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Abstract

A software package developed for the purpose of feature selection in statistical pattern recognition is presented. The
software tool includes both several classical and new methods suitable for dimensionality reduction, classi.cation and data
representation. Examples of solved problems are given, as well as observations regarding the behavior of criterion functions.
? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The most common task in Pattern Recognition is the clas-
si.cation of patterns “data records” into a proper class. Prob-
lems like this one can be considered as a part of recog-
nition tasks, computer-aided decision tasks and other ap-
plications as well. One of the most important tasks is the
problem of dimensionality reduction. In order to reduce the
problem dimensionality we often use “feature selection”
methods because of their relative simplicity and meaningful
interpretability of results.

Undoubtedly, many similarities can be found between
Pattern Recognition and Data Mining. Selecting features can
be viewed as selection of relational database columns (and
thus the information they hold) by maximizing some cri-
terion which was de.ned upon the database content. The
usual goal is to .nd such a part of the data that holds most
of the information (suitable for classi.cation, approximation
or other purpose). Storing the rest of the data may then be
considered as wasting the computer memory. Dimensional-
ity reduction may result not only in improving the speed of
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data manipulation, but even in improving the classi.cation
rate by reducing the inCuence of noise.

When combined with data approximation methods, the
dimensionality reduction process may result in substantial
data compression, while the overall statistical properties re-
main preserved. Moreover, diEerent ways of data manipu-
lations and queries become possible without need of access
to original data (which may thus become redundant).

The paper is organized as follows. In the next section the
feature selection toolbox (FST) is brieCy described. Then
the search strategies implemented in FST are outlined with
references to particular papers where they are discussed in
more detail as this paper is focused more to the software
issues description. The reason is that to discuss here all the
feature selection methods is impossible as to each of them a
full size paper has been devoted. Conceptually, very diEer-
ent search strategies based on the approximation model are
just listed in Section 4, while more examples of FST appli-
cations to real world problems are treated more thoroughly
in Section 5. The paper is concluded with discussion of im-
plementation issues and directions of further work.

2. Feature selection toolbox

The FST software has been serving as a platform for
data testing, feature selection, approximation-based mod-
eling of data, classi.cation and mostly testing newly
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Fig. 1. Feature selection toolbox—windows GUI workplace.

developed methods. It is used basically for pattern recog-
nition purposes, however, we used it for solving diEerent
problems related to decision making in economics and other
branches as well.

A rather simple user interface (Fig. 1) was constructed
upon a strong functional kernel. Most of the results are
generated in the form of textual protocol into the Console
window. Numerical results may be collected in tables and
used for generating graphs. Data may be displayed in a 2D
projection.

2.1. What data can the FST process and how?

A typical use of the FST consists of the following steps:
after opening the proper data .le, the user has the option
to choose some feature selection method from the menu.
Each method displays a speci.c dialogue allowing setting
of diEerent parameters speci.c for the chosen method. Then
computation follows with a thorough listing of performed
steps logged into the Console window. Both optimal and
sub-optimal methods .nd the resultant feature subset and the
corresponding criterion value. On the other hand, approxi-
mation methods generate data model which may be further
used. Beside basic use for feature selection, the software
package may also be used for basic classi.cation purposes
and diEerent manipulations of data .les.

As the feature selection process may be time consum-
ing (particularly for high dimensional data), a thorough
information about the current computation state, current
dimensionality, current best criterion value, current direc-
tion of search and numbers of performed and expected
computational steps are displayed during the algorithm
run.

Because of strong diversi.cation of data formats used
for scienti.c purposes, we adopted a most general way of
data storage—standard text .les containing numerical val-
ues in ANSI C format. Files must begin with a simple textual
header containing information about the number of classes,
class members, dimensionality, etc. Correct .les may be pro-
cessed using the .le manipulation tool to change the number
of classes, join or cut .les, delete features, etc. To extend
the usability of FST we plan to equip it with a special Data
Import Filter allowing conversion (user-controlled, if neces-
sary) of virtually any text .le into a usable form. This relates
especially to .les with strange ordering, strange formatting,
etc. The current version of FST supports three types of text
data .les:

• Data 4les containing samples (identi.ed by .trn
extension)—data have the form of number vectors rep-
resenting individual samples (patterns). They should be
ordered according to classes, then according to samples
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(vectors—points in pattern space) inside classes, then
according to features inside samples. Such a data ordering
may be viewed as a .le of relational databases (classes)
with numerical values. It is possible to construct an ap-
proximation model upon such data (.apx .le type), also
data structure in the form of mean vectors and covari-
ance matrices may be estimated from .trn .le (generates
a .dst type .le). Sample .les may be used for feature
selection, classi.cation of unknown data or estimating
the classi.cation error rate.

• Data structure 4les containing mean vectors and covari-
ancematrices (identi.ed by .dst extension). This data form
is suitable for use with optimal and sub-optimal feature
selection methods based on feature set evaluation criteria
like Bhattacharyya distance, etc.

• Approximationmodel 4les (identi.ed by .apx extension)—
are generated by approximation or divergence method.
These .les may serve for classi.cation of sample .les
(.trn) with pseudo-Bayes classi.er.

3. Search strategies for feature selection

Feature selection can be viewed as a special case of a
more general subset selection problem. The goal is to .nd
a subset maximizing some adopted criterion. In case of fea-
ture selection we usually use some probabilistic inter-class
distance measures or better directly the classi.er correct
classi.cation rate.

The list of implemented criterion functions is as follows
(for details see, e.g., Ref. [1]): Bhattacharyya distance,
Mahalanobis distance,GeneralizedMahalanobis,Patrick–
Fischer distance, Divergence. It is also possible to maxi-
mize functions programmed in external executables. In this
way, we are able to minimize error rates of diEerent
classi.ers, etc.

Feature selection methods can be divided into optimal
and sub-optimal ones. The only universal method for .nding
optimal solution (feature subset yielding maximum value
of criterion function) is exhaustive search [2]. However,
this method is unusable for problems of higher dimensions
because of its exponential time complexity. The practical
problem of dimension limitation given by the current state
of computer hardware is approximately 40 for exhaustive
search (if selecting 20 features). This limit will remain pro-
hibitive in the future.

The only alternative to exhaustive search, yielding the
optimal solution, is the branch and bound (BB) based al-
gorithms (e.g. Refs. [1,3]). These algorithms are limited to
monotonic criteria only. Their speed strongly depends on the
data (classical BB may run several times faster than exhaus-
tive search but on the other hand it may be even slower).
The FST implements the exhaustive search as well as sev-
eral versions of BB algorithms including the currently fastest
prediction-based ones:

• The Basic BB algorithm as described in Ref. [4]. This is
the slowest BB algorithm, implemented here for compar-
ison purposes.

• The Enhanced BB algorithm described, e.g., in Ref. [3].
This is the most widely used algorithm version, hav-
ing been accepted as the fastest optimal algorithm so
far. It utilises a heuristics for eEective reduction of the
number of candidate subsets. Our implementation further
improves its performance by means of generating the
minimum solution tree [5]. This algorithm has served as a
reference for evaluation of the following prediction-based
algorithms.

• The fast branch & bound (FBB) algorithm described in
Ref. [6] investigates diEerences between criterion values
before and after individual feature removal. This informa-
tion is later used (under certain circumstances) to quickly
predict criterion values in certain search-tree nodes in-
stead of slowly computing the true value. For more
details about how to preserve optimality using this
scheme, see the cited paper.

• The branch & bound with partial prediction (BBPP)
by Somol et al. [7] addresses the problem of recursive
criterion computation which is not possible using the
FBB. In contrast to FBB, the BBPP cannot skip crite-
rion computations in search-tree nodes. However, it uses
a prediction-based heuristics for eEective ordering of tree
nodes which makes it still faster than classical BB algo-
rithms.

However, all the optimal methods are practically unus-
able for problems involving hundreds or thousands of di-
mensions. A lot of time has been therefore invested into
development of sub-optimal methods.

Sub-optimal methods cannot guarantee optimal solutions.
However, they can yield optimal or near-optimal results in
most cases. The speed of sub-optimal methods is gener-
ally signi.cantly higher than the speed of optimal methods.
The trade oE between the quality of feature selection re-
sults and computation time may be often altered by setting
user parameters. The FST includes both sub-optimal meth-
ods known from literature (for overview see, e.g., Ref. [1]
or [8]) and methods developed recently in our department:

• The sequential forward search (SFS) and its backward
counterpart SBS—basic methods known for their simplic-
ity and speed. They yield worse results than other listed
methods [1].

• The plus-L-minus-R—this method is the .rst one han-
dling the nesting-eEect problem [1].

• Generalized forms of previous methods—based on
group-wise feature testing, they may .nd better solutions
but at the cost of increased time complexity [1].

• The =oating search methods (SFFS, SFBS)—fast and
powerful methods, most suitable for general use [9]. They
have been evaluated as the currently best sub-optimal
methods for feature selection [8].



2752 P. Somol, P. Pudil / Pattern Recognition 35 (2002) 2749–2759

• The adaptive =oating search methods (ASFFS, ASFBS).
While requiring more computational time, these methods
allow .nding better solutions than Coating search, if Coat-
ing search fails to .nd the optimum [10].

• The oscillating search method (OS)—a method featuring
wide possibilities of being altered through user parame-
ters. It allows both very fast and very thorough search.
Because of its diEerent search principle, this method may
become an interesting alternative to the methods described
above, because it yields the best solutions in isolated
cases. It can also be used to re.ne the solution found by
other methods. The search may be limited also by the
time constraint [11].

4. Approximation model based methods

Approximation model based methods represent a dif-
ferent but powerful approach to dimensionality reduction
and classi.cation especially in cases of multimodal and
non-Gaussian data. The approach is based on approximat-
ing unknown conditional pdfs by .nite mixtures of a special
product type.

Two diEerent methods are available: the “approxima-
tion” method is suitable mainly for data representation [12],
the “divergence” method is based on maximizing the Kull-
back’s J-divergence and is more suitable for discrimination
of classes [13].

Both the methods encapsulate the feature selection pro-
cess into the statistical model construction. The importance
of these methods follows from their independence on a
priori knowledge related to the data. Generic data may be
processed without preparation.

The de.nition of approximation model based methods is
followed by de.ning the “pseudo-Bayes” classi.er. The title
“pseudo-Bayes” is used since the probabilities in Bayes for-
mula are replaced by their approximations and also because
the decision is made in a lower-dimensional subspace.

Those readers who would like to learn more details of this
approach are referred to the papers cited above, however,
to get an idea, we provide here a brief description of the
approach.

For the cases when we cannot even assume that
class-conditional pdfs are unimodal and the only avail-
able source of information is the training data, a new
approach has been developed based on approximating the
unknown class conditional distributions by .nite mixtures
of parametrized densities of a special type.

The following modi.ed model with latent structure for
!th class-conditional pdf of x has been suggested in the
considered approach presented in Pudil et al. [12]:

p(x|�!)=
M!∑
m=1

�!mpm(x|!)=
M!∑
m=1

�!mg0(x|�0)g(x|�!m; �0; 
);

(1)

where�!={�!m; �!m; �0; 
;m=1; : : : ; M!} is the complete set
of unknown parameters of the .nite mixture (1), M! is the
number of arti.cial subclasses in the class !, �!m is the mix-
ing probability for the mth subclass in class !, 6 �!m6 1,∑M!

m=1 �
!
m =1: Each component density pm(x|!) includes a

nonzero “background” probability density function g0; com-
mon to all classes:

g0(x|�0) =
D∏
i=1

f(xi|�0i); �0 = (�01; �02; : : : ; �0D) (2)

and a function g speci.c for each class of the form:

g(x|�!m; �0; 
) =
D∏
i=1

[
f(xi|�!mi)
f(xi|�0i)

]�i
; �i = {0; 1}; (3)

�!m = (�!m1; �
!
m2; : : : �

!
mD); 
 = (�1; �2; : : : ; �D)∈{0; 1}D:

The proposed model is based on the idea to posit a com-
mon “background” density for all classes and to express
each class-conditional pdf as a mixture of a product of this
“background” density with a class-speci.c modulating func-
tion de.ned on a subspace of the feature vector space. This
subspace is chosen by means of the parameters �i and the
same subspace of feature vector space for each component
density is used in all classes. Any speci.c univariate func-
tion f(xi|�!mi) is substituted by the “background” density
f(xi|�0i) whenever �i is zero. In this way, the binary pa-
rameters �i can be looked upon as control variables since
the complexity and the structure of the mixture (1) can be
controlled by means of these parameters.

For any choice of �i, the .nite mixture (1) can be rewrit-
ten by using Eqs. (2) and (3) as

p(x|�!) =
M!∑
m=1

�!m
D∏
i=1

[f(xi|�0i)1−�if(xi|�!mi)�i ]: (4)

Setting some �i = 1, we replace the function f(xi|�0i) in
the product in Eq. (4) by f(xi|�!mi) and introduce a new
independent parameter �!mi in the mixture (4). The actual
number of involved parameters is speci.ed by the condition∑D

i=1 �i = �; 16 �6D.
The proposed approach to feature selection based on the

.nite mixture model (4) is somewhat more realistic than
the other parametric approaches. It is particularly useful
for the case of multimodal distributions when other feature
selection methods based on distance measures (e.g., Maha-
lanobis distance, Bhattacharyya distance), would totally fail
to provide reasonable results as has been shown in Refs.
[12,13]. An important characteristic of our approach is that
it eEectively partitions the set XD of all D features into two
disjunct subsets Xd and XD−Xd, where the joint distribution
of the features from XD − Xd is common to all the classes
and constitutes the background distribution, as opposed to
features forming Xd, which are signi.cant for discrimi-
nating the classes. The joint distribution of these features
constitutes the “speci.c” distribution de.ned in Eq. (3).
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Fig. 2. Visual comparison of 2D projections of approximation models estimated by means of the approximation method on marble data
(see in text): (a) single mixture component, (b) 2 mixture components, and (c) 5 mixture components. Ellipses illustrate the equipotential
component planes, component weights are not displayed.

Table 1
Error rates (%) of diEerent classi.ers with diEerent parameters

Gauss Approx. Approx. Approx. Approx.
1c 5c 10c 20c

Speech (random init.) 8.39 21.61 7.58 9.19 9.03
Data (dogs & rabbits init.) — 21.61 7.42 6.45 8.39

Mammo (random init.) 5.96 5.26 5.26 5.96 4.56
Data (dogs & rabbits init.) — 5.26 5.26 5.96 5.96

The ‘Gauss’ column contains results of a Gaussian classi.er. Other columns contain results obtained using the ‘approximation’ method
(in this case the ‘divergence’ method yielded the same results). Results in second row for each data have been obtained after preliminary
cluster-detection used to initialise the ‘approximation’ method. 5c means 5 components of mixture, etc.

According to these features alone, a new pattern x is clas-
si.ed into one of C classes and under this partition of the
feature set XD either the Kullback–Leibler distance is min-
imised (so called “approximation method”, see Fig. 2) or
the Kullback J-divergence is maximised (so called “diver-
gence method”). Two proposed methods yield the feature
subset of required size without involving any search proce-
dure. Furthermore, in the inequality for the sample Bayes
decision rule assuming model with latent structure (4), the
“background” density g0 is reduced and therefore, the new
approach provides a pseudo-Bayes decision plug-in rule em-
ploying the selected features. Consequently, the problems
of feature selection and classi.er design are solved simulta-
neously.

It should be emphasized that although the model looks
rather unfriendly, its form leads to a tremendous simpli.ca-
tion [12]) when the univariate density f is from the family
of Gaussian densities. The use of this model (4) makes the
feature selection process a simple task.

5. Application examples

Perhaps the best way of introducing the FST software
scope is demonstration on task examples. We used the
following real data sets:

• 2-class, 15-dimensional speech data representing words
“yes” and “no” obtained from the British Telecom; classes
are separable with great diUculty.

• 2-class, 30-dimensional mammogram data represent-
ing benign and malignant patients, obtained from the
Wisconsin Diagnostic Breast Center via the UCI
repository—ftp.ics.uci.edu.

• 3-class, 20-dimensionalmarble data representing diEerent
brands of marble stone; data are well separable.

5.1. Classi4cation task example

Using the FST we compared the performance of Gaussian
classi.er to the pseudo-Bayes classi.er, de.ned especially
for use with multimodal data, and de.ned in relation to
“approximation” and “divergence” methods (cf. Section 4).
Table 1 illustrates the potential of the approximation model
based classi.ers. However, it also illustrates the necessity
of experimenting to .nd a suitable number of components
(the issue is discussed, e.g., in Ref. [14]).

Results were computed on the full set of features. In case
of approximation and divergence methods the algorithms
were initialized randomly (1st row) by means of the “dogs
& rabbits” cluster analysis [15] pre-processor (2nd row).
Classi.ers were trained on the .rst half of the dataset and
tested on the second half.
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Fig. 3. Approximation model based methods performance on the speech data. The screenshot shows the way FST stores numerical results.
DiEerent lines may be selected for graph display using speci.ed colors and=or line thickness and shapes, as shown on Fig. 4.

Fig. 4. Subset search methods performance as shown by the FST graphic output. The left picture demonstrates sub-optimal methods
performance comparison, i.e. maximal achieved criterion values for subsets of 5 to 24 features. The right picture demonstrates optimal
methods performance comparison, i.e. computational time needed to .nd optimal subsets of 1 to 29 features.

Table 1 demonstrates a potential of mixture approxima-
tion methods—with 5 mixture components (see column ap-
prox.5c) for the speech data and 1, 5 or 20 components
for mammo data. The underlying data structure has been
modeled precisely enough to achieve a better classi.ca-
tion rate when compared to the Gaussian classi.er. Second
row for each data contains approximation and divergence
method results after preliminary initialization by means of
the so-called “dogs and rabbits” clustering method [15].
The method is inspired by the self-organizing-map princi-
ple. Single training set samples are processed sequentially in
order to slightly attract the closest cluster candidate center.
In this way the “dogs and rabbits” method eEectively iden-
ti.es cluster centers and its results may be used for setting
initial component mean parameters. However, component
sizes (variance parameters) have to be speci.ed otherwise,
e.g., randomly.

5.2. Dimensionality reduction task example

The table screen-shot in Fig. 3 stores error rate values
achieved by the approximation and divergence methods with
diEerent number of components. Columns represent selected
subset sizes. From this table it is possible to guess that single

component modeling is not suUcient, best results have been
achieved with approximately .ve or more components and
twelve or more features. It is fair to say that this somewhat
“guessing” way of specifying the suitable number of selected
features is often the only applicable one.

Fig. 4(a) demonstrates the performance of sub-optimal
feature selection methods being used for maximizing Gaus-
sian classi.er performance. Fig. 4(b) demonstrates speeds
of diEerent optimal feature selection methods on the mam-
mogram data set. All the optimal methods (except the ex-
haustive search) are based on the BB idea and are restricted
for use with monotonic criterion functions only.

5.3. A di@erent view to criterion functions—experimental
comparison

An interesting problem may be to judge the importance
of individual features in real classi.cation tasks. Although,
in decision theory, the importance of every feature may be
evaluated, in practice we usually lack enough information
about the real underlying probabilistic structures and analyt-
ical evaluation may become computationally too expensive.
Therefore, many alternative evaluation approaches were in-
troduced.
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Table 2
Criterion functions comparison on 2-class speech data

Bhattacharyya 7 1 4 2 5 0 3 6 10 8 13 9 11 14 12
Divergence 7 1 4 2 0 5 6 3 10 8 13 9 11 12 14
G. Mahalanobis 7 1 4 5 2 3 6 8 0 13 10 11 9 14 12
Patrick Fisher 7 1 4 3 2 0 6 5 10 9 8 13 12 11 14

Approx.1c 7 1 4 2 0 5 6 3 10 8 13 9 11 12 14
Approx.5c 0 13 1 4 12 7 10 3 2 5 9 14 11 6 8
Approx.10c 0 13 1 12 4 7 2 10 3 14 5 9 6 8 11
Approx.20c 0 12 13 1 4 7 10 2 3 14 9 5 11 6 8

Diverg.1c 10 7 4 12 1 0 9 2 11 6 13 3 5 8 14
Diverg.5c 5 12 8 1 0 7 6 2 4 9 10 13 3 11 14
Diverg.10c 5 8 6 7 1 4 10 0 2 9 12 13 3 11 14
Diverg.20c 1 6 5 8 2 10 7 3 11 9 12 0 14 13 4

Single features have been ordered increasingly according to individual criterion values, i.e. the “individual discriminative power”.

Table 3
Criterion functions comparison on 2-class speech data

Opt. Bhattacharyya — — — — — — 6 7 8 — 10 11 12 — 14
Opt. Divergence — — — — — — 6 7 8 9 10 11 — — 14
Opt. G. Mahalanobis — — — 3 4 — 6 7 — 9 10 — 12 — —
Opt. Patrick Fisher — — — — — — 6 7 8 9 10 11 — — 14

Approx.1c — — — — — — — — 8 9 10 11 12 13 14
Approx.5c — — 2 — — 5 6 — 8 9 — 11 — — 14
Approx.10c — — — 3 — 5 6 — 8 9 10 11 — — —
Approx.20c — — — 3 — 5 6 — 8 9 10 11 — — —

Diverg.1c — — — 3 — 5 6 — 8 — — 11 — 13 14
Diverg.5c — — — 3 4 — — — — 9 10 11 — 13 14
Diverg.10c — — 2 3 — — — — — 9 — 11 12 13 14
Diverg.20c 0 — — — 4 — — — — 9 — 11 12 13 14

Worst Bhattacharyya 0 1 2 3 — 5 6 — 8 — — — — — —

The table shows subsets of seven features selected to maximize diEerent criteria. In contrast the last line shows a criterion-minimizing
subset.

It is generally accepted that in order to obtain reasonable
results, the particular feature evaluation criterion should re-
late to a particular classi.er. From this point of view, we
may expect at least slightly diEerent behavior of the same
features with diEerent classi.ers.

However, because of diEerent reasons (performance
and simplicity among others) some classi.er-independent
criteria—probabilistic distance measures—have been de-
.ned. For a good overview and discussion of their proper-
ties, see Ref. [1]. The “approximation” and “divergence”
methods (cf. Section 4) also incorporate a feature evalu-
ation function, which is closely related to the purpose of
these respective methods.

In our example (Table 2), we demonstrate the diEerences
of criterion functions implemented in the FST. We evaluated
single features using diEerent criteria and ordered them
increasingly according to the obtained criterion values. In
this way “more distinctive” features appear in the right part

of the table, while the “noisy” ones should remain on the
left.

A detailed discussion about the diEerences between dif-
ferent criteria behavior is beyond the scope of this paper. Let
us point out some particular observations only. Traditional
distance measures (.rst four rows) gave similar results, e.g.
feature 14 has been evaluated as important, 7 or 1 as less im-
portant. Results of the divergence method based evaluation
remain relatively comparable, even if the result depends on
the number of mixture components. More dissimilarities oc-
curred in the approximation method based evaluation which
is caused by a diEerent nature of approximation criterion
which ranks the features not according to their suitability for
classi.cation, but for data representation in subspace only.

Our second example (Table 3) demonstrates criteria
diEerences in another way. We selected subsets of seven
features out of 15 so as to maximize particular criteria to
compare the diEerences between detected “optimal” subsets.
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Fig. 5. Visual comparison of 2D subspaces found on 20-dimensional marble data by maximizing: (a) Bhattacharyya (the same was found by
Generalized Mahalanobis), (b) Divergence, (c) Patrick–Fischer distances. Mixture model methods using 5 components results: approximation
method—(d), and divergence method—(e). Picture (f) demonstrates a subspace unsuitable for discrimination (found by minimizing the
Bhattacharyya distance).

Fig. 6. Visual comparison of 2D subspaces found on less separable 30-dimensional mammogram data by maximizing: (a) Bhattacharyya (the
same was found by Divergence), (b) Generalized Mahalanobis, (c) Patrick–Fischer distances. Mixture model methods using 5 components
results: approximation method—(d), divergence method—(e). Picture (f) demonstrates a subspace unsuitable for discrimination (found by
minimizing the Bhattacharyya distance).
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Again, results given by traditional distance measures are
comparable. DiEerences between subsets found by means
of approximation and divergence methods illustrate their
diEerent purpose, although still many particular features are
included in almost every found subset.

Additionally, the “worst” subset minimizing the Bhat-
tacharyya distance that has been found is shown for illus-
tration only.

5.4. A di@erent view of criterion functions—visual
subspace comparison

The FST may be used to obtain a visual illustration of
selected feature subsets. Our examples illustrate spatial
properties of diEerent data sets (easily separable 3-class
marble set in Fig. 5, a poorly separable 2-class mammo-
gram set in Fig. 6 and the speech set). We selected feature
pairs yielding optimal values of diEerent criteria. Figs. 5(a)
–(c) illustrate subsets obtained by means of optimizing
diEerent probabilistic distance measures, Fig. 5(d) illus-
trates the Approximation method (5 components), and Fig.
5(e) the Divergence method (5 components). As opposed
to subsets selected for class discrimination the picture (f)
illustrates an example of “bad” feature pairs being not suit-
able for discrimination. Fig. 5(f) was obtained by means of
minimizing the Bhattacharyya distance.

6. Implementation issues

FST software has been developed over a period of three
years. It has a form of 32-bit Windows application. The
kernel incorporates all the procedures written in ANSI C
language. This kernel is connected to a user interface which
has been developed in (Sybase) Powersoft Optima++ 1.5
RAD compiler (today known as Power++). Most of the
programming work was done by 1–2 programmers; theoret-
ical questions, de.nitions and speci.cations are consulted
within a team of 4–5 programmers and researchers [16]. The
programming work was focused on keeping high quality of
kernel functions. As describing all kernel code properties
would go beyond the scope of this paper, we will mention
their general properties only.

Dimensionality reduction algorithms may often be very
time-consuming. The kernel code is therefore optimized for
speed (especially when accessing complicated multidimen-
sional memory structures). The speed of criterion function
value computations is the most important issue when pro-
gramming such enumeration algorithms, where the criterion
value is repeatedly calculated. Even if speed was the main
goal, we did not omit mechanism for error recovery, etc.
(e.g. incorrect properties of data in .le).

Most subset search algorithms are de.ned in two forms
according to the prevailing direction of search: forward and
backward. The forward search starts with an empty fea-
ture subset. Features are then added to it stepwise. The

backward search starts with the full set from which fea-
tures are removed in a stepwise manner. However, adding
and removing steps may be combined in the course of one
algorithm. Single steps may process not only single fea-
tures, but also groups of features. In order to be able to
implement even complex variants of algorithms like, e.g.,
oscillating search, it was necessary to develop some fast
and Cexible way of working with features in such compli-
cated algorithms. For this purpose, we use a special vector
(having the same size as the full feature set) representing
states of every single feature. In general, positive values
represent currently selected features, other values represent
excluded features. DiEerent values denote features in dif-
ferent states of processing (de.nitely selected feature, con-
ditionally selected feature, etc.). We mention the existence
of this vector because of its following advantage: by a rela-
tively simple exchange of values of several variables, we are
able to switch the search direction as well as other algorithm
properties. As a result, the coding is simpli.ed since just
one code is needed for either search direction (forward or
backward) only; switching to the opposite one is then sim-
ple. It should be noted, that such a “compact” code does not
reduce the algorithm speed in comparison to separate algo-
rithm versions. Moreover, the code has become more lucid
and the debugging time decreased, too. Our coding approach
allows also a relatively straightforward implementation of
very complicated versions of combined algorithms.

7. Future work and applications

Results obtained using the FST have been repeatedly used
in our work for several research projects. Feature selection
has been performed on diEerent kinds of real world data.
The kernel code is being Cexibly altered for use in diEer-
ent situations (e.g., for comparison of statistical and genetic
approaches to feature selection, see Ref. [17]). FST serves
as a testing platform for development of new methods. Sev-
eral directions of future development are possible. Undoubt-
edly, modi.cation of the code to a parallel version would be
bene.cial. As far as the user interface is concerned, several
improvements are possible. The same holds for the whole
package which is built as open one with the intention to
implement newly developed methods in future. In addition,
for the future we plan to build a sort of expert or consulting
system which would guide an inexperienced user into using
the method most convenient for the problem at hand.

We believe that not only pattern recognition community
but also researchers from various other branches of science
may bene.t from our work.

8. Concluding summary

The most common task in Pattern Recognition is classi.-
cation of patterns into a proper class. Problems like this can
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be considered as a part of recognition tasks, computer-aided
decision tasks and other applications as well. One of
the most important intermediate steps in these tasks is the
problem of dimensionality reduction. In order to reduce the
problem dimensionality we often use “feature selection”
methods because of their relative simplicity and meaningful
interpretability of results. When combined with data approx-
imation methods, the dimensionality reduction process may
result in substantial data compression, while the overall
statistical properties remain preserved. Moreover, diEerent
ways of data manipulations and queries become possible
without need of access to original data (which may thus
become redundant).

A software package developed for the purpose of feature
selection in statistical pattern recognition is presented in the
paper. The software tool includes both several classical and
new methods suitable for dimensionality reduction, classi.-
cation and data representation. The software is meant to be
used both for practical and educational purposes. Therefore
it implements many of currently known feature selection
methods to enable their comparison.

Three particular method groups are implemented: (a)
sub-optimal sequential search methods like SFS, SBS,
SFFS, SBFS, Plus-L-Minus-R, generalised methods, A
SFFS, several OS versions, etc., (b) optimal methods like
Exhaustive Search, classical BB and its extended versions,
predictive BB etc., and (c) normal mixture approximation
model based methods for combined process of data rep-
resentation and feature selection. Both (a) and (b) type
methods are based on normal distribution estimates and can
be used to maximize one of 6 implemented probabilistic
distance measures (Bhattacharyya distance, Mahalanobis
distance etc.).

The paper discusses the particular methods brieCy re-
garding their implementation and gives references for fur-
ther reading. Particular methods behavior and applicability
is demonstrated on examples of solved problems.

An alternative approach to criterion function comparison
is presented as well. The software enables observing the ob-
tained feature subsets subspaces. A comparison of standard
probabilistic distance measures is given showing the dif-
ferences of obtained equally sized feature subsets. Another
example demonstrates the diEerences of single-feature eval-
uation based on diEerent measures. The examples show
the fact, that probabilistic distance measures have a limited
connection to the “ground truth” only and should be there-
fore used carefully.
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