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Abstract—A novel search principle for optimal feature subset selection using the Branch & Bound method is introduced. Thanks to a

simple mechanism for predicting criterion values, a considerable amount of time can be saved by avoiding many slow criterion

evaluations. We propose two implementations of the proposed prediction mechanism that are suitable for use with nonrecursive and

recursive criterion forms, respectively. Both algorithms find the optimum usually several times faster than any other known Branch &

Bound algorithm. As the algorithm computational efficiency is crucial, due to the exponential nature of the search problem, we also

investigate other factors that affect the search performance of all Branch & Bound algorithms. Using a set of synthetic criteria, we show

that the speed of the Branch & Bound algorithms strongly depends on the diversity among features, feature stability with respect to

different subsets, and criterion function dependence on feature set size. We identify the scenarios where the search is accelerated the

most dramatically (finish in linear time), as well as the worst conditions. We verify our conclusions experimentally on three real data

sets using traditional probabilistic distance criteria.

Index Terms—Subset search, feature selection, search tree, optimum search, subset selection, dimensionality reduction, artificial

intelligence.
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1 INTRODUCTION

THE problem of optimal feature selection (or, more
generally, of subset selection) is very difficult, primarily

because of its computational complexity. The optimization
space of all the subsets of a given cardinality that have to be
evaluated to find the optimal set of features among an initial,
larger set of measurements is of combinatorial complexity
and its exhaustive search is impractical even for problems of
relatively small size. Over the years, this challenge has
motivated a considerable research effort aiming at speeding
up the search process. This has been achieved to a certain
extent either by relaxing the rigor of optimality a solution to
the feature selectionproblemhas to satisfy [1], [2], [3], [9], [10],
[14] or by introducing heuristic measures which can help to
identify parts of the search space that can be left unexplored
without any danger of missing the optimal solution [3], [5].

Among the search methods that strive to reduce the
computational burden without the loss of optimality, the
Branch & Bound (B &B) algorithm and its ancestors have been
receiving themost attention.While theB&Balgorithm idea is
well-known and considered one of the essential tools in
artificial intelligence [13], [15], [16], [18], [21], [22], [25], it was
first adopted for the purpose of feature selection byNarendra
and Fukunaga [20]. In this context, it has been later studied in

more detail and extended [5], [7], [14], [28]. This family of
algorithms gains computational cost savings by the applica-
tion of the set inclusion monotonicity property that the
feature selection criterion function employed by these
algorithms must satisfy. Accordingly, given a collection of
features and the corresponding value of a feature set criterion
function satisfying the monotonicity property, the function
value will increase for any arbitrary superset of this
collection. In other words, by augmenting a feature set by
additional measurements, the criterion function will grow
monotonically.

The application of the set inclusion monotonicity prop-
erty allows the user to create short cuts in the search tree
representing the feature set optimization process. In turn,
this reduces the number of nodes and branches of the
search tree that have to be explored to find the optimal
solution and, hence, the enhanced computational efficiency.
Although, in the worst case, the B & B algorithm is still of
exponential complexity, in practice, this simple heuristics
can result in substantial performance gains.

Considerable effort has been invested into acceleration of
the B & B algorithm over the years. Many modified versions
of the algorithm have been defined, gaining speed or other
advantages for different specific problems [4], [12], [17],
[18], usually by relaxing the generality or optimality of the
B & B concept. Parallelized B & B algorithms have been
defined and studied [6], [8], [26], [27]. Concurrently, the
optimality of the feature selection process was put into a
broader context in [11] by introducing the notion of Filter
and Wrapper-based search processes. Our aim, in contrast,
was to improve the core B & B concept itself, i.e., to define a
new way of B & B search tree construction, which would
result in substantial computational time savings without
any impact on the applicability of the algorithm and
without raising any other conditions than those defined in
the original B & B algorithm [20].
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Thus, in this paper, we propose an additional heuristic
mechanism to facilitate a further speed up of the
B & B algorithm. The idea is motivated by the observation
that practically all the computational time during optimi-
zation is devoted to evaluating the objective function at
different nodes of the search tree, in other words, for
different feature sets. If some of these function values could
be predicted, we would avoid lengthy function evaluation
and achieve additional economies in the feature set search.
We propose a method for computing objective function
value predictions based on the statistics of the effect of
discarding individual measurements gathered from pre-
viously evaluated feature sets. These predictions are then
exploited in two new algorithms. In order to ensure that
the optimization procedure remains optimal, no search tree
cut-off is based on a predicted value. Instead, for any
hypothesized cut-off, the true function value is computed
and the decision made on that basis. We show that this
strategy accelerates the search process significantly.

The paper is organized as follows: In the following section,
we introduce the necessary mathematical preliminaries and
provide a brief overview of the “Basic” B & B algorithm (free
of all additional heuristics) and amoredetaileddescription of
its “Improved” version [3], [5]. In Section 3, the drawbacks of
these search strategies are identified. In Section 4, we
introduce the idea of criterion value prediction and present
a new algorithm which makes use of this mechanism for
search tree expansion node ordering. In Section 5, we then
extend the prediction concept to gain computational savings
by applying it to multiple levels of the search tree during its
traversal. The properties of the proposed schemes are
discussed in Section 6. The results of experiments designed
to demonstrate the effectiveness of the advocated algorithms
are presented in Section 7. The paper is drawn to a conclusion

in Section 8. For an overview of the algorithms to be
discussed, see Table 1.

2 PRELIMINARIES

Consider a problem of selecting d features from an initial set
ofDmeasurements using objective function J as a criterion of
effectiveness. The Branch & Bound approach aims to solve
this search problem by making use of the monotonicity
property of certain feature selection criterion function.

Let ���j be the set of featuresobtainedby removing j features
y1; y2; � � � ; yj from the set Y of allD features, i.e.,

���j ¼ Y n fy1; y2; � � � ; yjg: ð1Þ

The monotonicity condition assumes that, for feature subsets
���1; ���2; � � � ; ���j, where

���1 � ���2 � � � � � ���j;

the criterion function J fulfills

Jð���1Þ � Jð���2Þ � � � � � Jð���jÞ: ð2Þ

The monotonicity property helps to identify parts of the
search space which cannot possibly contain the optimal
solution to the feature selection problem.

Before introducing the new algorithms in Sections 4 and 5,
let us summarize the B & B principle briefly. The algorithm
constructs a search treewhere the root represents the set of all
D features and leaves represent target subsets of d features.
While traversing the tree down to leaves the algorithm
successively removes single features from the current set of
“candidates” (���k in the kth level). The algorithm keeps the
information about both the currently best subset X and the
criterion value X� it yields (we denote this value the bound).
Anytime the criterion value in some internal node is found to
be lower than the current bound, due to the condition (2), the
whole subtreemay be cut off andmany computationsmay be
omitted. The course of the B & B algorithm is illustrated in
Fig. 1, where an example problem solution is shown for d ¼ 2
andD ¼ 5. The dashed arrows illustrate the way of tracking
the search tree. For details, see [3], [5], [20].

Several improvements of the coreB&Bschemeareknown.
For eachB&Bsearch tree, a “minimumsolution tree” [28] can
be obtained by excluding nonbranching internal nodes, i.e.,
by shortening paths.
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TABLE 1
Nomenclature and Main Characteristics

of Considered Algorithms

Fig. 1. Example of “branch & bound” problem solution, where d ¼ 2 features are to be selected from the set of D ¼ 5 features to maximize an
illustrative synthetic criterion.



Remark. For the sake of simplicity, we do not reflect this
simple acceleration technique in the algorithm descrip-
tions, but we implemented it in all the algorithms
selected for experimentation.

We base our investigation on the “Improved” B& B algor-
ithm [5] which we shall refer to as IBB. Let the criterion value
decrease be the difference between the current criterion value
and the value after removal of one feature. Let bad features be
those features whose removal from the current candidate set
causesonlya slight criterion value decrease. Conversely, letgood
features be those whose removal causes a significant criterion
value decrease. (At this stage,wedonot need toquantifywhat a
slight or significant decrease is.) It is apparent that, given a
search tree topology, different feature assignments to its
edgesmay be defined. The IBB algorithm aims to position bad
features to the right, less dense part of the tree and good
features to its left, more dense part. For such an ordering we
may expect faster bound increase because the preferential
removal of bad features should maintain the candidate
criterion value at a high level. Consequently, removing good
features from the candidate sets in later stages of search
improves the chances of the criterion value dropping below
the current bound and, therefore, allowing more effective
subtree cut-offs.

The effect of this in-level node ordering heuristics can be
illustrated on Fig. 1. The example tree is not an IBB tree
because the first level is not ordered (feature sequence 5, 3, 4
as emphasized by gray background). If changed to conform
to IBB ordering (5, 4, 3), the algorithm would find the
optimum immediately in the rightmost leaf and one more
criterion evaluation would be saved (Jð4; 5Þ). Note that
evaluating the criterion function in the crossed nodes is not
necessary as they lie on paths. Bypassing path nodes would
reduce the tree to the “minimum solution tree.” IBB, in
combination with the “minimum solution tree,” is conse-
quently considered the most effective B & B algorithm.

In order to establish the framework for new algorithm
definitions, let us first describe the IBB algorithm formally.
The necessary notation has been adopted from [3]:

. k: tree level (k ¼ 0 denotes the root),

. ���k ¼ f�j j j ¼ 1; 2; � � � ; D� kg: current “candidate”
feature subset at kth tree level,

. qk: number of current node descendants (in con-
secutive tree level),

. Qk ¼ fQk;1; Qk;2; . . . ; Qk;qkg: ordered set of features
assigned to edges leading to current node descen-
dants (note that “candidate” subsets ���kþ1 are fully
determined by features Qk;i for i ¼ 1; � � � qk),

. Jk¼½Jk;1; Jk;2; . . . ; Jk;qk �
T: vector of criterion values

corresponding to current node descendants in con-
secutive tree level (Jk;i¼Jð���knfQk;igÞ for i¼1; � � � ; qk),

. � ¼ f j j j ¼ 1; 2; � � � ; rg: control set of r features
being currently available for search-tree construc-
tion, i.e., for building the set Qk; set � serves for
maintaining the search tree topology,

. X ¼ fxj j j ¼ 1; 2; � � � ; dg: current best feature subset,

. X�: current bound (crit. value corresponding to X ).

Remark. Values qj, sets Qj, and vectors Jj are to be stored
for all j ¼ 0; � � � ; k to allow backtracking.

The Improved Branch & Bound Algorithm

Initialization:

k ¼ 0, ���0 ¼ Y , � ¼ Y , r ¼ D,

X�: lowest possible value (computer dependent).

STEP 1. Select descendants of the current node to form the
consecutive tree level: First set their number to qk ¼ r� ðD�
d� k� 1Þ. Construct an ordered set Qk and vector Jk as
follows: Sort all features j 2 �; j ¼ 1; � � � ; raccording to their
current true criterion value decreases

Jð���k n f j1gÞ � Jð���k n f j2gÞ � � � � � Jð���k n f jrgÞ

and successively choose the first qk features among them. Let
Qk;i ¼  ji for i ¼ 1; � � � ; qk
Jk;i ¼ Jð���k n f jigÞ for i ¼ 1; � � � ; qk

To avoid future duplicate testing, exclude features  ji from
further tree construction, let � ¼ � nQk and r ¼ r� qk.
STEP 2. Test the right-most descendant node (connected by the
Qk;qk -edge): If qk ¼ 0, then all descendants have been tested
and go to Step 4 (backtracking). If Jk;qk < X�, then go to
Step 3. Else let ���kþ1 ¼ ���k n fQk;qkg. If kþ 1 ¼ D� d, then
you have reached a leaf and go to Step 5. Otherwise go to
the consecutive level: Let k ¼ kþ 1 and go to Step 1.
STEP 3. Descendant node connected by the Qk;qk -edge (and its
subtree) may be cut off: Return feature Qk;qk to the set of
features available for tree construction, i.e., let � ¼
� [ fQk;qkg and r ¼ rþ 1, Qk ¼ Qk n fQk;qkg and qk ¼
qk � 1 and continue with its left neighbor; go to Step 2.
STEP 4. Backtracking: Let k ¼ k� 1. If k ¼ �1, then the
complete tree has been searched through; stop the
algorithm. Otherwise, return feature Qk;qk to the set of
“candidates:” Let ���k ¼ ���kþ1 [ fQk;qkg and go to Step 3.
STEP 5. Update the bound value: Let X� ¼ Jk;qk . Store the
currently best subset X ¼ ���kþ1 and go to Step 2.

3 DRAWBACKS OF THE TRADITIONAL

BRANCH & BOUND ALGORITHMS

When compared to the exhaustive search (ES), every B & B
algorithm requires additional computations. Not only the
target subsets of d features ���D�d, but also their supersets
���D�d�j, j ¼ 1; 2; � � � ; D� d have to be evaluated.

The B & B principle does not guarantee that enough
subtrees will be cut off to keep the total number of criterion
computations lower than their number in ES. The worst
theoretical case would arise when we defined a criterion
function Jð���kÞ ¼ j���kj � D� k; the criterion function would
be computed in every tree node.

A possibility of a weaker B & B performance may result
from the following simple facts: 1) Nearer to the root, the
criterion value computation is usually slower (evaluated
feature subsets are larger) and 2) nearer to the root, subtree
cut-offs are less frequent (higher criterion values following
from larger subsets are compared to the bound, which is
updated in leaves). The B& B algorithm usually spendsmost
of the time by tedious, less promising evaluation of the tree
nodes in levels closer to the root. This effect is to be expected,
especially for d	 D.

In the IBB algorithm, a significant number of additional
computations is needed for the heuristic ordering of search
tree nodes. The advantage following from these computa-
tions is not guaranteed because a slightly better heuristic
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organization of the search tree under otherwise disadvanta-
geous conditions can be outweighed by the additional
computational time (see Fig. 9 where IBB runs slower than
the “Basic” B & B).

4 IMPROVING THE “IMPROVED” ALGORITHM

Let us illustrate the main IBB drawback by referring to Fig. 1.
When constructing level 1, i.e., when specifying the ordering
of the root descendants, IBB evaluates the criterion value
decrease for every available feature (all five features), although
only three features are to be assigned to the first level edges.

Our aim is to find the same (or very similar) ordering of
tree nodes as given by means of the IBB algorithm with a
smaller number of criterion evaluations. To achieve this goal
we utilize a simple prediction mechanism. The innovation
proposed here is that the consecutive tree levels be con-
structed in several phases. First, the criterion value decrease is
quickly predicted for every feature currently available for the
tree construction. The features are then sorted in descending
order according to the predicted criterion value decreases. The
true criterion value is then computed only for the required
number of features (beginning from the feature with the
highest predicted criterion value decrease) and the consecutive
tree level is formed. In this way, the total number of true
criterion computations per level remains comparable to the
“Basic” B & B algorithm [5] without any tree node ordering,
although the tree is actually constructed by means of an
ordering heuristics similar to the one defined in IBB.

The prediction mechanism utilizes the current statistics
of criterion value decreases caused by removing a particular
feature accumulated during the search process. Note that
single features are removed in different tree construction
stages and that we need to collect the prediction information
separately for every feature. First, let A ¼ ½A1; A2; . . . ; AD�T
be a vector of feature contributions to the criterion value (let us
call it “contribution vector”) which stores, for each feature, the
individual average criterion value decrease caused by remov-
ing the feature from current “candidate” subsets. Next, let
S ¼ ½S1; S2; . . . ; SD�T be a counter vector recording the
number of criterion value decrease evaluations for every
individual feature.

In order to state the new B & B algorithm which utilizes
partial prediction (BBPP), we shall use the notation defined
for the IBB description (Section 2).

Whenever the algorithm removes some feature yi from
the current “candidate” subset and computes the corre-
sponding real criterion value Jð���k n fyigÞ at kth tree level,
the prediction information is updated as

Ayi ¼
Ayi � Syi þ ðJð���kÞ � Jð���k n fyigÞÞ � 1

Syi þ 1
ð3Þ

and

Syi ¼ Syi þ 1: ð4Þ

with Ayi and Syi initially set to zero for all i ¼ 1; � � � ; D.

The Branch & Bound with Partial Prediction Algorithm

Initialization:

k ¼ 0, ���0 ¼ Y , � ¼ Y , r ¼ D,

X�: lowest possible value (computer dependent).

STEP 1: Select descendants of the current node to form the

consecutive tree level: First set their number to qk ¼ r� ðD�
d� k� 1Þ. Construct an ordered set Qk and vector Jk as

follows: Sort all features  j 2 �; j ¼ 1; � � � ; r in the descend-

ing order according to their A j ; j ¼ 1; � � � ; r values, i.e.,

A j1
� A j2

� � � � � A jr

and choose successively first qk features among them. Let
Qk;i ¼  ji for i ¼ 1; � � � ; qk
Jk;i ¼ Jð���k n f jigÞ for i ¼ 1; � � � ; qk

To avoid future duplicate testing, exclude features  ji from

further tree construction, let � ¼ � nQk and r ¼ r� qk.
STEPS 2, 3, 4, and 5 are the same as in IBB.

Properties of the BBPP algorithm are discussed in
Sections 6 and 7. The simplified algorithm diagram is
shown in Fig. 2.

5 FAST BRANCH & BOUND

We propose the so-called Fast Branch & Bound (FBB)
algorithm which aims to further reduce the number of
criterion function computations in internal search tree nodes
bymeans of a stronger predictionmechanism. The algorithm
attempts toutilize theknowledgeof criterion value decreases for
future predictions of the criterion values. Both the computed
and predicted criterion values are treated equally, i.e., are
used for ordering tree nodes, testing subtree cut-off possibi-
lities, etc. However, prediction is allowed under certain
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circumstances only, e.g., not in leaves and not to trigger a
node cut-off.

If a predicted criterion value remains significantly higher
than the current bound, we may expect that even the real
value would not be lower and, therefore, the corresponding
subtree should not be cut off. In this situation, the algorithm
continues to construct the consecutive tree level. But, if the
predicted value comes close to the bound (and, therefore,
there is a chance that the real value is lower than the bound)
the actual criterion value must be computed. Only if true
criterion values prove to be lower than the current bound,
may subtrees be cut-off. Note that this prediction scheme
does not affect the optimality of the obtained results.
Inaccurate predictions will result in nothing worse than
constructing subtrees, which would have been cut off by the
classical B & B algorithm. However, this drawback is
usually strongly outweighed by criterion computation
savings achieved in other internal nodes, especially near
the root, where the criterion computation tends to be slower
due to a higher cardinality of the evaluated subsets.

Obviously, the following trade off arises: We want to use
prediction as frequently as possible to save time. On the other
hand, we have to compute true criterion values to tune (or at
least to obtain) the information needed for the proposed
prediction mechanism.

The FBB algorithm utilizes the same individual averaged
criterion value decrease information stored in the contribution
and counter vectors as BBPP. However, the FBB prediction
mechanism is controlled more precisely because of its
stronger influence on the search tree construction. Before
every criterion evaluation, the record in the counter vector is
checked for the appropriate feature entry. If the prediction
mechanism has accumulated enough information (the
counter value is higher than a prespecified minimum), the
required criterion value will be predicted; otherwise, its
true value will be computed.

Since it is important to distinguish between predicted and
true criterion values,we introduce a vector of value types (we
will denote it type vector) for thenodes of the current tree level.
If a criterion value is predicted, the type value is set to “P.” If
the value is computed, the type flag is set to “C.” The
difference between criterion values computed in the current
internal node and its parent node is used to update the
information in the contribution vector only if both values have

actually been computed (both for the current node and its
parent node, “C” is recorded in the type vector). Should we
attempt to update the contribution vector also by the difference
of predicted or mixed type values, we could seriously
degrade the prediction mechanism accuracy.

See Fig. 3 for illustration of the described mechanism.
The figure shows how the prediction mechanism learns
whenever two subsequent criterion values are computed
and later uses this information to replace criterion evalua-
tion by a simple subtraction. The predicted values, being
only approximations of the true criterion values, do not
suffice to cut off subtrees and must be verified by true
criterion evaluation whenever tree cutting seems possible
(see nodes representing subsets 1, 2, 6 and 1, 3, 6) to
preserve the optimality of the results.

The prediction capability is curtailed in the early phases
of the algorithm due to the lack of information. Therefore,
we may expect frequent contribution vector updates. Later,
with the number of “reliable” features (whose contribution
to the criterion value has been evaluated for more than the
required minimum number of times) increasing, the criterion
values are obtained by means of prediction more frequently
and the update process is deployed less frequently.

The aim of the advocated prediction mechanism is not
only to reduce the number of criterion evaluations in
internal nodes when the algorithm traverses the tree down
to the leaves, but also to estimate the point (node) when the
criterion value falls below the current bound and the
corresponding subtree should be cut-off.

Let us refer to the case when the algorithm stops the
prediction too soon (and the true value is still higher than
the current bound) as a pessimistic prediction error. On the
other hand, we shall refer to the case when the algorithm
utilizes prediction too long (misses the real possibility of
cutting off current subtree and continues to construct the
consecutive tree level) as an optimistic prediction error. The
prediction mechanism behavior may be modulated by
introducing an optimism constant in the following way:
Let every value from the contribution vector be multiplied by
the optimism constant before being used for prediction.
Higher optimism constant values will tend to protect the
algorithm from missing real possibilities to cut off subtrees,
but, on the other hand, the predicted criterion values will

904 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 7, JULY 2004

Fig. 3. Illustration of the Fast Branch & Bound prediction mechanism on a synthetic problem where d ¼ 2 and D ¼ 6.



have the tendency to decrease faster and fall below the
current bound sooner than necessary.

To describe the FBB algorithm, we shall use the notation
defined for the IBB (Section 2) and BBPP (Section 4)
descriptions togetherwith additional constants and symbols:

. � � 1: minimum number of evaluations (1 by default),

. � � 0: optimism (1 by default),

. Tk ¼ ½Tk;1; Tk;2; . . . ; Tk;qk �
T; Tk;i 2 {“C,” “P”} for i ¼ 1

; � � � ; qk: criterion value type vector (records the type
of Jk;i values),

. V ¼ ½v1; v2; . . . ; vqk �
T: temporary sort vector,

Remark. Values qj, sets Qj, and vectors Jj, Tj are to be
stored for all j ¼ 0; � � � ; k to allow backtracking.

Whenever the algorithm removes some feature yi from the
current “candidate” subset and computes the corresponding
true criterion value Jð���k n fyigÞ at kth tree level and if the
predecessor value Jð���kÞ � Jð���k�1 n fyjgÞ (after previous
removal of some feature yj) had also been computed (as
indicated by Tk�1;yj ¼ “C”), Ayi and Syi are updated as
follows:

Ayi ¼
Ayi � Syi þ Jk�1;yj � Jð���k n fyigÞ

Syi þ 1
ð5Þ

Syi ¼ Syi þ 1: ð6Þ

The Fast Branch & Bound Algorithm

In addition to the initialization described for BBPP in

Section 4, set the � and � values according to guidelines in

Sections 6.1 and 7.

STEP 1. Select descendants of the current node to form the
consecutive tree level: First, set their number qk ¼ r�
ðD� d� k� 1Þ. Construct Qk, Jk, and Tk as follows: For
every feature  j 2 �; j ¼ 1; � � � ; r if kþ 1 < D� d (nodes are
not leaves) and S j > � (prediction allowed), then

vj ¼ Jk�1;qk�1
�A j

i.e., predict by subtracting the appropriate prediction value
based on  j feature from the criterion value obtained in the
parent node, otherwise the value must be computed, i.e.,

vj ¼ Jð���k n f jgÞ:

After obtaining all vj values, sort them in the ascending
order, i.e.,

vj1 � vj2 � � � � � vjr

and, for i ¼ 1; � � � ; qk, set
Qk;i ¼  ji
Jk;i ¼ vji if vji records a computed value, or
Jk;i ¼ Jk�1;qk�1

� � �A ji
otherwise,

Tk;i ¼ “C” if vji records a computed value, or
Tk;i ¼ “P” otherwise.

To avoid duplicate testing set � ¼ � n Qk and r ¼ r� qk.
STEP 2. Test the right-most descendant node (connected by the
Qk;qk -edge): If qk ¼ 0, then all descendants have been tested
and go to Step 4 (backtracking). If Tk;qk ¼ “P” and
Jk;qk < X�, compute the true value Jk;qk ¼ Jð���k n fQk;qkgÞ
and mark Tk;qk ¼ “C.” If Tk;qk ¼ “C” and Jk;qk < X�, then go
to Step 3. Else let ���kþ1 ¼ ���k n fQk;qkg. If kþ 1 ¼ D� d, then

a leaf has been reached and go to Step 5. Otherwise go to
the next level: Let k ¼ kþ 1 and go to Step 1.
STEPS 3, 4, and 5 are the same as in IBB.

Remark. In Step 1, for k ¼ 0 the term J�1;q�1
denotes the

criterion value on the set of all features, JðY Þ.
The simplified algorithm diagram is shown in Fig. 4.

6 NEW ALGORITHM PROPERTIES

The performance of any B & B algorithm depends signifi-
cantly on properties of the adopted criterion function and the
evaluated data set. Apart from these external factors that
affect the speed of the searchprocess in all B&Bvariants (and
will be discussed in detail in Section 7), the two new
algorithms exhibit several distinct properties.

Both the new BBPP and FBB algorithms utilize a
prediction mechanism that is based on heuristic assump-
tions and as such cannot be expected to work flawlessly
under all conditions. In this sense, both the FBB and BBPP
may be expected to be most effective and superior to IBB if
the prediction mechanism succeeds both in learning and,
later, in replacing true criterion values by sufficiently
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reliable estimates. This is more likely to function if the
individual feature contributions to the criterion value do
not fluctuate strongly in relation to different subsets. In
Section 7, we show that this is not a limiting factor, at least
in the context of feature selection.

Assuming the prediction mechanism does not fail totally,
the FBB can be expected to run faster than BBPP as it not only
replicates the same functionality but extends it further.On the
other hand, the BBPP efficiency may be expected to be less
dependent on prediction accuracy. A potential prediction
failure would have only indirect influence on the overall
algorithm performance; wrong ordering of internal tree
nodes would result in less effective subtree cut-offs, but, on
the other hand, the basic advantage over the IBB algor-
ithm—reducing the number of criterion function evaluations
to order node descendants whenever the next tree level is
constructed—would remain preserved.

The prediction mechanism appears to be relatively
robust in the sense that, even with strong prediction
inaccuracies, the FBB and especially BBPP remain able to
overperform other B & B algorithms. Prediction mechanism
inaccuracy may lead to a worse tree organization in BBPP or
to additional true criterion computations in FBB (especially
by prolonging branches as a result of optimistic prediction
errors), but that rarely outweighs the number of computa-
tions saved anyway.

Unlike classical B & B algorithms, both the new FBB and
BBPP always spend some additional time on maintaining
the prediction mechanism. However, this additional time is
negligible, especially when compared to the time savings
gained from the eliminated nonrecursive criterion evalua-
tions in the context of feature selection. When BBPP is used
in conjunction with fast recursive criterion forms, the
additional time still proves to be short enough to ensure
an overall algorithm speedup.

It should be noted that alternative (e.g., context depen-
dent) prediction mechanisms can be considered as well.
When designing prediction mechanisms, the practitioner
should keep in mind that: 1) The mechanism should learn
quickly and be able to start prediction soon; otherwise, it
would not serve its purpose and 2) the more sophisticated
and computationally complex the mechanism is, the lower
the overall performance gain—its complexity must remain
considerably lower than that of true criterion evaluation. The
mechanism we present in this paper has proven well-suited
for the purpose.

6.1 FBB-Specific Properties

Obviously, FBB cannot be used with recursive criterion
forms, where calculating Jð���kÞ value requires the knowl-
edge of previous value Jð���k�1Þ. As FBB eliminates criterion
function evaluations in many internal nodes, consecutive
criterion values could not be then computed recursively in
descendant nodes. The FBB algorithm can be expected to be
most advantageous when used with nonrecursive criterion
functions of high-computational complexity.

The two constants � and � that enable a precise control of
FBB operation can be considered optional and set to default
values � ¼ 1 and � ¼ 1 for general purposes. For some tasks,
different values may prove slightly better, but there is
typically no way to identify them without accomplishing
the actual B & B search.

Despite that, it should be noted that the optimism
constant � can affect the search process more significantly
than the minimum number of evaluations constant �. Values
� > 1 will make the algorithm behavior pessimistic, i.e.,
reduce the possible occurrence of optimistic prediction
errors. The more pessimistic the algorithm behavior, the
less prediction takes place (becomes restricted to tree levels
closer to the root) and, as a result, the algorithm operates
more similarly to the predictionless IBB. Values 0 < � < 1
will make the algorithm behavior optimistic, i.e., reduce the
occurrence of pessimistic prediction errors. This behavior is
theoretically more dangerous than the pessimistic one as, in
this case, the algorithm may predict too extensively and
postpone cutting decisions to deeper tree levels where the
number of nodes to be evaluated increases. Ultimately, for
� ¼ 0, the algorithm will collect the required prediction
information and then simply evaluate all leafs, as all
internal nodes would have been omitted by means of
prediction—in this sense, the FBB would become equal to
ES. The � and � influence is further discussed in Section 7.1.

7 EXPERIMENTS

To illustrate the behavior of the algorithms considered, we
present a series of experiments. Besides experiments on real
data with standard probabilistic criteria, we include various
syntheticdata-independent testsdefined todemonstratehow
algorithm performance changes under different model
conditions.

It should be emphasized that all the considered algorithms
are optimal with respect to the chosen criterion function and
yield identical subsets. The resulting classification perfor-
mance is thus equal for all of them and depends on factors
outside the scopeof thispaper (criterion choice, etc.). Theonly
important algorithmdifferencewe study here is therefore the
computational complexity. To show the complexity, we
primarily compare computational times. However, as the
computational time may be affected by the properties of the
operating system and compiler used, we compare the total
number of criterion evaluations as well.

7.1 Synthetic Experiments

As stated before, the actual performance of any Branch &
Bound algorithm is considerably affected by the properties
of the used criterion functions and data sets. To demon-
strate such properties, we have defined a set of synthetic
illustrative criteria independent of particular data sets. The
results have been collected in Fig. 5.

Fig. 5a shows the worst-case scenario when no branch
cutting takes place in all B & B variants because all features
yield equal contributions to criterion value. The following
series of Figs. 5b, 5c, 5d, 5e, and 5f shows how the increasing
diversity of features (in the sense of their contributions) leads
to more effective branch cutting in all algorithms, while the
prediction-based BBPP and FBB seem to utilize this increas-
ing diversity better than IBB. An extreme case is shown in
Fig. 5g where each feature yields higher contribution than is
the sumof contributions of all featureswith lower indices. As
a result, the in-level ordering heuristics succeeds in construct-
ing a tree where the optimum is found in the first branch and
all remaining branches are cut off immediately afterward,
thus the algorithm finishes in linear time. Fig. 5h shows how
theFBBpredictionheuristics canbemadedysfunctional if the
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criterion prohibits the prediction mechanism from learning.
This is achieved by making the criterion value strongly
subset-size dependent. Fig. 5i shows how FBB performance
decreases as a result of noisy learning. The noise is added in
the prediction learning phase bymultiplying the true feature
contributions by random coefficients sampled from a uni-
form distribution on a given interval. Note that even
relatively strong noise (interval h0:01; 1:99i) does not neces-
sarily deteriorate the FBB performance to that of the IBB.

To summarize our observations, we can state that the
performance of the advanced B & B algorithms depends
primarily on the following characteristics of the criterion
evaluation process:

1. All features should exhibit stable and measurable
differences between each other (in the sense of
contribution to criterion value). The more equal the
feature contributions are, the worse the performance
of any B & B algorithm. The reason is clear—when
traversing branches down from root to leaves, the
criterion value decreases by the removed feature
contributions. In thecaseofalmostequalcontributions

the criterion values in each level would also remain
similar.Cutting-off thuscanalmostnever takeplace. It
can also be observed that all algorithms with in-level
ordering heuristics (IBB, BBPP, FBB) create treeswhere
features containing less distinguishable amount of
information are tested more often among each other
(appear in more nodes) than the unique ones.

2. Feature contribution should not vary randomly with
respect to different subsets. Unstable or noisy feature
behavior reduces the learning performance of the
predictionmechanisms(withparticular consequences
in FBB). Moreover, the in-level ordering heuristics
would then produce more or less random orderings
that would consequently degrade the overall perfor-
mance of all IBB, BBPP, and FBB (see Fig. 5i).

3. Criterion value should not depend too strongly on
subset size (tree level). Too high differences
between contributions of the same feature among
different tree levels may prevent the FBB prediction
mechanism (as defined in this paper) from predict-
ing reasonable values in consecutive tree levels.
Consequently, the in-level ordering performance
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Fig. 5. Synthetic criteria demonstrating the Branch & Bound behavior. (a) Worst-case scenario that completely prohibits branch cutting. (b), (c), (d),
(e), and (f) Series of examples demonstrating the advantageous effect of increasing diversity among features. (g) Best-case scenario allowing the
most effective branch cutting. (h) FBB prediction learning failure scenario. (i) Influence of noise on FBB learning.



drops in all IBB, BBPP, and FBB similarly to the case
of noisy behavior (see Fig. 5h).

An important observation is that, regardless of whether
particular synthetic criteria deteriorated or accelerated the
search process, the prediction-based algorithms (BBPP, FBB)
remained, in practice, always superior to the referential IBB.

Using synthetic tests, we have also investigated the
influence of FBB parameters � and �. Fig. 6a confirms the
supposition that optimistic errors (invoked here by setting
� < 1) may deteriorate the FBB performance significantly
more than pessimistic ones (invoked here by setting � > 1).
For this reason, values of � > 1 may prove advantageous in
real problems toprevent optimistic behavior of theprediction
mechanism that may be caused by possible noise in data,
learning problems, and/or criterion properties. Neverthe-
less, the graph shows that the � value of 1 is theoretically the
best and should be considered the default value. Fig. 6b
shows that setting � > 1 may result in a slight performance
gain in cases when, due to noise or instability of feature
contributions, the prediction mechanism needs longer learn-
ing before becoming able to predict reasonably well. To
demonstrate this effect, we let the algorithm learn feature
contributions inaccurately—each multiplied by a random
coefficient from a uniform distribution on h0:5; 1:5i. The
performance gain follows from the fact that initial tree
construction stages (ordering in levels near the root) may
prove crucial for later effective branch cut-offs. Initial wrong
ordering may delay bound convergence to optimum and,
consequently, reduce the effectiveness of branch cutting.
Experiments show, that � affects the search process consider-
ably less than �. Values � > 1 can be recommended, but may
result in approximately d � � true criterion evaluations that
could have been possibly replaced bymeans of prediction if �
was lower. The number d � � becomes insignificant for
problems with very high number of configurations to be
tested (typically, when d 
 D=2).

7.2 Real Data Experiments

The algorithms have been tested on a number of different
data sets. Here, we show and discuss the results computed
on the 2–class WDBC mammogram data from the Wiscon-
sin Diagnostic Breast Center (30 features, 357 benign, and
212 malignant samples) and 3–class WAVEFORM data

(40 features, 1,692 class 1, and 1,693 class 2 samples, we
used the first two classes only to meet criterion limitations),
both obtained via the UCI repository [19] http://
ftp.ics.uci.edu. We also used 2–class SPEECH data originat-
ing at British Telecom (15 features, 682 word “yes,” and
736 word “no” samples) obtained from the Centre for
Vision, Speech, and Signal Processing, University of Surrey.
To emphasize the universality of our concept, we used three
different criterion functions: Bhattacharyya, Divergence,
and Patrick-Fischer, respectively. We used both the recur-
sive (where possible) and nonrecursive forms of the
Bhattacharyya distance. The performance of different
methods is illustrated in Figs. 7, 8, and 9, showing the
graphs of (a) computational time and (b) number of
criterion evaluations. Tables 2, 3, and 4 show the statistics
that form the basis of the BBPP and FBB prediction
mechanisms (estimated using IBB with no computations
omitted by means of prediction). In addition to vectors A
(feature contributions) and S (numbers of feature contribu-
tion evaluations), the tables show the deviation of Ai values
and the individual criterion value of each feature.

In case of nonrecursive criterion forms, we implemented
all B & B algorithms to construct the “minimum solution
tree” [28]. The FBB parameters have been set to default
values � ¼ 1 and � ¼ 1 for all tests.

The exponential nature of the optimal search problem is
well-illustrated by the fact that, for 15-dimensional data
(Fig. 9), the ES remained relatively comparable to B & B
algorithms,while, for 30-dimensionaldataandd ¼ 15 (Fig. 7),
it required approximately 140� more criterion evaluations
than IBB and, in case of 40-dimensional data and d ¼ 20
(Fig. 8), the difference reached 1:3� 108. According to
expectations, the effectiveness of the “Basic” B & B [5] also
proved to be strongly inferior to the more advanced B & B
algorithms, except in the low-dimensional SPEECHcase (Fig.
9) where the combination of low dimension and Patrick-
Fischer criterion properties degraded the performance of
more advanced algorithms.

Similarly to the previous synthetic tests, Figs. 7, 8, and 9
confirm that prediction-based algorithms (BBPP, FBB)
practically always operate faster than the referential IBB,
while FBBoperatesmostly faster than or equally fast as BBPP.
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Fig. 6. Influence of parameters � and � on the FBB prediction mechanism.



Depending on the data set and the criteria used, the FBB has

been shown to run approximately 1:5 to 10 times faster than

IBB in feature selection tasks with the computationally most

expensive settings of d close toD=2.
The WDBC example (Fig. 7) shows the behavior of the

algorithms considered, with the Bhattacharyya distance as a

criterion. Table 2 shows that reliable prediction information

(as indicated by low Ai deviation) could be estimated using

the Bhattacharyya distance and that, for the WDBC data set,

the contributions of different features remain reasonably

distinguishable. Both the in-level ordering heuristics and

prediction mechanisms operated as expected.
The WAVEFORM example (Fig. 9) exhibits a noticeable

phenomenon where the IBB, BBPP and FBB algorithms
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Fig. 7. Optimal subset search methods performance on 2-class WDBC mammogram data. Results computed on a Pentium II-350 MHz computer.

Fig. 8. Optimal subset search methods performance on 2-class WAVEFORM data. Results computed on a Pentium II-350 MHz computer.



operated exceptionally quickly up to subset size d ¼ 20. The
most likely explanation of this fact is that about half of the
features represent noise only (as confirmed in data
documentation). The difference between the estimated
contributions of informative and noisy features proven
instrumental for the in-level ordering heuristics being
effective, as shown before in Section 7.1.

The SPEECH example (Fig. 9) is representative of a more
difficult task (in the sense of B & B effectiveness) where the
criterion (Patrick-Fischer) exhibits behavior that is disadvan-
tageous for all advanced B & B algorithms. Table 4 suggests

that Patrick-Fischer distance yields values strongly subset-
size dependent. The average feature contributions Ai are
significantly different from individual values JP ðfigÞ, while
the contribution deviation is extremely high. This is the most
likely cause of the relatively weak performance of IBB in
relation to the “Basic” B&B and for the degradation of FBB to
BBPP level. This example also illustrates the fact that ES may
operate faster than all B&B algorithms for d close to 0, where,
due to the search tree depth and low total number of
configurations, B & B may have to evaluate the criterion
more times than ES.
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Fig. 9. Optimal subset search methods performance on 2-class SPEECH data. Results computed on a Pentium II-350 MHz computer.

TABLE 2
Feature Contribution Statistics Obtained Using the IBB Algorithm to Select 15 Out of 30 Features

of the WDBC Data Set to Maximize Bhattacharyya Distance

JBðY Þ ¼ 7:53989. Best subset X ¼ f1; 3; 4; 6; 7; 11; 14; 15; 16; 17; 21; 23; 24; 26; 27g. JBðXÞ ¼ 5:741.

TABLE 3
Feature Contribution Statistics Obtained Using the IBB Algorithm to Select 20 Out of 40 Features

of the Waveform Data Set to Maximize Divergence

JDðY Þ ¼ 33:8236. Best subset X ¼ f2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21g. JDðXÞ ¼ 32:7742.



Note that the graphs of FBBandBBPPexhibit, in all cases, a
slight shift to the rightwhen compared to IBB. Theprediction-
based algorithm acceleration relates to the number of
criterion evaluation savings in internal search tree nodes.
Therefore, with decreasing d, the tree depth increases and
allows a more effective prediction mechanism operation.

Tables 2, 3, and 4 illustrate not only the feature contribu-
tion behavior but also the general performance of the in-level
ordering heuristics present in all IBB, BBPP, and FBB
algorithms. Note that features yielding low contribution to
the criterion value are evaluated more frequently than
features with high contributions. This shows how the
algorithm accelerates the improvement of the bound and
howmost contributing features become “accepted” soon and
excluded from further testing. Besides that, the tables
illustrate the known fact that individual criterion values do
not representwell the feature importance.Note how strongly
some individual JðfigÞ differ from the respective Ai values.

Remark. The number of computations in the recursive and
nonrecursive cases in Fig. 7 differs. The graphs illustrate
the difference between the search with and without
“minimum solution tree” [28] that could not have been
employed with recursive criterion computation.

8 CONCLUSION

Based on a detailed study of the Branch & Bound principle,
we developed two novel optimal subset search algorithms
which eliminate a significant number of computations. The
proposed procedures are the Branch & Bound with Partial
Prediction Algorithm and the Fast Branch & Bound
Algorithm. The FBB algorithm is especially suitable for
use with computationally expensive criterion functions. The
BBPP algorithm is well-suited for use with both recursive
and nonrecursive criterion forms. Both algorithms were
experimentally shown to be significantly more efficient than
any other traditional Branch & Bound algorithm while
yielding identical optimal results.

We described the algorithms in the context of feature
selection, but we suppose their applicability can be much
broader.

REFERENCES

[1] R. Caruana and D. Freitag, “Greedy Attribute Selection,” Proc. Int’l
Conf. Machine Learning, pp. 28-36, 1994.

[2] N. Chaikla and Y. Qi, “Genetic Algorithms in Feature Selection,”
Proc. IEEE Int’l Conf. Systems, Man, and Cybernetics, vol. 5, pp. 538-
540, 1999.

[3] P.A. Devijver and J. Kittler, Pattern Recognition: A Statistical
Approach. Prentice Hall, 1982.

[4] I. Foroutan and J. Sklansky, “Feature Selection for Automatic
Classification of Non-Gaussian Data,” IEEE Trans. Systems, Man,
and Cybernetics, vol. 17, pp. 187-198, 1987.

[5] K. Fukunaga, Introduction to Statistical Pattern Recognition, second
ed. Academic Press, Inc., 1990.

[6] M. Gengler and G. Coray, “A Parallel Best-First Branch and Bound
Algorithm and Its Aximatization,” Parallel Algorithms and Applica-
tions, vol. 2, pp. 61-80, 1994.

[7] Y. Hamamoto, S. Uchimura, Y. Matsuura, T. Kanaoka, and S.
Tomita, “Evaluation of the Branch and Bound Algorithm for
Feature Selection,” Pattern Recognition Letters, vol. 11, no. 7,
pp. 453-456, July 1990.

[8] A. Iamnitchi and I. Foster, “A Problem-Specific Fault-Tolerance
Mechanism for Asynchronous, Distributed Systems,” Proc. Int’l
Conf. Parallel Processing, pp. 4-14, 2000.

[9] A.K. Jain and D. Zongker, “Feature Selection: Evaluation,
Application, and Small Sample Performance,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 19, pp. 153-158, 1997.

[10] S. Kirkpatrick, C.D. Gelatt Jr, and M.P. Vecchi, “Optimization by
Simulated Annealing,” Science, vol. 220, no. 4598, pp. 671-680,
1983.

[11] R. Kohavi and G.H. John, “Wrappers for Feature Subset
Selection,” Artificial Intelligence, vol. 97, nos. 1-2, pp. 273-324, 1997.

[12] D. Koller and M. Sahami, “Toward Optimal Feature Selection,”
Proc. 13th Int’l Conf. Machine Learning, pp. 284-292, 1996.

[13] R.E. Korf, “Artificial Intelligence Search Algorithms,” Handbook of
Algorithms and Theory of Computation, chapter 36, CRC press, 1999.

[14] M. Kudo and J. Sklansky, “Comparison of Algorithms that Select
Features for Pattern Classifiers,” Pattern Recognition, vol. 33, no. I,
pp. 25-41, Jan. 2000.

[15] V. Kumar and L.N. Kanal, “A General Branch and Bound
Formulation for Understanding and Synthesizing and/or Tree
Search Procedures,” Artificial Intelligence, vol. 21, pp. 179-198,
1983.

[16] E.L. Lawler and D.E. Wood, “Branch and Bound Methods: A
Survey,” Operations Research, vol. 149, pp. 699-719, 1966.

[17] H. Liu, H. Motoda, and M. Dash, “A Monotonic Measure for
Optimal Feature Selection,” Proc. European Conf. Machine Learning,
pp. 101-106, 1998.

[18] A. Mitschele-Thiel, “Optimal Compile-Time Scheduling and
Network Configuration,” Transputers ’94: Advanced Research and
Industrial Applications IOS Press, pp. 153-164, 1994.

[19] P.M.Murphy andD.W.Aha, “UCI Repository ofMachine Learning
Databases (Machine-ReadableDataRepository),”Dept. of Informa-
tion and Computer Science, Univ. of California, Irvine, 1994.

[20] P.M. Narendra and K. Fukunaga, “A Branch and Bound
Algorithm for Feature Subset Selection,” IEEE Trans. Computers,
vol. 26, no. 9, pp. 917-922, Sept. 1977.

[21] N.J. Nilsson, Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, 1971.

[22] N.J. Nilsson, Artificial Intelligence: A New Synthesis. Morgan
Kaufmann 1998.

[23] P. Somol, P. Pudil, F.J. Ferri, and J. Kittler, “Fast Branch & Bound
Algorithm in Feature Selection,” Proc. Fourth World Multiconf.
Systemics, Cybernetics, and Informatics, vol. 7, Part 1, pp. 646-651,
2000.

SOMOL ET AL.: FAST BRANCH & BOUND ALGORITHMS FOR OPTIMAL FEATURE SELECTION 911

TABLE 4
Feature Contribution Statistics Obtained Using the IBB Algorithm to Select Seven out of 15 Features

of the Speech Data Set to Maximize Patrick-Fischer Distance

JP ðY Þ ¼ 52; 069; 500. Best subset X ¼ f7; 8; 9; 10; 11; 12; 15g. JP ðXÞ ¼ 8; 995:47.



[24] P. Somol, P. Pudil, and J. Grim, “Branch & Bound Algorithm with
Partial Prediction for Use with Recursive and Non-Recursive
Criterion Forms,” Lecture Notes in Computer Science, vol. 2013,
pp. 230-238, 2001.

[25] G.I. Webb, “OPUS: An Efficient Admissible Algorithm for
Unordered Search,” J. Artificial Intelligence Research, vol. 3,
pp. 431-465, 1995.

[26] Ch. Xu, S. Tschke, and B. Monien, “Performance Evaluation of
Load Distribution Strategies in Parallel Branch and Bound
Computations,” Proc. Seventh IEEE Symp. Parallel and Distributed
Processing, pp. 402-405, 1995.

[27] M.K. Yang and C.R. Das, “A Parallel Optimal Branch-and-Bound
Algorithm for MIN-Based Multiprocessors,” Proc. IEEE 1999 Int’l
Conf. Parallel Processing, pp. 112-119, 1999.

[28] B. Yu and B. Yuan, “A More Efficient Branch and Bound
Algorithm for Feature Selection,” Pattern Recognition, vol. 26,
pp. 883-889, 1993.

Petr Somol received the MSc and PhD degrees
from the Faculty of Mathematics and Physics,
Charles University, Prague, both in computer
science. He is with the Department of Pattern
Recognition at the Institute of Information
Theory, Academy of Sciences of the Czech
Republic, and also with the Medical Informatics
Unit, IPH, the University of Cambridge, United
Kingdom. His current interests include statistical
approach to pattern recognition, combinatorial

algorithms, graphics, and modern programming.

Pavel Pudil is the dean of the Faculty of
Management, Prague University of Economics
and is also with the Department of Pattern
Recognition at the Institute of Information
Theory, Academy of Sciences of the Czech
Republic. He has published more than 100
papers regarding statistical pattern recognition,
especially feature selection and mixture model-
ing. From 1996 to 1999, he was an IAPR
Technical Committee 1 Chairman. In 2000, he

was elected an IAPR fellow and he is a member of the IEEE and the
IEEE Computer Society.

Josef Kittler is a professor of machine intelli-
gence and director of the Centre for Vision,
Speech, and Signal Processing at the University
of Surrey. He has worked on various theoretical
aspects of pattern recognition and image analy-
sis and on many applications, including personal
identity authentication, automatic inspection,
target detection, detection of microcalcifications
in digital mammograms, video coding and
retrieval, remote sensing, robot vision, speech

recognition, and document processing. He has coauthored the book
Pattern Recognition: A Statistical Approach (Prentice Hall) and has
published more than 400 papers. He is a member of the editorial boards
of Image and Vision Computing, Pattern Recognition Letters, Pattern
Recognition and Artificial Intelligence, Pattern Analysis and Applications,
and Machine Vision and Applications. He is a member of the IEEE and
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

912 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 7, JULY 2004


