP is evaluated
against the database using several queries in order to compute the contingency
table (see Appendix A).

440 CRISTÓBAL ROMERO ET AL.

Table I. Rule prediction grammar in EBNF

<rule> ::= IF <antecedent> THEN <consequent>
<antecedent> ::= <antecedent> AND <condition> | <condition>

<consequent> ::= <condition>

<condition> ::= <level-attribute> = <level-value> |
<time-attribute> = <time-value> |
<success-attribute> = <success-value>

<level-attribute> ::= LEVEL.Name of a valid level attribute
<time-attribute> ::= TIME.Name of a valid time attribute
<success-attribute> ::= SUCCESS.Name of a valid success attribute
<level-value> ::= BEGINNER | NORMAL | EXPERT
<time-value> ::= HIGH | MEDIUM | LOW
<success-value> ::= YES | NO

Table II. Functions and arguments

Functions Input arguments Output arguments

IF THEN boolean boolean
AND categorical boolean
= categorical categorical

Table I shows the grammar that we use to generate the individuals that repre-
sent prediction rules. Prediction rules consist of an antecedent with several con-
ditions and consequents with only one condition. Each condition relates to an
attribute (about time, success and knowledge level), with one possible value for
the attribute. We do not show all terminal symbols of valid attribute names since
there are too many (namely all names of concepts, chapters, and instructional
pages, activity pages and test pages). All attribute values are categorical or nomi-
nal. Table II shows the functions or non-terminal symbols of our grammar.

Figure 5 shows an example rule generated by our grammar. The meaning of
this rule is that students, when rated as EXPERT in the concept CHARACTERIS-
TIC in the INTRODUCTION chapter at the level HIGH, fail in question number
two of the activity of this concept, and they also need a HIGH time to answer
that question. This rule thus shows that something is wrong with this question.
The teacher should review it and decide whether to change the explanation or the
answers of the question.

5.3. evolutionary algorithm

The evolutionary algorithm that we implemented to discover prediction rules is a
generational GP with an external elite file. This means that we use two different
groups of individuals: one represents the current population in each generation,
and the other represents the elite population with the best individuals that will be

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 441

<rule>

IF <antecedent> THEN <consequent>

<condition>AND

<t-attribute> <time-value>= <l-attribute> <level-value>=

<s-attribute> <success-value>=

<antecedent> <condition>

<condition>

SUCCESS.characteristic-
introduction-high(2)

TIME.characteristic-
introduction-high(2)

HIGH LEVEL.characteristic-
introduction-high

NO

EXPERT

IF SUCCESS.characteristic-introduction-high(2)=NO AND
TIME.characteristic-introduction-high(2)=HIGH

THEN LEVEL.characteristic-introduction-high=EXPERT

Figure 5. Derivation tree of example rule.

Table III. Evolutionary algorithm

Begin
Generate an initial population P from selected data
Create an empty file E
While (current-generation < max-generation) do

Select parents from P and E.
Apply genetic operator over selected parents.
Evaluate obtained children with a single or multi-objective approach.
Update individuals in P and add the best new individuals to E.
Increase current-generation by one.

End While
End

finally returned to the user as the set of discovered rules. Table III shows the evo-
lutionary algorithm.

The first step is to create the initial population P (whose size is fixed) from the
initial data chosen by the user (see Section 5.4). We must also create an external
file E (with variable size) that is initially empty, to store the best individuals of
the current population in each generation step. From the current population P and
elite file E we then select the parents that are to be reproduced (see Section 5.7).
The children are generated by applying genetic operators (see Section 5.5). Later
they are evaluated using a multi-objective or single-objective approach (see Sec-
tion 5.6). Thereafter the elite population is updated by adding the best new indi-
viduals of the current population P. This process is repeated until a maximum
number of generations has been reached. In the following, we will describe these
steps of our GBGP algorithm in more detail.

442 CRISTÓBAL ROMERO ET AL.

5.4. initialization

Initialization consists in generating a group of initial rules. The teacher must select
the data that will be used to construct them. He can choose all available values, a
range of values (those with a relative frequency greater than a specific threshold),
frequent values, or infrequent values. These initial elements are the only ones used
to generate initial rules. There are two reasons for allowing the use of different
initialization data. The first is to compare the performance of the algorithm with
different types and amounts of data: a large amount (namely all data), a small
amount (the most frequent data), and an average amount (a range of data). The
second reason is to prove the merits of using a representative data set instead of
all data. We propose to use range data rather than all data, or only very frequent
or infrequent data which apply to almost every or hardly any student.

Then we compose the initial rules from these selected data by deciding ran-
domly which elements will be put into the antecedents and the consequents of the
rules. The user can specify a maximum size for all rules. The size of the rule var-
ies dynamically depending on the number of elements in the antecedent. The last
element always represents the consequent. After creating the initial population, we
have to verify that the rules are always correct. Although all rules generated by our
grammar (see Table I) are syntactically correct, some of them may be semantically
incorrect (e.g., rules with the same condition in the antecedent and consequent, or
rules with a repeated condition in the antecedent). This problem is caused by the
fact that we use a context-free grammar. To solve it, we use a specific repair oper-
ator (see Section 5.5.3).

The elite population is generated in a different way depending on the type of
evolutionary approach used: mono-objective or multi-objective. In the case of only
one evaluation measure, we set a threshold so that only the individuals with a
higher value will be added to the elite group. In the case of several simultaneous
evaluation measures, we use approaches based on the concept of Pareto Front
(Fonseca and Fleming, 1993) in which only non-dominated individuals are chosen
to be added.

5.5. genetic operators

We use three genetic operators, namely selective crossing, selective mutation
(Whigham, 1995) and a specific repair operator.

5.5.1. Selective Crossover

Selective crossing is comparable to crossing trees in genetic programming, where
two subtrees of each parent tree are mixed to form two new child trees. But in
selective crossover, the crossing point has to be selected from non-terminal sym-
bols and has to be the same in both subtrees to be crossed. Also, the subtrees

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 443

to be exchanged have to be semantically compatible. Selective crossover can per-
form five different exchange operations on rules, namely on the antecedents, con-
sequents, conditions, condition attributes and condition values. We can vary the
probability of each operation when we configure the parameters of the algorithm.

5.5.2. Selective Mutation

Selective mutation is also comparable to mutation trees in genetic programming,
where a subtree is mutated to create a new tree. But selective mutation rebuilds
only a specific subtree that has a non-terminal root node. This operator maintains
the population diversity, and we can also vary the probability of each non-terminal
symbol to be chosen as the root node in the mutation.

5.5.3. Repair

We use a specific repair operator to fix incorrect individuals. An individual can be
syntactically correct (generated by the grammar), but semantically incorrect (like
e.g. a rule with the same condition in the antecedent and consequent, or with
duplicate conditions). To solve this problem, we use the “Reparation” operator
which performs a simple mutation on the condition until the problem disappears.

5.6. evaluation

Evaluation consists in computing the fitness function, i. e. the quality evalua-
tion function of the current rules. There exist numerous rule evaluation mea-
sures (Lavrac et al., 1999; Tan et al., 2002; Yao and Zhong, 1999) from statis-
tics, machine learning and data mining (see Appendix A). These measures try to
evaluate different features of the rule (precision, interest, reliability, comprehension,
simplicity, etc.), and there is no single measure that is optimal in all application
domains. It therefore seems best to use several measures and to optimize not only
a single function but several functions simultaneously, similar to multi-objective
optimization (Fonseca and Fleming, 1993). There are different approaches to solve
this problem of multi-objective optimization with evolutionary algorithms: one
approach is to use aggregation functions, another is to use the concept of Pareto
Front.

5.6.1. Aggregation Function

In the case of aggregation functions, the evaluation function is a linear combina-
tion of different measures that need to be optimized (Deb, 2001). The weight of
each component in the linear combination represents the relative importance of
each single measure in the global function. There are several examples of aggre-
gation functions for rule discovery in the literature, including the following ones:

444 CRISTÓBAL ROMERO ET AL.

– The aggregation function of (Araujo et al., 1999) consists of two components
(see Equation 1): the first one uses the J -measure (Smythe and Goodman,
1992) that is related to the interest of the rule, and the second uses the number
of potential attributes of the antecedent.

Fitness(A → C) =
w1 ∗ J1 ∗ w2 ∗ npu

nT

w1 + w2
(1)

where J1 is the one-sided variant of the J-measure, npu is the number of poten-
tially useful attributes in the antecedent, nT is the total number of attributes in
the antecedent, and w1, w2 are user-defined weights.

– The aggregation function of (Liu and Kwok, 2000) consists of three compo-
nents (see Equation 2): the first is the Laplace function (Bayardo and Agrawal,
1999) to measure the consistency of the rule, the second represents its complete-
ness, and the third its comprehensibility (Liu and Kwok, 2000).

Fitness(A → C) = w1 ∗ Lap(A → C) + w2 ∗ p(AC)

p(C)

+w3 ∗ Simp(A → C) (2)

where Lap is the Laplace measure, p is the relative frequency, Simp is the sim-
plicity measure which decreases when the number of conditions in the rule ante-
cedent increases, and w1, w2 and w3 are user-defined weights.

– The aggregation function of (Freitas, 2002) consists of two components (see
Equation 3): the first represents the accuracy and the second the comprehen-
sibility of the rule (Liu and Kwok, 2000).

Fitness(A → C) = w1 ∗ p(AC)

p(AC) + p(A¬C)
+ w2 ∗ Simp(A → C) (3)

where p is the relative frequency, Simp is the simplicity, and w1 and w2 are
user-defined weights.

5.6.2. Pareto Front

The algorithms based on the concept of Pareto Front (Fonseca and Fleming,
1993) use a vector of objectives to optimize within individuals. The purpose is to
make populations converge towards the group of best solutions (which are dubbed
Pareto Front). In this way, the final solution is the best in terms of all objectives
combined and not in any specific one. There are different algorithms within this
approach, including:

– MOGA (Multi-Objective Genetic Algorithm) (Fonseca and Fleming, 1993) is
based on the idea of ordering individuals depending on their non-dominance.
The order (rank) of each individual corresponds to the number of individuals
by which it is dominated. The non-dominated individuals have an order of one,
while the rest are penalized according to the number of individuals by which

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 445

they are dominated. An individual is dominated by another individual if it is
equal or worse in some of the objectives.

– NSGA (Non-dominated Sorting Genetic Algorithm) (Srinivas and Deb, 1994)
is based on several steps of the classification of individuals. It also establishes
ranges between individuals based on their non-dominance. First the population
is ordered using the non-dominance concept. Then the aptitude is assigned to
each individual depending on its range inside the population using an aptitude
sharing method.

Finally, in all evolutionary algorithms based on the concept of Pareto Front, it
is necessary to choose the specific objectives to be used. In our case, we have to
choose what the rule quality evaluation measures are which we want to optimize.
The knowledge discovered by a data mining algorithm should satisfy three main
aspects (Freitas, 2002): it should be accurate (certainty), interesting (novel, surpris-
ing, useful) and comprehensible (simple).

Accuracy. The concept of rule accuracy (Lavrac et al., 1999) that we used is the
same as confidence in association rule mining, in which rule accuracy measures
the reliability of the rule in the prediction of positives cases. So we measured
the accuracy of the discovered rules using the whole data set, as is done in asso-
ciation rule mining, and did not use different test and training sets as done in
classification.

Interestingness. Rule interestingness (Piatesky-Shapiro and Metheus, 1994) can be
measured using two types of measures: subjective (user-driven) (Silberschatz
and Tuzhilin, 1995) and objective (data-driven) (Tan et al., 2002). We use con-
straints of the user regarding the rules he wants to discover as well as an objec-
tive measure of rule interestingness.

Comprehensibility. The discovered knowledge must be comprehensible (Askira-
Gelman, 1998) to the user. To achieve this goal we use a high-level knowledge
representation (namely IF-THEN rules), measure the size of the rule (number
of conditions), and count the number of discovered rules.

We use these three criteria to measure the quality of discovered rules. We
employ a three-dimensional vector where each dimension measures one of these
aspects. The specific measures we use are:

• Certainty Factor. The Certainty Factor (Shortliffe and Buchanan, 1975) is a
measure of the rule precision. It can be used instead of the confidence with
better results (Delgado et al., 2001). The certainty factor of a rule A → C,
where A is the antecedent of the rule, and C is the consequent of the rule, is

CF(A → C) = max

(
p(C/A) − p(C)

1 − p(C)
,
p(A/C) − p(A)

1 − p(A)

)
(4)

where max is the maximum function and p is the relative frequency.

446 CRISTÓBAL ROMERO ET AL.

• Interestingness. The interestingness (Tan et al., 2002) is a measure related to
the rule interest that can outperform the classic Piatetsky-Shapiro measure of
interest (Silverstein et al., 1998). The interestingness of a rule A → C, is

IS(A → C) =
√

I (A → C) ∗ p(CA)

N
(5)

where I is the Piatetsky-Shapiro measure of rule interest, p is the relative fre-
quency and N is the total number of data instances.

• Simplicity. The simplicity (Liu and Kwok, 2000) is a measure of rule com-
pressibility so that the shorter the rule, the more comprehensible it is. The
simplicity of a rule A → C, is

Simp(A → C) =
(

1 − AntecedentSize

MaximumSize

)
(6)

where AntecedentSize is the number of conditions in the antecedent and Max-
imumSize is the maximum number of conditions in the antecedent. We have
normalized the measure to take on values in the range of zero to one.

We selected these three measures because several referenced works
Delgado et al. (2001), Tan et al. (2002) and Liu and Kwok (2000) have proven that
they offer insight individually. And we want to prove that using them together in
a multi-objective function can offer even better insight.

5.7. selection

Selection consists in the election of two rules from the population P and from the
elite population E to be parents in the reproduction (by crossing or mutation). We
use rank-based selection (linear ranking) that first ranks the population according
to its evaluation value (fitness function value) and then every rule receives its final
fit from its ranking (Michalski, 1998). Hence, the worst rule (the rule with lowest
fitness value) will receive fitness 1, the second worst fitness 2, etc., and the best will
obtain fitness N , where N is the number of rules in the population. Parents are
selected according to their fitness. With this method, all rules have a chance to be
selected, and the probability to select an individual is proportional to its position.

In order to assure diversity in the population, we also use a metric represent-
ing the number of different conditions in the antecedent and consequent of each
rule. The individuals with a higher value in this metric are structurally the most
different and will be more probably elected. We also assure that there are no
repeated individuals in the population, in order to avoid the problem of premature
convergence.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 447

6. Implementation and Experimental Results

In this section, we describe the different knowledge discovery algorithms that we
implemented, and the specific software for applying them to improve ASWEs. We
will also describe different tests that were performed and compare the results from
different algorithms.

6.1. implementation of eprules

To facilitate the complete process of prediction rule discovery, we developed a spe-
cial tool named EPRules (Education Prediction Rules, see Figure 6). It is intended
directly for the teacher or the course developer. Non-experts in data-mining can
use it much more easily than other generic tools such as DBMiner (Klösgen and
Zytkow, 2002) and Weka (Witten and Frank, 2000). On the other hand, it is more
powerful for discovering knowledge in ASWEs than general-purpose tools since it
is a special-purpose tool and uses specific domain knowledge.

The main components of the EPRules tool interface (Figure 7) are:

Data input. This component allows one to open an existing database with course
usage data, or to create a new database and to add and preprocess new student
usage information. The parameters for transforming the time-variable can also
be selected and configured (see Section 4.2.3). When duplicate data is encoun-
tered (e.g., pages that were visited or activities that were performed more than
once), EPRules can only use one instance. By default, it will use the last record
but can be configured to use the first.

Data viewer. This component allows us to visualize students’ usage data and to
compute basic statistics (maximum, minimum, average, etc.). It can selected to
visualize the data of all or a specific student, and to restrict the display further
to a particular chapter of the course, a specific concept of a chapter, a specific

Modified
AHA!

Courseware Author

BD

log
files

model
files

test
files

EPRules

Data Input Data View
Prediction

Rule
Discovery

Knowledge
View

Figure 6. EPRules interface components.

448 CRISTÓBAL ROMERO ET AL.

Figure 7. The data input window in the EPRules tool.

difficulty level of a chapter (high, normal, low), or a particular type of infor-
mation (time, level or score).

Prediction rule discovery. This is the most important part of the tool because this
is where the different algorithms for rule discovery are applied. It allows us to:

1. select one of the available rule discovery algorithms: ID3 (a decision trees
construction algorithm, (Quilan, 1987)), Apriori (an association rule mining
algorithm, (Agrawal et al., 1993), Prism (covering algorithms, (Cendrowska,
1987)) or GBGP;

2. set the specific execution parameters of each algorithm;
3. select the subjective restrictions that rules should match (see Figure 8),

namely just one particular chapter or concept, a single student, and a spe-
cific knowledge level, score or time; and

4. choose the objective evaluation function, so that the discovered rules are
really useful to the teacher.

Knowledge viewer. This component allows us to visualize the discovered prediction
rules in a window. On the left side it shows the antecedent and consequent condi-
tions of the rules, and on the right side the value of all rule evaluation measures
(confidence, support, interest, gini, laplace, etc., see Appendix A). The window
with the knowledge view appears automatically after the rule discovery algorithm
finished its job. Rules are listed in the order of their discovery, but can also be
ordered differently based on the value of any measure or condition, or can be
manually rearranged by clicking at one of the columns.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 449

Figure 8. The restrictions window in the EPRules tool.

EPRules includes three classic knowledge discovery algorithms written in Java,
namely ID3, Prism and Apriori. We chose to implement these algorithms since
they are among the most representative methods for rule discovery (Witten and
Frank, 2000), and since other authors have previously used them in comparison
tests with new proposed algorithms (Freitas, 2002; Hipp et al., 2000). We had to
adapt these algorithms to the specific discovery of prediction rules though. The
only change that we applied to these algorithms was to ensure a common rule for-
mat. The conversion from an association rule algorithm to a prediction rule algo-
rithm is trivial, since it is only necessary to force rule consequents to have a single
condition. When converting classification rule algorithms and covering algorithms
into prediction rule algorithms, the consequent or class of the rule can be any
condition (any attribute value pair). Moreover, if we want to extract rules with N

different attributes, we have to run the algorithm N times, using a different attri-
bute as the condition of the consequent in each case.

The GBGP algorithms (with aggregation functions, or based on Pareto Front)
have also been implemented in Java using Jclec, a Java Class Library for
Evolutionary Computation (Ventura et al., 2002). The GBGP implementation
in the Jclec library encodes syntactic trees as vectors of ordered integers that
represent the pre-order traversal of the tree. In order to evaluate the individuals
it is necessary to transform the list of integers into several SQL queries (Sarawagi
et al., 1998), to determine the values of the evaluation measures used in each case.

450 CRISTÓBAL ROMERO ET AL.

Table IV. Evolutionary algorithm parameters

Initialization stage
Size of population 50, 100 and 200 individuals
Initialization method Ramp based initialization
Minimum number of productions 9
Maximum number of productions 18

Reproduction stage
Selection method Rank based selection
Crossover operator Selective crossover
Probability of success 0.8
< antecedent >, < consequent > roulette value 1
< condition > roulette value 4
< attribute >, < value > roulette value 2
Mutation operator Selective mutation
Probability of success 0.2
< antecedent >, < consequent > roulette value 1
< condition > roulette value 1
< attribute >, < value > roulette value 1

Stop stage
Maximum number of generations 50

6.2. description of the experiments

We have used the usage data of 50 users of our adaptive Linux course (see
Section 4.1). We carried out two types of tests to compare the implemented knowl-
edge discovery algorithms: one for the number of discovered rules and the com-
putational costs and the other for the quality of these rules. We also performed
these tests on populations of three different sizes. More precisely we used all avail-
able data, frequent data only (with a relative frequency higher than 0.5), and range
data only (with a relative frequency between 0.2 and 0.9). In the case of evolution-
ary algorithms we ran ten cycles, using the parameters shown in Table IV.

We want to compare classic algorithms with evolutionary algorithms under sim-
ilar conditions without giving either of them an undue advantage. We therefore
used the same type of rule (prediction rule), the same initial data elements and the
same maximum number of elements in the antecedent of the rule (namely three).
We also used typical parameter values for each algorithm that needs them (mini-
mal support and confidence, number of generations, etc.).

6.3. performance of the algorithms

We counted the number of rules that the implemented algorithms discovered under
EPRules, and determined the percentage of accurate, interesting and comprehen-
sible rules. We then compared classic algorithms (ID3, Prism and Apriori) with
the average result from the mentioned earlier evolutionary algorithms (Liu, Freitas,

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 451

Table V. Total number of rules and number of accurate, interesting and comprehensible rules
discovered by each algorithm using all data

Total Accurate Interesting Comprehensible

ID3 474 218 10 42
Prism 657 473 16 26
Apriori 5960 4529 244 774
Liu 317 200 43 72
Freitas 284 173 59 68
Araujo 350 210 141 17
MOGA 98 82 56 24
NSGA 75 69 55 19

Figure 9. Total number of discovered rules.

Araujo, MOGA and NSGA), and also these evolutionary algorithms individually
with each other.

Number of Discovered Rules. Figure 9 shows the total number of discovered rules
for classic algorithms, evolutionary algorithms, and the average of different ver-
sions of GBGP (note the scale difference between the left and right diagrams).
We see that classic algorithms discover a huge number of rules, especially when
all data is used and also with the Apriori algorithm. This effect is attenuated
by a decrease in the population size (cf. range data and frequent data). On the
right-hand side, we see that the algorithm that discovers the lowest number of
rules is NSGA, followed by MOGA. Table V shows the total number of rules
and the number of accurate (certainty > 0.7), interesting (interesting > 0.5) and
comprehensible (simplicity > 0.5) rules obtained by using all data. We see that
Apriori algorithm always generates a bigger number of accurate, interesting and
comprehensible rules.

Total Execution Time. Figure 10 shows that evolutionary algorithms are much
faster than classic algorithms when all data is used. But the fastest algorithm
for frequent data is Apriori, which is not surprising. On the right-hand side we
see no significant differences between the implemented evolutionary algorithms
(note again the different scales).

452 CRISTÓBAL ROMERO ET AL.

Percentage of Accurate Rules. Figure 11 shows the percentage of accurate rules
(with a certainty factor greater than 0.7). We see that Apriori discovers a very
high percentage of accurate rules, and so do the algorithms based on Pareto
Front (MOGA and NSGA).

Percentage of Interesting Rules. Figure 12 shows the percentage of interesting
rules (with an interestingness greater than 0.5). We see that only some of evo-
lutionary algorithms discover a higher percentage of interesting rules than clas-
sic algorithms. These best results are obtained with algorithms based on Pareto
Front and Araujo’s Aggregation Function (Araujo’s algorithm contains a com-
ponent related to interest).

Percentage of Comprehensible Rules. Figure 13 shows the percentage of compre-
hensible rules (with a simplicity value greater than 0.5). We can see that some
evolutionary algorithms discover a higher percentage of comprehensible rules,
especially algorithms based on Pareto Front and Liu’s and Freitas’ Aggrega-
tion Function (Liu’s and Freitas’ algorithms contain a component related to
simplicity).

We are now going to summarize the main results from the previous compari-
sons.

Figure 10. Total execution time (in seconds).

Figure 11. Percentage of accurate rules.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 453

Figure 12. Percentage of interesting rules.

Figure 13. Percentage of comprehensible rules.

In general, classic algorithms (mainly Apriori) discover a bigger number of very
accurate rules and are very fast when applied to frequent data. However, the
percentage of short rules with high interestingness is low for them (although the
total number of short and interestingness rules or the absolute values of some them
can be higher than EA-GBGP algorithms). When applied to lots of data (all avail-
able data), they also require long execution times and generate so many rules that
it becomes hard to use these directly and to identify the most useful ones. But the
usefulness of the rules is a subjective measures that depend on the users who exam-
ine the rules (Silberschatz and Tuzhilin, 1995). A well-known criticism of many rule
discovery algorithms in data mining is that they generate too many rules (Padman-
abhan and Tuzhilin, 2000). In general, the fewer rules are in a rule set, the more
comprehensible it is (Freitas, 2002). So, it will be difficult for the user to compre-
hend so many rules and to identify the useful ones (Liu and Hsu, 1996). Additional
postprocessing therefore becomes necessary to filter or prune it (Jaroszewicz and
Simovici, 2002; Liu and Hsu, 1996) in order to obtain smaller sets of useful rules.

On the other hand, multi-objective EA-GBGP algorithms can directly produce a
smaller number of rules than classic algorithms, and in in much less time when all
data are used. Also, the percentage of comprehensible and interesting rules can be sig-
nificantly higher (i.e., discovered rules can be used directly with no need for additional
filtering). Among the approaches based on aggregation functions, Liu and Freitas focus
on optimizing the accuracy and comprehensibility of the discovered rules, and Araujo
on their interestingness. However, algorithms based on the concept of Pareto Front

454 CRISTÓBAL ROMERO ET AL.

(MOGA and NSGA) can simultaneously optimize the three objectives, discovering the
biggest percentage of accurate, comprehensible and interesting rules.

A final comment concerns the scalability of the algorithms in terms of the speed
of the rule discovery. Classic algorithms are fast when the size of data is small (fre-
quent data), but they do not scale well. They become extremely slow when the size
of data grows (range data and all available data). In contrast, the performance of
evolutionary algorithms is less dependent on the size of the data, and their speed
for generating rules is less variable than that of classic algorithms.

6.4. interpretation of discovered rules

The course author has a crucial role in this form of rule mining since he can guide
the search by imposing subjective restrictions (see Figure 8), using his own knowl-
edge and experience in education. The author can decide, e.g., to use all available
data, frequent data or range data only, to use data about one specific chapter or
rather about the whole course, about all students or only students with a final
knowledge level of EXPERT or BEGINNER, and to only use data about times,
levels and successes to construct rule antecedents and consequents.

It is important to mention that the comprehensibility and interestingness of
rules are subjective concepts that are difficult to quantify effectively. Due to this,
we have used constraint-based mining (Han et al., 1999), in which the user pro-
vides constraints that guide the search. We use three types of constraints:

1. Data constraints: the teacher can specify the relevant data set for the mining
task.

2. Rule constraints: the teacher can select specific constraints on the rules to be mined.
3. Interestingness constraints: the teacher can specify the values or ranges of a

measure that are interesting for him.

As mentioned before, our objective is to show a group of useful rules to the
teacher, so that he can decide on course improvement. Semantically our discovered
rules express the following relationships:

IF Level|Time|Success AND ... THEN Level|Time|Success
Level, Time and Success are thereby expressions referring to users’ attained

knowledge state (BEGINNER, NORMAL, EXPERT), the reading time for pages
(HIGH, MEDIUM, LOW), and to information on students’ successes and fail-
ures in the test and activities questions (YES, NO). More details can be found
in Table I. Based on the discovered rules the teacher can decide which of the
expressed relationships are desirable or undesirable, and what can be done to
strengthen or weaken them (namely changing or modifying the contents, structure
and adaptation of the course).

The relationships that are expressed in discovered rules can refer to chapters,
concepts, or scenarios of concepts (namely instructional and activity pages relat-
ing to concepts). We correspondingly distinguish three types of rules:

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 455

Rules about chapters describe relationships between different chapters of the same
course. They refer to knowledge levels obtained in an initial or final test, and
have the following pattern:

IF ChapterLevel AND ... THEN ChapterLevel
Where ChapterLevel are conditions about tests levels.

Using this information, the teacher can decide, e.g., to change the sequence of
chapters in the course, to merge them into one chapter if he wants to increase
a relationship, or to move them further apart in the course if he wants to
decrease it.

Rules about concepts show relationships between different concepts of the same
or different chapters. They refer to knowledge levels obtained in activities and
have the following pattern:

IF ConceptLevel AND ... THEN ConceptLevel
Where ConceptLevel are conditions about activities levels.

Using this information, the teacher can opt to put activities into the same chap-
ter if they are in different chapters, to put them at the same difficulty level if
they have different difficulty levels, to put next to each other in the chapter, or
rather to put them further apart within the same chapter or in other chapters
of the course.

Rules about scenarios of concepts show relationships between scenarios of type
instructional and/or activity. They refer to times, successes and levels obtained
in instructional pages and evaluation activities for concepts. Their pattern is:

IF ScenarioLevel|ScenarioTime|ScenarioSuccess AND ...
THEN ScenarioLevel|ScenarioTime|ScenarioSuccess
Where ScenarioLevel, ScenarioTime, ScenarioSuccess are
conditions about times, successes and levels of scenarios.

Using this information, the teacher opt to, e. g., delete pages because they are
duplicate, badly phrased or incorrect; to modify the content and/or answers of
questions since they are duplicate, badly phrased or incorrect; or to change the
difficulty level of the referred concept.

6.5. discovered rules in our linux course

In this section, we are going to describe the meaning and the possible use of sev-
eral rules regarding our Linux Course that we discovered using EPRules.

IF LEVEL.interface-network-high = EXPERT
THEN LEVEL.tcpip-telnet-medium = EXPERT
(Interest = 0.57, FactorCertainty = 0.75, Simplicity = 1)

This first rule shows that the knowledge levels obtained in the evaluation activ-
ities of two different concepts have been simultaneously very high (EXPERT).
This may indicate that the concepts (NETWORK with a HIGH difficulty level in

456 CRISTÓBAL ROMERO ET AL.

the INTERFACE chapter, and TELNET with a MEDIUM difficulty level in the
TCPIP chapter) are related to each other. In this case, the teacher should search
both concepts in the educational material and try to find out why they are related.
He should also decide if merging both concepts into a single concept, putting both
concepts into the same chapter, making their level of difficulty equal, correcting
the rules that assign levels, or any other modification would be helpful. In this spe-
cific example we decided that both concepts should have the same level of difficulty
(namely HIGH).

IF TIME.testf-administration-high(0)=HIGH
THEN SUCCESS.testf-administration-high(0)=NO
(Interest = 0.51, FactorCertainty = 0.79, Simplicity = 1)

This second rule describes the fact that whenever question 0 of the Administra-
tion chapter takes long to read and answer, then it is often answered wrongly. This
relationship may indicate that the question is not well articulated or has some kind
of error. When the teacher discovers this type of relationship, he should correct it
by modifying the wording of the question or by replacing it with some other ques-
tion. In this concrete example we found the wording of the question correspond-
ing to the ADMINISTRATION concept to be confusing, and we had to replace
it with a different (similar but clearer) question.

IF LEVEL.emulators-program-high = EXPERT
THEN SUCCESS.emulators-program-high(1)= NO
(Interest = 0.69, FactorCertainty = 0.73, Simplicity = 1)

This third rule shows that students who are regarded as EXPERTS with respect
to the concept EMULATORS in the PROGRAMS chapter fail question 1 in the
evaluation activity for this concept. Such a finding may again indicate that this
question is not well articulated, not be well enunciated. In this specific example we
found that question 1 was confusingly worded and rewrote it to solve the problem.

6.6. use of eprules with other aswes

Although we only used EPRules in combination with AHA! (De Bra et al., 2003;
Romero et al., 2002), the tool and our methodology can be easily applied to other
web-based educational systems, and specifically ASWEs. The only provisions that
have to be made are the following ones:

Supplementing usage information. As we explained in more detail in Section 4.1,
EPRules needs more usage data than is typically logged by conventional web
servers (namely scores obtained in activities and knowledge levels attained). If
an ASWE does not generate or log this information, then the teacher can also
enter it manually (such as by deriving knowledge levels from the scores of tra-
ditional tests or exams).

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 457

Combining fine-grained knowledge levels. Some ASWEs use a very fine-grained
domain model (Brusilovsky, 2001). In contrast, EPRules only distinguishes
concepts (with several scenarios) that are grouped into chapters (Romero et al.,
2002). In order to discover rules with EPRules, it will be necessary to combine
fine-grained knowledge levels in the given domain model to create the coarse-
grained knowledge levels that are used by EPRules.

7. Conclusions

In this article, we introduced a methodology to improve Adaptive Systems for
Web-Based Education. This methodology uses evolutionary algorithms as a data
mining method for discovering interesting relationships in students’ usage data. We
analyzed the different methods (Lavrac et al., 1999; Tan et al., 2002; Yao and
Zhong, 1999) that have been proposed to evaluate the quality of the rules obtained
by knowledge discovery algorithms, and established the need for multi-objective
algorithms instead of classic algorithms that are mono-objective. We proposed the
use of evolutionary approaches based on aggregation functions and Pareto Front.
The comparison of algorithms with respect to the number of obtained rules, the
execution times and the percentage of interesting, accurate and comprehensible
rules, shows that the algorithms based on Pareto Front (MOGA and especially
NSGA) are superior to the other proposed algorithms that only use one evaluation
measure or a linear composition of several measures. With regard to the utility of
the discovered rules in making decisions about possible modifications in ASWEs,
we described the different types of obtained rules and the utility of each type for
the improvement of the course. We also presented examples of rules about a Linux
course developed with AHA! that our algorithm discovered. Finally, we developed
a special tool to help non-experts in data mining carry out the complete rule dis-
covery process. This tool allows the user to carry out the pre-processing of stu-
dents’ usage data, to place restrictions on the types of relationship he wants to
discover, to run the data mining algorithms for rule extraction, and to visualize
the discovered rules.

We arrived at the following conclusions based on our work:

1. We showed that the use of data mining techniques (in our case prediction rule
mining) on usage information generated by ASWEs allows us to discover useful
knowledge for improving such systems. These rules can be used by the teacher
to make decisions about how to modify the course to improve students’ perfor-
mance.

2. We proposed a methodology to improve ASWEs. However, this methodology
can be applied to other types of web-based systems as well since it is domain
independent. The only difference is the type of usage information of each par-
ticular system.

458 CRISTÓBAL ROMERO ET AL.

3. We showed that grammar-based genetic programming algorithms, are very suit-
able for rule discovery in ASWE. This due to their ability to obtain more inter-
esting and comprehensible rules and to represent the individuals. The teacher
can change the individual format by merely modifying the rule codification.

4. We showed that the use of an evolutionary multi-objective approach can
improve the obtained results. Concretely, the NSGA approach yields a smaller
number of rules with a higher percentage of interest, accuracy and simplicity
than the other algorithms.

5. We showed that the discovered rules about the usage data of a Linux course
using specific teacher restrictions in the rules, are interesting, coherent in most
of the cases, and can be used to improve the structure and content of the
course.

Currently we begin searching for new measures of the subjective interesting-
ness of rules, with the help of education professionals. The teachers will have to
decide interactively during the process of rule discovery which are the most inter-
esting rules. Related to this endeavor is the discovery process of hot spot miner
(Williams, 1999) in which the individuals are directly evaluated by an expert in
each cycle. Perhaps this method may not be applicable to our problem due to the
large number of rules that can be obtained in each evolution step. However, a first
approach with a small population size may be viable and could show information
about measures that model these user preferences for the discovered rules effec-
tively.

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Span-
ish Department of Research of the Ministry of Science and Technology under
TIC2002-04036-C05-02 Projects. They would also like to thank the anonymous
reviewers and the editor for their professional and careful reading of the paper and
for their may valuable detailed comments.

Appendix A. Rule Evaluation Measures

Table A.2 shows the most frequently used rule evaluation measures (Tan et al.,
2002; Lavrac et al., 1999) that originated in different areas such as machine learn-
ing, data mining, statistics, classification, etc. But almost all of them can be
obtained from the contingency table Yao and Zhong (1999), that it is the general-
ization of the confusion matrix used for the rule evaluation in classification prob-
lems. The contingency table of the generic rule A → C, where A is the antecedent
of the rule, and C is the consequence of the rule, is shown in Table A.3. Table A.1
shows the used symbols and probabilities.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 459

Table A.1. Rule evaluation measures

Name Expression

Support Sup(A → C) = p(CA) = n(CA)
N

Confidence Conf (A → C) = p(C/A) = p(CA)
p(A)

Laplace Lap(A → C) = Sup(A→C)+1
Sup(A)+2

Conviction Conv(A → C) = p(A)p(¬C)
p(A¬C)

Interest I (A → C) = p(CA)
p(C)p(A)

P-S Interestingness RI (A → C) = p(CA) − p(C) ∗ p(A)

T-K Interestingness IS(A → C) =
√

I (A → C) ∗ p(CA)
N

Klösgen K(A → C) = p(A)α ∗ (P (C/A) − p(C))

Leverage Lev(A → C) = p(C/A) − (p(A) ∗ p(C))

Quinlan Q(A → C) = n(CA)−1/2
n(A)

Chi-squared χ2(A → C) = N(n(AC)∗n(¬A¬C)−n(A¬C)∗n(¬AC))2

n(A)∗(¬A)∗n(C)∗n(¬C)

Correlation coefficient ρ(A → C) = n(AC)∗n(¬A¬C)−n(¬AC)∗n(A¬C)√
n(A)∗(¬A)∗n(C)∗n(¬C)

Predictive association λ(A → C) =
∑

j maxkn(Ck,Aj)−maxkn(Ck)

N−maxk∗n(Ck)

Entropy H(A → C) = − ∑
j

∑
l p(AkBj ∗ log2p(AkBj))

Certainty factor CF(A → C) = max(
P(C/A)−P(C)

1−p(C)
,

P (A/C)−P(A)
1−p(A)

)

Gini Gini(A → C) = p(A) ∗ P(C
A

)2 + p(¬ C
A

)2 + p(¬A)

∗p(C/¬A)2 + p(¬C/¬A)2 − p(C)2 − p(¬C)2

Gain function Gain(A → C) = p(AC) − � ∗ p(A)

J-measure J (A → C) = p(C) ∗ (p(A/C) ∗ log2(
p(A/C)
p(A)

)+
(1 − p(A/C)) ∗ log2(

1−p(A/C)
1−p(A)

))

Divergence H(A → C) = p(A) ∗ (
p(CA)
p(A)

∗ log2(
p(CA)/p(A)

p(C)
)

+ p(¬CA)
p(A)

∗ log2(
p(¬CA)/p(A))

p(¬C)
))

Negative reliability NegRel(A → C) = p(¬C/¬A)

Sensitivity Sens(A → C) = p(A/C)

Specificity Spec(A → C) = p(¬A/¬C)

Coverage Cov(A → C) = p(A)

Novelty Nov(A → C) = p(CA) − p(C) ∗ p(A)

Satisfaction Sat (A → C) = p(¬C)−p(¬C/A)
p(¬C)

Informativity Inf (A → C) = −log2(p(C/A))

Relative accuracy RAcc(A → C) = p(C/A) − p(C)

Weighted RAcc WRAcc(A → C) = p(A) ∗ (p(C/A) − p(C))

Necessity N(A → C) = p(¬A/C)
p(¬A/¬C)

Characteristic interest IC(A → C) = 1 − N(A → C) ∗ p(C)

Significance Sig(A → C) = P(C/A) ∗ log2(I (A → C))

Relative risk R(A → C) = p(C/A)
p(C/¬A)

Simplicity Simp(A → C) = (1 − AntecedentSize
MaximumSize

)

Table A.2. Contingency table

A ¬A

C n(AC) n(¬AC) n(C)
¬C n(A ¬C) n(¬A¬C) n(¬C)

n(A) n(A) N

460 CRISTÓBAL ROMERO ET AL.

Table A.3. Meaning of the used symbols and probabilities

A: Instances that match the rule antecedent.
¬A: Instances that match the negation of the rule antecedent.
C: Instances that match the rule consequent.
¬C: Instances that match the negation of the rule consequent.
AC: Intersection of A and C.

Similar definition for ¬AC, ¬A¬C and A¬C.
n(A): Cardinality (number of instances) of A.

Similar definition for n(C), n(¬A) and n(¬C).
N: The total number of data instances.
p(A): Relative frequency of A, obtained by p(A) = n(A)

N
.

Similar definition for p(C), p(¬A) and p(¬C).
p(AC): Relative frequency of the intersection of A and C,

obtained by p(AC) = n(AC)
N

.
Similar definition for p(¬AC), p(¬A¬C) and p(A¬C).

p(A/C): Relative frequency of A conditioned by C,
obtained by p(A/C) = p(AC)

p(C)
.

Similar definition for p(¬A/C), p(¬A/¬C) and p(A/¬C.

References

Agrawal, R., Imielinski, T. and Swami, A.: 1993, Mining Association Rules between Sets
of Items in Large Databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data. Washington, DC, pp. 207–216.

Araujo, D. L. A., Lopes, H. S., Freitas, A. A.: 1999, A Parallel Genetic Algorithm for
Rule Discovery in Large Databases. In: Proceedings of Conference on IEEE Systems and
Cybernetics. Tokyo. pp. 940–945.

Arruabarrena, R. Prez, T.A. Lpez-Cuadrado, J. and Gutirrez, J.: 2002, On Evaluating
Adaptive Systems for Education. In: Second Conference AH 2002. Adaptive Hyperme-
dia and Adaptive Web-Based Systems. Nicosia, Cyprus. pp. 363–367.

Askira-Gelman, I.: 1998, Knowledge Discovery: Comprehensibility of the Results. In:
Hawaii International Conference on System Sciences. Kohala Coast, HI, pp. 247–255.

Bayardo, R. J. and Agrawal, R.: 1999, Mining the most Interesting Rules. In: Fifth Con-
ference ACM on Knowledge Discovery and Data Mining SIGKDD, San Diego, CA, USA.
pp. 145–154.

Bojarczuk, C. C. Lopes, H. S., and Freitas, A. A.: 2001, Constrained-Syntax Genetic Pro-
gramming for Knowledge Discovery in Medical Databases. In: 10th International Sym-
posium on System Modeling. Zakopane, Poland.

Brusilovsky, P.: 1998, Adaptive Educational Systems on the World-Wide-Web: A Review
of Available Technologies. In: Proceedings of the Workshop “www-Base Tutoring” at the
4th International Conference on Intelligent Tutoring Systems (ITS 98), San Antonio, TX.

Brusilovsky, P.: 2001, Adaptive Educational Hypermedia. In: Proceedings of Tenth Inter-
national PEG Conference, Tampere, Finland, pp. 8–12.

Carro, R.M., Pulido, E. and Rodriguez, P.: 1999, Desinging Adaptive Web-based Courses
with TANGOW. In: Conference Computers in Education, Chiba, Japan, pp. 697–704.

Cendrowska, J.: 1987, PRISM: an algorithm for inducing modular rules. Journal of Man-
Machine Studies 27, 349–370.

Coello, C. A., Veldhuizen, D. A., and Lamount, G. B.: 2002, Evolutionary Algorithms for
Solving Multi-Objective Problems, Dordrecht, Netherlands: Kluwer.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 461

Delgado, M., Sanchez, D., Martin-Bautista, M.J. and Vila, M.A.: 2001, Mining association
Rules with Improved Semantics in Medical Databases. Artificial Intelligence in Medicine
21, 241–245.

Dhar, V., Chou, D. and Provost, F.: 2000, Discovering Interesting Patterns for Investment
Decision Making with GLOWER. Data Mining and Knowledge Discovery 4, 251–280.

Dougherty, J., Kohavi, M. and Sahami, M.: 1995, Supervised and unsupervised discreti-
zation of continuous features. In: International Conference on Machine Learning Tahoe
City. CA, pp. 194–202.

Darwin, C.: 1859, On the Origin of Species by Means of Natural Selection. London: John
Murray.

Deb, K.: 2001, Multi-Objective Optimization Using Evolutionary Algorithms. New York,
USA: John Wiley & Sons.

De Bra, P. Wu, H. Aerst, A. and Houben, G.: 2000, Adaptation Control in Adaptive Hy-
permedia Systems. In: Proceedings of International Conference on Adaptive Hypermedia
and Adaptive Web-based Systems. Trento, Italy, pp. 250–259.

De Bra, P., Aerts, A., Berden, B., De Lange, B., Rousseau, B., Santic, T., Smits, D., and
Stash, N.: 2003, AHA! The Adaptive Hypermedia Architecture. In: Proceedings of the
ACM Hypertext Conference, Nottingham, UK pp. 81–84.

De Castro, C. and Romero, C.: 2002, HAMTUTOR. Autor Tool to Develop Adaptive
Multimedia Courses. In: World Conference on E-Learning in Corporate, Government,
Healthcare, Higher Education, Montreal, Canada, pp. 2575–2576

Dubois, P.: 2003, MySQL, Second Edition. Sams, USA.
Fonseca, C.M., and Fleming, P.J.: 1993, Genetic Algorithms for Multiobjective Optimi-

zation: Formulation, Discussion and Generalization. In: Proceedings 5rd International
Conference on Genetic Algorithms, San Mateo, California, pp. 416–423.

Freitas, A. A.: 1997, A Genetic Programming Framework for Two Data Mining Tasks:
Classification and Generalized Rule Induction. In: Conference on Genetic Programming,
CA, USA, pp. 96–101.

Freitas, A. A.: 2000, Understanding the Crucial Differences Between Classification and
Discovery of Association Rules. ACM SIGKDD Explorations, 2(1), 65–69.

Freitas, A. A.: 2001, A Survey of Evolutionary Algorithms for Data Mining and Knowl-
edge Discovery. In: A. Ghosh and S. Tsutsui (eds.): Advances in Evolutionary Computa-
tion. Springer-Verlag, pp. 819–845

Freitas, A. A.: 2002, Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Springer-Verlag, Berlin, Heidelberg, New York.

Gilbert, R. G., Goodacre, R., Shann, B., Kell, D. B., Taylor, J. and Rowland, J. J.: 1998,
Genetic Programming-Based Variable Selection for High-Dimensional Data. In: Proceed-
ings 3rd Conference Genetic Programming, San Francisco, CA, USA, pp. 109–115.

Ghosh, A. and Nath, B.: 2004, Multi-objective rule mining using genetic algorithms. Infor-
mation Sciences 163, 123–133.

Han, J., Lakshamanan, L. and Raymond, T. Ng.: 1999, Constraint-based, multidimensional
data mining. IEEE Computer 32(8), 46–50.

Heift, T. and Nicholson, D.: 2000, Enhanced server logs for intelligent, adaptive web-based sys-
tems. Technical Report. Institute for Semantic Information Processing. Universitt Osmabrk.

Herin, D., Sala, M. and Pompidor, P.: 2002, Evaluating and Revising Courses from Web
Resources Educational. In: International Conference on Intelligent Tutoring Systems.
Biarritz, France, San Sebastian, Spain, pp. 208–218.

Hipp, J., Gntzer, U. and Nakhaeizadeh, G.: 2000, Mining Association Rules: Deriving a
Superior Algorithm by Analyzing Today’s Approaches. In: European Symposium Data
Mining and Knowledge Discovery. Lyon, France, pp. 13–16.

462 CRISTÓBAL ROMERO ET AL.

Jaroszewicz, S. and Simovici, D.: 2002, Pruning Redundant Association Rules Using Max-
imum Entropy Principle. In: Proceedings of the 6th Pacific-Asia Conference on Advances
in Knowledge Discovery and Data Mining. Taipei, Taiwan, pp. 135–147.

Klösgen, W. and Zytkow, J. M.: 2002, Handbook of Data Mining and Knowledge Discovery.
New York, NY: Oxford University Press.

Koza, J. R.: 1992, Genetic Programming: on the Programming of Computers by Means of
Natural Selection. Cambridge, Massachusetts: MIT Press.

Lavrac, N., Flach, P. and Zupan, B.: 1999, Rule Evaluation Measures: A Unifying View. In:
International Workshop on Inductive Logic Programming. Springer-Verlag, pp. 174–185.

Liu, B. and Hsu, W.: 1996, Post-Analysis of Learned Rules. In: Proceedings of National
Conference on Artificial Intelligence. Portland, Oregon, USA, pp. 828–834.

Liu, B. Hsu, W. Chen, S. and Ma, Y.: 2000, Analyzing the Subjective Interestingness of
Association Rules. IEEE Intelligent Systems, 15(5), 47–55.

Liu, J. J. and Kwok, J. T.: 2000, An Extended Genetic Rule Induction Algorithm. In:
Proceedings of the Congress on Evolutionary Computation. La Jolla, California, USA, pp.
458–463.

Michalski, Z.: 1998, Genetic Algorithms + Data Structures = Evolution Program. New
York, Springer.

Minaei-Bidgoli, B. and Punch III, W. F.: 2003, Using Genetic Algorithms for Data Min-
ing Optimization in an Educational Web-based System.. In: Genetic and Evolutionary
Computation Conference. Chicago, Illinois, USA, pp. 2252–2263.

Mitra, S., Pal, S. K. and Mitra, P.: 2001, Data mining in soft computing framework: a
survey. IEEE Transaction on Neural Networks 13(1), 3–14.

Noda, E., Freitas, A. and Lopes, H. S.: 1999, Discovering Interesting Prediction Rules
with a Genetic Algorithm. In: Proceedings of the Congress on Evolutionary Computa-
tion. Washington DC, USA, pp. 1322–1329.

Nordin, P., Banzhaf, W., Keller, R. E. and Francone, F. D.: 1998, Genetic Programming:
An Introduction. Morgan Kaufmann, San Francisco, CA, USA.

Ortigosa, A. and Carro, R.M.: 2002, Asistiendo el Proceso de Mejora Continua de Cursos
Adaptativos. In: III Congreso Int. de Interaccin Persona-Ordenador, Granada, pp. 246–
250.

Padmanabhan, B. and Tuzhilin, A.: 2000, Small is Beautiful: Discovering the Minimal Set
of Unexpected Patterns. In: Proceedings of the International Conference on Knowledge
Discovery and Data Mining. Boston, MA, USA, pp. 54–64.

Pahl, C. and Donnellan, D.: 2002, Data Mining Technology for the Evaluation of Web-
based Teaching and Learning Systems. In: Proceedings of the Congress E-learning, Mon-
treal, Canada.

Piatesky-Shapiro, G. and Matheus, J.: 1994, The Interestingness of Deviations. In: AAAI
Workshop on Knowledge Discovery in Databases. Seattle, Washington, pp. 25–36.

Pierrakos, D., Paliouras, G., Papatheodorou, C. and Spyropoulos, C. D.: 2003, Web Usage
Mining as a Tool for Personalization: A Survey. User Modeling and User-Adapted Inter-
action. 12(4), 311–371.

Quilan, J. R.: 1987, Generating Production rules from decision trees. In. Proceedings of
IJCAI, pp. 304–307.

Ratle, A. and Sebag, M.: 2000, Genetic Programming and Domain Knowledge: Beyond
the Limitations of Grammar Guided Machine Discovery. In. Proceedings of 6th Confer-
ence on Parallel problem solving for nature. Paris, France, pp. 211–220.

Romero, C., De Bra, P., Ventura, S. and De Castro, C.: 2002, Using Knowledge Level
with AHA! For Discovering Interesting Relationship. In: Proceedings of the AACE
ELearn’2002. Montreal, Canada, pp. 2721–2722.

KNOWLEDGE DISCOVERY WITH GENETIC PROGRAMMING 463

Romero, C., Ventura, S., De Bra, P. and De Castro, C.: 2002, Discovering Prediction Rules
in AHA! Courses. In: 9th International Conference on User Modeling. Johnstown, PA,
USA, pp. 25–34.

Ryu, T. W. and Eick, C. F.: 1996, Discovering Commonalities of a set of Objects Using
Genetic Programming. Proceedings of Genetic Programming Conference.

Sarawagi, S., Thomas, S. and Agrawal, R.: 1998, Integrating Association Rule Mining with
Relational Database Systems: Alternatives and Implications. In: Conference on Manage-
ment of Data. Seattle, Washington, pp. 343–354.

Shortliffe, E., and Buchanan, B.: 1975, A model of inexact reasoning in medicine. Math-
ematical Biosciences 23, 351–379.

Smythe, P. and Goodman, R. M.: 1992, An information theory approach to rule induction
from databases. IEEE Knowledge and Data Engineering 4(4), 301–316.

Silberschatz, A.: 1995, On Subjective Measures of Interestingness in Knowledge. In: Pro-
ceedings of the Knowledge Discovery and Data Mining. Montreal, Canada, pp. 275–281.

Silverstein, A., Brin, S. and Motwani, R.: 1998, Beyond market baskets : generalizing asso-
ciation rules to dependence rules. Data Mining and Knowledge Discoverty 2, 29–68.

Spiliopoulou, M.: 2000, Web usage mining for web site evaluation. Communicacion of the
ACM 43(8), 127–134.

Srinivas, N. and Deb, K.: 1994, Multiobjective optimization using nondominated sorting
in genetic algorithms. Evolutionary Computation 2(3), 217–249.

Srivastava, J., Cooley, R., Deshpnade, M. and Tan, P.: 2000, Web usage mining: discovery
and applications of usage pattern from web data. ACM SIGKDD 1(2), 12–23.

Tan, P. Kumar, V. and Srivastava, J.: 2002, Selecting the right Interestingness Measures for
Association Patterns. In: Proceedings of the 8th International Conference on Knowledge
Discovery and Data Mining. Edmonton, Canada, pp. 32–41.

Tang, T. and McCalla, G.: 2002, Student Modeling for a Web-based Learning Environ-
ment: a Data Mining Approach. In: Proceedings of the Conference on Artificial Intelli-
gence AAAI. Edmonton, Alberta, Canada, pp. 967–968.

Ventura, S., Ortiz, D. and Hervz, C.: 2002, Jclec: Una biblioteca de clases java para com-
putacin evolutiva. In: I Congreso Espaol de Algoritmos Evolutivos y Bioinspirados, Me-
rida, pp. 23–30.

Wang, F.: 2002, On Using Data-Mining Technology for Browsing Log File Anlisis in
Asynchronous Learning Environment. In: Conference on Educational Multimedia, Hy-
permedia and Telecommunications. Denver, Colorado, pp. 2005–2006.

Whigham, P. A.: 1995, Gramatically-Based Genetic Programing. In: Proceedings of the
Workshop on Genetic Programming. California, pp. 33–41.

Williams, G. J.: 1999, Evolutionary Hot Spots Data Mining. An Architecture for Explor-
ing for Interesting Discoveries. In: Conference on Knowledge Discovery and Data Mining.
Beijing, China, pp. 184–193.

Witten, I. H. and Frank, E.: 2000, Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. San Francisco, CA: Morgan Kaufmann

Wong, M. L. and Leung, K. S.: 2000, Data Mining using Grammar Based Genetic Pro-
gramming and Applications. Norwell, MA, USA: Kluwer.

Yao, Y. and Zhong, N.: 1999, An Analysis of Quantitative Measures Associated with
Rules. In: Proceedings of PAKDD’99, pp. 479–488.

Yu, P., Own, C. and Lin, L.: 2001, On Learning Behavior Analysis of Web Based Inter-
active Environment. In: Proceedings ICCEE, Oslo/Bergen Norway.

Zaı̈ane, O.R. and Luo, J.: 2001, Towards Evaluating Learners’ Behaviour in a Web-Based
Distance Learning Environment. In: Proceedings of the IEEE International Conference
on Advanced Learning Technologies. Madison, Wisconsin, pp. 357–360.

464 CRISTÓBAL ROMERO ET AL.

Zaı̈ane, O.R.: 2002, Building a Recommender Agent for e-Learning Systems. In: Pro-
ceedings of the International Conference on Computers in Education, Auckland, New
Zealand, pp. 55–59.

Authors’ Vitae
Dr. Cristóbal Romero is an Assistant Professor in the Computer Science Depart-
ment of the University of Córdoba, Spain. He received his Ph. D. in Computer Sci-
ence from the University of Granada in 2003. His research interests lie in artificial
intelligence in education and data mining.

Dr. Sebastián Ventura is an Associate Professor in the Computer Science Depart-
ment of the University of Córdoba, Spain. He received his Ph. D. in the Sciences
from the University of Córdoba in 1996. His research interests lie in soft-comput-
ing and its applications.

Dr. Paul De Bra is a Professor in the Computer Science Department of Eindhoven
University of Technology in the Netherlands. He received his Ph. D. in Computer
Science from the University of Antwerp in 1987. His research interests lie in adap-
tive hypermedia systems and web-based information systems.

