
Pattern Recognition 37 (2004) 1641–1651
www.elsevier.com/locate/patcog

Classi er performance as a function of distributional
complexity

Sanju N. Attoora, Edward R. Doughertya;b;∗
aDepartment of Electrical Engineering, Texas A&M University, College Station, TX, USA

bDepartment of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA

Received 18 September 2003; received in revised form 15 October 2003

Abstract

When choosing a classi cation rule, it is important to take into account the amount of sample data available. This paper
examines the performances of classi ers of di5ering complexities in relation to the complexity of feature-label distributions in
the case of small samples. We de ne the distributional complexity of a feature-label distribution to be the minimal number of
hyperplanes necessary to achieve the Bayes classi er if the Bayes classi er is achievable by a nite number of hyperplanes,
and in nity otherwise. Our approach is to choose a model and compare classi er e8ciencies for various sample sizes and
distributional complexities. Simulation results are obtained by generating data based on the model and the distributional
complexities. A linear support vector machine (SVM) is considered, along with several nonlinear classi ers. For the most
part, we see that there is little improvement when one uses a complex classi er instead of a linear SVM. For higher levels of
distributional complexity, the linear classi er degrades, but so do the more complex classi ers owing to insu8cient training
data. Hence, if one were to obtain a good result with a more complex classi er, it is most likely that the distributional complexity
is low and there is no gain over using a linear classi er. Hence, under the model, it is generally impossible to claim that use
of the nonlinear classi er is bene cial. In essence, the sample sizes are too small to take advantage of the added complexity.
An exception to this observation is the behavior of the three-nearest-neighbor (3NN) classi er in the case of two variables
(but not three) when there is very little overlap between the label distributions and the sample size is not too small. With a
sample size of 60, the 3NN classi er performs close to the Bayes classi er, even for high levels of distributional complexity.
Consequently, if one uses the 3NN classi er with two variables and obtains a low error, then the distributional complexity
might be large and, if such is the case, there is a signi cant gain over using a linear classi er.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Classi er design; Classi er dimension; Distributional complexity; Small samples

1. Introduction

When choosing a classi cation rule, it is important to take
into account the amount of sample data available. Whereas it
is bene cial that a classi cation rule be consistent, meaning
that the increase in classi cation error owing to design from

∗ Corresponding author. Tel.: +1-979-862-8154; fax: +1-979-
845-6259.
E-mail addresses: edward@ee.tamu.edu,

e-dougherty@tamu.edu (E.R. Dougherty).

sample data goes to zero as the sample size goes to in nity, it
is design behavior at small sample sizes that is critical when
data are severely limited. For instance, small-sample design
has become a paramount issue in functional genomics, where
a key desire is to design classi ers based on gene-expression
data to discriminate between phenotypes [1,2].
The problem of choosing a classi cation rule is exac-

erbated by the di8culty of error estimation with small
samples, where one is compelled to train and test a classi er
on the same data, with error estimation being accomplished
via resubstitution, cross-validation, bootstrap, or some other
training-data-based error estimator. Cross-validation seems

0031-3203/$30.00 ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2003.10.013

mailto:edward@ee.tamu.edu
mailto:e-dougherty@tamu.edu

1642 S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651

to be the preferred choice of many investigators owing to
its approximate global unbiasedness (meaning that on an
average the cross-validation error estimate is close to the
true error of the designed classi er), but the variance of
the cross-validation error estimation is typically very high,
which can make it unreliable [3,4]. While resubstitution has
much less variance, it is typically low-biased, perhaps ex-
tremely so. As for bootstrap estimation, it has reduced vari-
ance in comparison to cross-validation, but at an increased
computational cost. A consequence of the small-sample
error-estimation problem is that, even if a classi er is de-
signed and shows low error based on small-sample error
estimation, it may in fact be quite poor—and the situation
is worse for complex classi ers [5].
Since design error is typically worse for more complex

classi ers, and since error estimation is problematic, pru-
dence seems to dictate the preferability of low-complexity
classi ers. The downside, of course, is that low-complexity
classi ers have less ability to partition the feature space and
therefore are inadequate for classi cation involving com-
plex feature-label distributions. The purpose of this paper is
to examine the performances of classi ers of di5ering com-
plexities in relation to the complexity of feature-label dis-
tributions in the case of small samples. The analysis will be
done in such a way as to remove the e5ects of small-sample
error estimation so that we can see if classi er complexity
is actually an advantage.

2. Classi�cation

Classi cation involves a classi er , a feature vector
X = (X1; X2; : : : ; Xd) composed of random variables, and a
binary random variable Y to be predicted by (X). The val-
ues, 0 or 1, of Y are treated as class labels. The error, �[],
of is the probability, P((X) �= Y), that the classi cation
is erroneous. It equals the expected (mean) absolute di5er-
ence, E[|Y − (X)|], between the label and the classi ca-
tion. X1; X2; : : : ; Xd can be discrete or real-valued. In the lat-
ter case, the domain of is d-dimensional Euclidean space
Rd. An optimal classi er, •, is the one with minimal error,
�•, among all binary functions on Rd. • and �• are called
the Bayes classi6er and Bayes error, respectively. Classi -
cation accuracy, and thus the error, depends on the probabil-
ity distribution of the feature-label pair (X; Y)—how well
the labels are distributed among the variables being used
to discriminate them, and how the variables are distributed
in Rd.
Classi er design uses a sample Sn = {(X1; Y 1); (X2; Y 2);

: : : ; (Xn; Y n)} of feature-label pairs and a classi6cation rule
to construct a classi er n whose error is hopefully close
to the Bayes error. The Bayes error �• is estimated by the
error �n of n. Because �• is minimal, �n¿ �•, and there is
a design error (cost of estimation), �n = �n − �•. Since it
depends on the sample, �n is a random variable, as is �n.
Hence, we are concerned with the expected value of �n,

N0N1 N2

Sample size, N

E[n]

E[n,C]

 opt

 opt,C

N0N1 N2

Sample size, N

E[εn]

E[εn,C]

εopt

εopt,C

Fig. 1. Relationship between sample size and constraint.

E[�n]=E[�n]− �•. Hopefully, E[�n] gets closer to 0 as the
sample size grows. This will depend on the classi cation
rule and the distribution of the feature-label pair (X; Y).
Finding an optimum classi er is essentially impossible,

especially given a small sample size and lack of knowledge
of the feature-label distribution. Instead of nding an opti-
mum classi er, one can restrict the functions from which a
classi er must be chosen to a class C. It is then required to
 nd an optimum constrained classi er C ∈C, having error
�C . Constraining the classi er can reduce the expected de-
sign error, but at the cost of increasing the error of the best
possible classi er. Since optimization in C is over a sub-
class of classi ers, the error, �C , of C will typically exceed
the Bayes error, unless the Bayes classi er happens to be in
C. This cost of constraint (approximation) is �C = �C − �•.
A classi cation rule yields a classi er n;C ∈C with error
�n;C , and �n;C ¿ �C ¿ �•. Design error for constrained clas-
si cation is �n;C = �n;C − �C . For small samples, this can be
substantially less than �n, depending on C and the rule. The
error of the designed constrained classi er is decomposed
as �n;C = �•+�C +�n;C . The expected error of the designed
classi er from C can be decomposed as

E[�n;C] = �• + �C + E[�n;C]: (1)

The constraint is bene cial if and only if E[�n;C]¡E[�n],
which means �C ¡E[�n] − E[�n;C]. The dilemma: strong
constraint reduces E[�n;C] at the cost of increasing �C .
The relationship between sample size and constraint

can be shown graphically. Consider a consistent rule, con-
straint, and distribution for which E[�n+1]6E[�n] and
E[�n+1;C]6E[�n;C]. Then Fig. 1 illustrates the design prob-
lem. The axes correspond to sample size and error. The
horizontal dashed lines represent �• and �C ; the decreasing
solid lines represent E[�n] and E[�n;C]. If n is su8ciently
large, then E[�n]6E[�n;C]; however, if n is su8ciently
small, then E[�n]¿E[�n;C]. The point N0 at which the de-
creasing lines cross is the cut-o5: for n¿N0, the constraint
is detrimental; for n¡N0, it is bene cial. When n¡N0,
the advantage of the constraint is the di5erence between the
decreasing solid lines.

S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651 1643

Quantitatively, the dilemma can be appreciated by con-
sidering the VC dimension of a classi cation rule [5]. The
VC dimension provides a measure of the degree of neness
to which a classi er designed from the rule can partition
the observation space. The empirical-error rule chooses the
classi er in C that makes the least number of errors on the
sample data. For this rule,

E[�n;C]6 8

√
VC log n+ 4

2n
; (2)

where VC is the VC dimension of C [3,5]. It is clear from
the bound that n must greatly exceed the VC dimension for
the bound to be small. The VC dimension of a perceptron
is d + 1. For a neural network with an even number k of
neurons, the VC dimension has the lower bound dk [6].
To appreciate the implications, suppose d = k = 10. Set-
ting VC = 100 and n = 5000 yields a bound exceeding 1,
which says nothing. Admittedly, the bound is the worst-case
because there are no distributional assumptions. The situa-
tion may not be nearly so bad. Still, one must proceed with
care.

3. Distributional complexity

Our intuitive notion of distributional complexity within
the context of pattern classi cation has to do with the sep-
arability of the conditional label distributions, f(x|0) and
f(x|1). If they are linearly separable, then the optimal lin-
ear classi er has zero error, which means that the joint
feature-label distribution, f(x; y), has minimal complex-
ity. Linear separability extends, in a weakened form, to the
Bayes classi er being linear—for instance, in the case of
f(x|0) and f(x|1) being Gaussian with equal variances.
Focusing on two-dimensional classi ers, a more complex
situation arises when f(x|0) is concentrated in the rst and
third quadrants, and f(x|1) is concentrated in the second
and fourth quadrants. Then the optimal classi er is a binary
decision tree determined by x1 = 0 and x2 = 0. Here, we re-
quire two straight lines for perfect classi cation, whereas in
the linearly separable case we require only a single straight
line. The situation is really no di5erent if we were to ro-
tate the axes because then, although a binary decision tree
would fail to give the Bayes classi er, a neural network
could provide the two straight lines, which are now just a
rotation of the axes. The entire matter extends in a weak-
ened form to the case where the Bayes classi er is deter-
mined by two straight lines, say for f(x|0) and f(x|1)
each being mixtures of two Gaussians with variances equal
and the Gaussians for each being at opposite corners of a
square.
The issue confronting us is the choice of a classi cation

rule. In the case when f(x|0) and f(x|1) are linearly sep-
arable, one could use a neural network, but would that be
wise? Since much less data are needed to well train a linear
classi er, it is likely that a linear classi cation rule, such as

a linear support vector machine (SVM), would be expected
to outperform a neural network. In the case when f(x|0) is
concentrated in the rst and third quadrants, and f(x|1) is
concentrated in the second and fourth quadrants, it is clear
that for su8cient training data a neural network will outper-
form a linear classi cation rule, but even if it outperforms
a linear classi cation rule for a small sample, will its true
error on the distribution still reMect the fact that the Bayes
error is zero?
Based on the preceding heuristics, we de ne the distri-

butional complexity, �, of a feature-label distribution to be
the minimal number of hyperplanes necessary to achieve
the Bayes classi er, if the Bayes classi er is achievable by
a nite number of hyperplanes, and we de ne it to be in-
 nity otherwise. Notice that, according to this de nition,
the distributional complexity is rotationally invariant rela-
tive to the feature-label distribution. For example, in the
two cases so far discussed in this section, � = 1 and � = 2,
respectively.
Before examining classi er design relative to distribu-

tional complexity, a couple of points need to be clari ed.
First, high distributional complexity does not imply that a
low-complexity classi er cannot perform well. Put more rig-
orously, given �¿ 0, there exists a feature-label distribution
with � = ∞ such that the optimal linear classi er has error
less than �.
Second, distributional complexity is rotationally invari-

ant, but classi er performance need not be. This means that
we need to be careful how we measure classi er perfor-
mance relative to distributional complexity. Given a model
feature-label distribution f(x; y), one can consider all rota-
tions f�(x; y) of f(x; y). Now suppose we wish to evalu-
ate the performance of a classi cation rule relative to sam-
ple size n and model complexity. For the particular model
f�(x; y), one has choices on how to proceed. One could
measure the performance as the average performance over
all �. Or one could choose � so as to minimize (maximize)
�� and measure the performance for the minimizing (max-
imizing) value of �. That the matter is irrelevant for ro-
tationally invariant classi cation rules such as linear SVM
and k-nearest-neighbor (KNN) classi cation (two popular
rules) lessens the consequences of our decision.
Thus far, distributional complexity has been de ned for

a particular distribution; however, if we take distributional
complexity as the basic quantity, then we may wish to
consider a set of distributions having the same complexity
and average the classi er error over these distributions.
The purpose of this approach is to evaluate classi ers
based on their abilities with regard to distributional com-
plexity, not a particular distribution possessing a distri-
butional complexity of interest. In this vein, suppose, for
�=1; 2; : : : ; K , we have sets of feature-label distributions, say
{f11; f12; : : : ; f1r1}; {f21; f22; : : : ; f2r2}; : : : ; {fK1; fK2; : : : ;
fKrK }, where �(fkj)= k for all (k; j). Given a classi cation
rule (family of classi ers) � and sample size n, we can
de ne the �-error of � relative to the model M composed

1644 S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651

of the sets of feature-label distributions as

!�[M ; n; �] =
r�∑
j=1

�[n;f� j]P(f� j|�); (3)

where �[n;f� j] is the expected error for a classi er ∈�
designed from a random sample of size n drawn from f� j ,
and P(f� j|�) is the probability of the distribution f� j given
distributional complexity �. The latter probability is impor-
tant because, whereas there are r� distributions in the model
possessing distributional complexity �, they need not be
equally likely in the model. Selection of a classi cation rule
can be based on comparison of e8ciency. Rule �1 is better
than rule�2 for complexity � at sample size n relative to the
model M if !�1 [M ; n; �]6!�2 [M ; n; �]: In the model M
we denote the distributions corresponding to a given com-
plexity � by M� = {f�1; f�2; : : : ; f�r�}, and we call M� a
complexity class.
Unlike the VC dimension, the distributional complexity

is dependent on the feature-label distribution of the data. In
one sense this is a drawback because it requires an estimate
of � from the data or prior knowledge of �. The advantage is
that the distribution-free quality of the VC dimension makes
it too conservative and insu8ciently ne as a measure of
performance. Since, in practice, good estimation of � from
small samples is impossible, to use distributional complex-
ity for classi er selection one can proceed heuristically by
assuming a value of � and a model over which to evaluate
classi er e8ciency. Our purpose here is to choose a model
and compare classi er e8ciencies for various samples sizes
and distributional complexities.

4. Model for distributional complexity

For clarity, we begin by explaining the model for two vari-
ables (features). Extension to higher dimensions is straight-
forward. Begin by assuming a square grid of m × m points
(mN for N features),

G2;m =

z11 z12 · · · z1m

z21 z22 · · · z2m

...
...

...
...

zm1 zm2 · · · zmm

;

where the vertical and horizontal distances between adja-
cent points is 2! (GN;m for N features). A ball, Bij , of radius
! is centered at zij . Consider the class H2;m of all m × m
binary (0; 1) matrices. For each matrix H , let H (i; j) de-
note the binary value at the (i; j) position, let H0 and H1

be the sets of indices corresponding to 0- and 1-valued en-
tries, respectively, and let U0 and U1 be the uniform distri-
butions over the regions R0 = ∪{Bij : (i; j)∈H0} and R1 =
∪{Bij : (i; j)∈H1}, respectively. This results in the model
M2;m: For each pair of distributions, the Bayes classi er can
be expressed as a decision tree with zero Bayes error. The

distributional complexity, �(H), of the classi er depends on
H and is the minimum number of hyperplanes used in a de-
cision tree that de nes a Bayes classi er. Since the labels
0 and 1 are interchangeable, we identify H and its comple-
ment and include only one of them in the model.
The model M2;m is composed of families M�

2;m of distri-
butions of various complexities. For instance,

M 1
2;3 =

1 1 1

0 0 0

0 0 0

 ;

0 0 0

0 0 0

1 1 1

 ;

1 0 0

1 0 0

1 0 0

 ;

0 0 1

0 0 1

0 0 1

:

We note that the elements in M 1
2;3 are all rotations of a sin-

gle element. If we wish to consider them individually in the
computation of e8ciency, we can give them all the same
probability; if we wish to consider them as a single probabil-
ity structure, equivalent under rotation, we can assign three
of them probability zero. In this case rotational equivalence
su8ces, but in other families we have symmetries with re-
spect to both rotation and the orthogonal axes. For instance,

1 1 1

0 0 0

0 0 1

 ;

1 0 0

0 0 0

1 1 1

 ;

1 1 1

0 0 0

1 0 0

 ;

1 0 0

1 0 0

1 0 1

⊂ M 3
2;3:

But we must not suppose that a complexity class consists
only of symmetries. For instance,

1 1 0

0 0 0

1 1 1

 ;

0 1 0

0 0 0

0 0 0

 ;

1 1 1

1 0 0

1 1 1

⊂ M 3
2;3: (4)

While we have explained the model for uniform distri-
butions over the balls Bij , in which case the Bayes error is
zero, we will actually apply the model with Gaussians cen-
tered at each point zij . Not only is this in accord with usual
Gaussian mixture models but it also makes the Bayes er-
ror greater than zero, which is more realistic. Simulations
are done for the 2-variable and 3-variable cases. For more
variables, the number of computations is huge and is not
considered. Anyway, since our main interest is with small
samples, using more than 3 variables is usually not prudent.

S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651 1645

5. Simulation

Simulation results are obtained by generating data based
on the model and the distributional complexities. For the
2-variable case, all 28 − 2 = 254 (leaving out the triv-
ial cases and complementations) possible con gurations are
considered and the complexities computed for the complex-
ity classes. Given a matrix H from the complexity class
M 1

2;3, a sample of size n is generated by randomly selecting
n points zi1j1 ; zi2j2 ; : : : ; zinjn (with repetition allowed), ran-
domly drawing a point xiljl from each Gaussian at each point
ziljl ; l= 1; 2; : : : ; n, and assigning the label H (i; j) to xiljl . A
classi er from the class � is designed based on the sam-
ple, and its error is computed based on the model. This is
repeated L times to get an estimate of the expected error,
�[n;H]. The entire procedure is repeated for all matrices
with � = 1 and !�[M ; n; 1] is obtained from Eq. (3) (as-
suming equal probabilities for the matrices). We then turn
to � = 2, and so on.
For the 3-variable case, the number of con gurations is

huge (226 − 2), which precludes using all distributions in

0 2 4 6 8 10 12
0.1

0.15

0. 2

0.25

0.3

0.35

Distributional Complexity

B
ay

es
 E

rr
or

0 2 4 6 8 10 12
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Distributional Complexity

B
ay

es
 E

rr
or

(a) (b)

Fig. 2. Bayes error for the 2-variable case: (a)) = 1=6 and (b)) = 1=10.

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

Distributional Complexity

B
ay

es
 E

rr
or

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

B
ay

es
 E

rr
or

Distributional Complexity(a) (b)

Fig. 3. Bayes error for the 3-variable case: (a)) = 1=6 and (b)) = 1=12.

M�
3;3 to obtain !�[M ; n; �]. Thus, we resort to sampling

distributions from M�
3;3. Once a distribution is chosen, data

generation is done in the same way as for the 2-variable
case. The sampling method is explained in Appendix B.
The Bayes error should have a monotonically non-

decreasing relationship with the distributional complexity.
A straightforward theoretical estimation of the Bayes error
for a given value of � requires enumerating all the possible
con gurations in each complexity class. For example, in
the 2-variable case, consider the three con gurations of
distributional complexity given in Eq. (4) and let eg be the
error due to overlap between two adjacent Gaussians. If it
is assumed that the overlap of diagonally placed Gaussians
is signi cantly less than that between two adjacent Gaus-
sians, then the Bayes error for the three cases would be
approximately 6eg, 3eg, and 5eg, respectively. Given these
considerations, we can then compute the Bayes �-error for
the model analogously to the �-error by

![M�
d;m] =

r�∑
j=1

�BAY [H� j]P(H� j|�); (5)

1646 S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651

1 2 3 4 5 6 7 8 9 10 11 12
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 1 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

E
rr

or
 E

st
im

at
e

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

or
 E

st
im

at
e

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

or
 E

st
im

at
e

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

or
 E

st
im

at
e

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

E
rr

or
 E

st
im

at
e

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
rr

or
 E

st
im

at
e

Distributional Complexity

1 2 3 4 5 6 7 8 9 10 11 12

Distributional Complexity

1 2 3 4 5 6 7 8 9 10 11 12

Distributional Complexity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Distributional Complexity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Distributional Complexity

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Distributional Complexity

(a)

(c) (d)

(b)

(e) (f)

Fig. 4. Error estimate vs. complexity for) = 1=6, (a) n = 20, 2 variables, (b) n = 40, 2 variables, (c) n = 60, 2 variables, (d) n = 20, 3
variables, (e) n = 60, 3 variables, (f) n = 60, 3 variables.

where the Bayes error, �BAY [H� j], corresponding to the ma-
trix H� j in the � complexity class can be approximated by
an expression of the form keg.
This has been done for the 2-variable case using all possi-

ble con gurations and numerical methods to nd the Bayes
error for each con guration. The relationship between com-
plexity and Bayes error (between � and ![M�

2;3]) for two
values of) is shown in Fig. 2 for �=1 to �=12. Distribu-
tional complexities in excess of 12 are of very little practical

value. The relationship is monotonic. Note that the error is
unchanged between � = 3 and � = 4 for both values of)
and that there is very little change in ![M�

2;3] between �=3
and � = 5 for) = 1=6. All errors have been estimated us-
ing leave-one-out cross-validation with 500 replications to
ensure precise estimation.
For the 3-variable case, sampling of con gurations is done

to estimate the Bayes errors, and therefore ![M�
3;3]. Hence,

the values of ![M�
3;3] are approximate. The relationship

S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651 1647

Fig. 5. (a) Actual con guration of complexity 10. (b) Decision boundary plot for 3NN. (c) Decision boundary plot for neural network with
2 hidden units.

between � and ![M�
3;3] is shown in Fig. 3 for two values of

). In the case of)=1=6, ![M�
3;3] is a bit higher for �=3 and

� = 4 than for � = 5 and � = 6. This appears to correspond
to the Mat spot between � = 3 and � = 5 for the 2-variable
case. The slight lack of monotonicity here may be due to
sampling. There may even be a dip in the true values of
![M�

3;3]; nevertheless, the dip is slight and the relationship
between � and ![M�

3;3] is close to being monotonic.

6. Experimental results

We provide detailed experimental analysis for both high
and low values of), namely) = 1=6 and) = 1=12. For
) = 1=6, the Bayes error is in the range of 0.15 for modest
levels of distributional complexity, those associated with
“doable” problems (�6 5 for 2 variables and �6 10 for 3
variables). For) = 1=12, the Bayes error is less than 0.05
for modest levels of complexity.
Figs. 4(a)–(c), show how the error varies with the dis-

tributional complexity for n = 20; 40; 60 in the 2-variable
case for) = 1=6. As expected, performance improves for
increasing n. In almost all the cases, the 3NN classi er out-
performs the others. The linear SVM works very well for

complexity 1 (linear case). The regular histogram has the
worst performance of all. A signi cant observation is that a
neural network with two hidden units has almost the same
performance as a linear classi er—the linear SVM. If one
obtains a low error estimate with the neural net, then one is
likely to obtain a similar error with the linear SVM. Hence,
it is impossible in this model to claim that the use of the
neural net is bene cial. In essence, the sample sizes are too
small to take advantage of the added complexity of the neu-
ral net. More generally, beyond complexity 2, no classi er
performs well, even though the Bayes error is only slightly
in excess of 0.1. The sample size is just too small for �¿ 2.
An indication of the superior performance of the

3-nearest-neighbour (3NN) classi er as opposed to the
neural net can be seen in the kinds of decision boundaries
they produce. Fig. 5(a) shows a con guration for � = 10
and Fig. 5(b) and (c) shows corresponding decision bound-
aries for the 3NN classi er and neural net, respectively,
for n = 60. The 3NN classi er does a much better job in
approximating the partition.
A nal point regarding the 2-variable case is that all of

the tested classi ers perform more poorly for �=3 than for
� = 4, except for the Gaussian kernel. This indicates that,
although![M 3

2;3]=![M 4
2;3], the design cost is higher for �=3

1648 S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651

1 2 3 4 5 6 7 8 9 10 11 12

Distributional Complexity

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

1 2 3 4 5 6 7 8 9 10 11 12

Distributional Complexity

1 2 3 4 5 6 7 8 9 10 11 12

Distributional Complexity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.1

0.2

0.3

0.4

0.5

Distributional Complexity

E
st

im
at

ed
 E

rr
or

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Distributional Complexity
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Distributional Complexity

E
st

im
at

ed
 E

rr
or

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
st

im
at

ed
 E

rr
or

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
st

im
at

ed
 E

rr
or

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
st

im
at

ed
 E

rr
or

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
st

im
at

ed
 E

rr
or

(a) (b)

(c) (d)

(e) (f)

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Bayes
Gaussian Kernel
3 nn
Linear SVM
Regular Histogram
Neural Network with 2 hidden units

Fig. 6. Error estimate vs. complexity for) = 1=12: (a) n = 20, 2 variables; (b) n = 40, 2 variables; (c) n = 60, 2 variables; (d) n = 20, 3
variables; (e) n = 60, 3 variables; (f) n = 60, 3 variables.

than for �= 4 for all classi ers except the Gaussian kernel.
There is nothing strange about this because the complexity-3
con gurations may simply be more di8cult for the design
algorithms than the complexity-4 con gurations.
Fig. 4(d)–(f) shows the results for the 3-variable case for

)=1=6 and n=20; 40; 60, where a spline regression has been
used to construct the curves. Similar observations to those
made in the 2-variable case can be made, the key di5erence
being that con gurations are sampled for each value of �,

as opposed to the 2-variable case where all con gurations
are considered.
Fig. 6 provides analogous curves to the those in Fig. 4,

except now) = 1=12. Most of the same commentary ap-
plies; however, there is a salient exception in the 2-variable
case. For it, when n = 60 (and to some extent when n =
40), the 3NN classi er performs close to the Bayes classi-
 er, even for high levels of distributional complexity. This
means that, with 2 variables and little overlap between the

S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651 1649

label-conditioned distributions, the 3NN classi er is well
trained with quite small samples even for complex distribu-
tions.

7. Conclusion

Rather than take a distribution-free approach to mea-
sure the e8cacy of a classi cation rule, we have taken
a model-based approach and compared classi er perfor-
mances in relation to distributional complexity. Our interest
is with small samples, and hence it is reasonable to consider
classi ers based on no more than 3 variables. For the most
part, we have seen that there is little improvement when one
uses a complex classi er instead of a linear SVM. In the
case of � = 1, the problem is linear and naturally the lin-
ear SVM performs the best. Others perform well for � = 1,
but not as well, so that one is better o5 with a linear classi-
 er. For higher levels of distributional complexity, the lin-
ear classi er degrades, but so do the more complex classi-
 ers owing to insu8cient training data. Hence, if one were
to obtain a good result with a more complex classi er, it is
most likely that the distributional complexity is low (likely,
� = 1) and there is no gain over using a linear classi er.
Of the nonlinear classi ers examined in the small-sample
setting, the 3NN classi er usually outperforms the others
for 2 variables, but even its performance is typically poor
for �¿ 2. A strong exception to this observation is when
) is su8ciently small so that there is little overlap between
the conditional distributions and the sample size is not too
small. Hence, if one uses the 3NN classi er with two vari-
ables and obtains a low error when n¿ 40, then the distri-
butional complexity might be large and, if such is the case,
there is a signi cant gain over using a linear classi er. This
exception does not extend to 3 variables, in which training
with n = 60 is not su8cient to provide improvement over
a linear classi er even for a small increase in distributional
complexity.

Appendix A. Classi�cation rules

For the kNN rule, k odd, the k points closest to x are
selected and n(x) is de ned to be 0 or 1 according to
which is the majority among the labels of the chosen points.
A slight adjustment is made if k is even. The kNN rule is
universally consistent if k → ∞ in such a way that k=n → 0
as n → ∞ [7].
The moving-window rule pre-sets a distance and takes the

majority label among all sample points within that distance
of x. The moving-window rule can be “smoothed” by giving
more weight to sample points closer to x. A kernel rule
is constructed by de ning a weighting kernel based on the
distance of a sample point from x, in conjunction with a
smoothing (scaling) factor. The Gaussian kernel is given
by Kh(x; xk) = exp[− ‖(x− xk)=h‖2], where ‖ • ‖ denotes

Euclidean distance, x is the point at which the classi er is
being de ned, and xk is a sample point. The moving-window
rule is a special case of a kernel rule with the weights being 1
within a speci ed radius. The moving-window and Gaussian
kernel rules are strongly universally consistent if h → ∞ in
such a way that nhd → ∞ as n → ∞ [8].
With the cubic histogram rule, the space is partitioned into

cubes of side length rn. For each point x, n(x) is de ned
to be 0 or 1 according to which is the majority among the
labels for points in the cube containing x. If the cubes are
de ned so that rn → 0 and nrdn → ∞ as n → ∞, then the
rule is universally consistent [9].
A classical way of constructing classi ers is to use para-

metric representation. The classi er is postulated to have a
functional form (x1; x2; : : : ; xd; a0; a1; : : : ; ar), where the pa-
rameters a0; a1; : : : ; ar are to be determined by some estima-
tion procedure based on the sample data. A perceptron has
the form (x)=T [a0+

∑d
i=1 aixi], where x=(x1; x2; : : : ; xd)

and T thresholds at 0 and yields −1 or 1. A perceptron
divides the space into two half-spaces determined by the hy-
perplane de ned by the parameters a0; a1; : : : ; ad. The SVM
provides a method for designing perceptrons. The SVM
aims to maximize margin (the shortest distance between
the closest vector and the hyperplane that separates the
classes with zero error) thus resulting in a maximal-margin
hyperplane (MMH). The training of a SVM involves the
solution of a quadratic programming problem. Solution
via the normal quadratic approach is slower. An approx-
imate but fast version of the SVM training algorithm is
used in this work. The training is based on a geometrical
representation of the structural risk minimization (SRM)
principle [10].
A two-layer neural network has the form (x) = T [c0 +∑k
i=1 ci)[i(x)]], where T thresholds at 1

2 ,) is a sigmoid
function, and i(x) =

∑d
j=0 aijxj , where x0 = 1. Increas-

ing the complexity of the neural network by placing more
functions in the hidden layer provides increasing approxi-
mation to the Bayes classi er, and this approximation can
be obtained to any desired degree. The increase in network
complexity results in the need for larger data sets, thereby
making estimation of the weights problematic. Typically,
steepest descent on the error surface (as a function of the
weights) is used. A k-node neural network that minimizes
the empirical error is universally consistent if k → ∞ such
that (k log n)=n → 0 as n → ∞ [11].

Appendix B. Data generation in the 3-variable case

For the 3-variable case, the number of possible con gu-
rations is enormously huge (227). In such a case, we resort
to sampling a con guration for a given distributional com-
plexity. After a con guration is chosen, data generation is
done in the same way as for the 2-variable case.
The sampling algorithm is based on the de nition of the

distributional complexity. Consider a given distributional

1650 S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651

2

1 21

2

1

2

1

(a) (b)

(c) (d)

Fig. 7. Example of (a) connected, (b) nonconnected partition, (c)
valid partition with complexity 5 and (d) another valid partition
with complexity 5.

complexity, �[H]. According to the converse of the de ni-
tion, for a given distributional complexity, �[H], a con g-
uration exists; the Bayes classi er which is a tree classi-
 er with �[H] hyperplanes. In fact, it is possible that more
than one con guration exists. It is required to sample a con-
 guration from the possible tree constructions for �[H]. In
essence, one has to construct a tree with �[H] nodes, each
node (excluding the root) being a decision hyperplane par-
allel to the axis. However, there should not be any redundant
decision hyperplanes in the tree that would lead to overes-
timation of the given complexity �[H].
Before further discussing the algorithm, some terminolo-

gies used are explained:

(1) Trace: a set of nodes starting from the root and
ending in a leaf. A trace creates a partition in the
three-dimensional space. An example for a trace
in two-dimensions would be a set of decisions
[(x¿ 2=3); (y¿ 1=3)] and would result in a partition
(shaded region) as shown in Fig. 7(a).

(2) Connected partition: a partition will not consist of sub-
partitions that are not adjacent to each other. For exam-
ple, in Fig. 7(a), the shaded regions do not form a con-
nected partition as partitions 1 and 2 are not adjacent to
each other. In Fig. 7(b), the shaded regions form a con-
nected partition as subpartitions 1 and 2 are adjacent to
each other.

Some other observations need to be made.

(1) Along each dimension/variable, there are 4 decision
hyperplanes viz., [(h¡ 1=3); (h¿ 1=3); (h¡ 2=3);
(h¿ 2=3)].

(2) Along each dimension, there can only be 6 hyperplane
combinations viz., [2; (h¡ 1=3); (h¿ 1=3); (h¡ 2=3);
(h¿ 2=3); (h¿ 1=3; h¡ 2=3)]. 2 is the empty set. For
the 3-variable case, this would mean 63 − 1 = 215 (ex-
cluding the no hyperplane combination) possible hy-
perplane combinations.

(3) Each hyperplane combination is a connected partition.
(4) A tree (and hence the equivalent matrix H) is a union

of traces. The number of nodes, excluding the root, in
the tree is the required complexity �[H].

Before we present the sampling algorithm, let us look at
an illustration of the sampling process. We use the 2-variable
case for clarity of explanation. Suppose the given distribu-
tional complexity is 5 and it is required to sample a con-
 guration with this complexity. There can be 62 − 1 = 35
valid hyperplane combinations for the 2-variable case (ob-
servation 2). We have to chose a combination of these 35
hyperplanes that gives a distributional complexity 5. Some
of the combinations are partitions with regions of complex-
ities (2,3), (1,4), (1,2,2) and (1,1,3). If we decide to have
only two regions (traces), we have to choose between re-
gions with complexity combination (2,3) or (1,4). Let us
consider the partition with regions of complexities 2 and 3.
One possible partitioning would be as shown in Fig. 7(b).
The actual complexity of this con guration is 3 and not
5 as regions 1 and 2 have a hyperplane in common and
hence form a connected partition. The partition in Fig. 7(c)
forms a nonconnected partition with regions of complex-
ities 2 and 3. This is a valid partition that can be sam-
pled. Another valid partition that can be sampled is shown
in Fig. 7(d).
The algorithm for sampling a con guration for a given

distributional complexity is given below:

(1) Construct a set of valid hyperplane combinations pos-
sible for a trace.

(2) For the desired complexity, pick a random number B
for the number of branches (starting from the root)
that the decision tree will have. This is equivalent
to specifying the number of traces that the tree will
have.

(3) For each branch (trace) i, generate a random complex-
ity Ci. The complexity CB for the last branch is the
residual complexity measure after the complexities for
the previous branches have been chosen.

(4) Pick a random hyperplane combination Si with Ci hy-
perplanes from among the possible valid combinations
list constructed earlier.

(5) The picking of the hyperplane combination Si invali-
dates the availability of other hyperplane combinations

S.N. Attoor, E.R. Dougherty / Pattern Recognition 37 (2004) 1641–1651 1651

for choice by later branches. The hyperplane combina-
tions that are invalidated are chosen based on rules. An
example of such a rule is that all partitions that are con-
tained within the partition chosen due to Si be invali-
dated.

(6) The above steps are repeated for all branches. In case, a
certain tree cannot be constructed due to lack of avail-
able hyperplane combinations after processing a few
branches, the construction of the tree starts all over again
from step 2. The partitions have a label 1. All other re-
gions have a label 0.

(7) The 27-bit binary pattern for the labels is obtained from
the decision tree by feeding the centroid of each of the
27 balls to the decision tree and checking the outcome
(0 or 1).

(8) A set of 27-bit binary patterns are generated for
each complexity. Data are generated as in the
2-variable case using the binary patterns to assign the
labels.

References

[1] E.R. Dougherty, Small sample issues for microarray-based
classi cation, Comp. Funct. Genom. 2 (2001) 28–34.

[2] E.R. Dougherty, S.N. Attoor, Design issues and comparison of
methods for microarray based classi cation, in: W. Zhang, I.
Shmulevich (Eds.), Computational and Statistical Approaches
to Genomics, Kluwer Publications, Boston, 2002.

[3] L. Devroye, L. Gyor , G. Lugosi, A Probabilistic Theory of
Pattern Recognition, Springer, New York, 1996.

[4] U.M. Braga-Neto, E.R. Dougherty, Is cross-validation valid
for small-sample microarray classi cation, Bioinformatics 20
(2004).

[5] V. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[6] E. Baum, On the capabilities of multilayer perceptrons,
Complexity 4 (1988) 193–215.

[7] C. Stone, Consistent nonparametric regression, Ann. Stat. 5
(1977) 595–645.

[8] L. Devroye, A. Kryzak, An equivalence theorem for L1
convergence of the Kernel regression estimate, Stat. Plann.
Infer. 23 (1989) 71–82.

[9] L. Gordon, R. Olshen, Asymptotically e8cient solutions to
the classi cation problem, Ann. Stat. 6 (1978) 525–533.

[10] D. Roobaert, Direct SVM: a fast and simple support
vector machine perceptron, Proceeding of IEEE, International
Workshop on Neural Networks for Signal Processing, Sydney,
Australia, December 2000, pp. 356–365.

[11] A. Farago, G. Lugosi, Strong universal consistency of neural
network classi ers, IEEE Trans. Inf. Theory 39 (1993)
1146–1151.

About the Author—SANJU N. ATTOOR obtained his B.E. in Electronics and Communication Engineering from PSG College of Tech-
nology, India and his M.S. in Electrical Engineering from Texas A&M University, in 2003. His areas of interest include pattern recognition
and bioinformatics.

About the Author—EDWARD DOUGHERTY is a professor in the Department of Electrical Engineering at Texas A&M University in
College Station. He holds a Ph.D. in Mathematics from Rutgers University and an M.S. in Computer Science from Stevens Institute of
Technology. He is author of 11 books and editor of four others. He has published more than one hundred journal papers, is an SPIE fellow,
is currently Chair of the SIAM Activity Group on Imaging Science, and has served as editor of the Journal of Electronic Imaging for 6
years. Prof. Dougherty has contributed extensively to the statistical design of nonlinear operators for image processing. His current research
is focused in genomic signal processing, with the central goal being to model genomic regulatory mechanisms. He is head of the Genomic
Signal Processing Laboratory at Texas A&M University.

	Classifier performance as a function of distributional complexity
	Introduction
	Classification
	Distributional complexity
	Model for distributional complexity
	Simulation
	Experimental results
	Conclusion
	Appendix A. Classification rules
	Appendix B. Data generation in the 3-variable case
	References

