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Abstract

Recent advances in computing technology in terms of speed, cost, as well as access to tremendous amounts of

computing power and the ability to process huge amounts of data in reasonable time has spurred increased interest in

data mining applications to extract useful knowledge from data. Machine learning has been one of the methods used in

most of these data mining applications. It is widely acknowledged that about 80% of the resources in a majority of data

mining applications are spent on cleaning and preprocessing the data. However, there have been relatively few studies

on preprocessing data used as input in these data mining systems. In this study, we evaluate several inter-class as well as

probabilistic distance-based feature selection methods as to their effectiveness in preprocessing input data for inducing

decision trees. We use real-world data to evaluate these feature selection methods. Results from this study show that

inter-class distance measures result in better performance compared to probabilistic measures, in general.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Data mining is the process of finding patterns

and relations in large databases (Kerber et al.,

1995). Data mining is especially advantageous in
high-volume, frequently changing data such as in

financial application areas (Whitebread and

Jameson, 1995). The primary purpose of data

mining is to extract information from huge

amounts of raw data (Krivda, 1995). Data mining

using statistical methods as well as machine
* Tel.: +1-352-392-8882; fax: +1-352-392-5438.

E-mail address: selwyn@ufl.edu (S. Piramuthu).

0377-2217/$ - see front matter � 2003 Elsevier B.V. All rights reserv

doi:10.1016/S0377-2217(02)00911-6
learning methods such as induced decision trees,

neural networks, among others, have been used for

this purpose with good results (O�Reilly, 1995;

Seshadri et al., 1995).

It is widely recognized that around 80% of the
resources in data mining applications are spent on

cleaning and preprocessing the data. The actual

mining or extraction of patterns from the data

requires the data to be clean since input data are

the primary, if not the only, source of knowledge

in these systems. Cleaning and preprocessing data

involves several steps including procedures for

handling incomplete, noisy, or missing data; sam-
pling of appropriate data; feature selection; feature

construction; and also formatting the data as per
ed.
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the representational requirements of methods (e.g.,
decision trees, neural networks) used to extract

knowledge from these data.

Invariably and rather unknowingly, along with

relevant variables, irrelevant as well as redundant

variables are included in the data, to better rep-

resent the domain in these applications. A relevant

variable is neither irrelevant nor redundant to the

target concept of interest (John et al., 1994).
Whereas an irrelevant feature does not affect de-

scribing the target concept in any way, a redun-

dant feature does not add anything new to

describing the target concept. Redundant features

might possibly add more noise than useful infor-

mation in describing the concept of interest.

Feature selection is the problem of choosing a

small subset of features that ideally is necessary
and sufficient to describe the target concept (Kira

and Rendell, 1992). Feature selection is of para-

mount importance for any learning algorithm

which when poorly done (i.e., a poor set of fea-

tures is selected) may lead to problems associated

with incomplete information, noisy or irrelevant

features, not the best set/mix of features, among

others. The learning algorithm used is slowed
down unnecessarily due to higher dimensions of

the feature space, while also experiencing lower

prediction accuracies due to learning irrelevant

information. The ultimate objective of feature se-

lection is to obtain a feature space with (1) low

dimensionality, (2) retention of sufficient infor-

mation, (3) enhancement of separability in feature

space for example in different categories by re-
moving effects due to noisy features, and (4)

comparability of features among examples in same

category (Meisel, 1972).

Although seemingly trivial, the importance of

feature selection cannot be overstated. Consider

for example a data mining situation where the

concept to be learned is to classify good and bad

creditworthy customers. The data for this appli-
cation could possibly include several variables in-

cluding social security number, asset, liability, past

credit history, number of years with current em-

ployer, salary, and frequency of credit evaluation

requests. Here, regardless of the variables included

in the data, the social security number can un-

iquely determine a customer�s creditworthiness.
The learned knowledge consisting just the social
security number as predictor will, of course, have

extremely poor generalizability when applied to

new customers. Clearly, in this case, to avoid such

a problem we can exclude social security numbers

from the input data. Since it is not always clear-cut

as to which of the variables could result in such

spurious patterns. A similar problem could possi-

bly exist among one or more other variables in the
data. Feature selection methods can be used in

similar situations to cull out such problematic

features before the data enters the pattern extrac-

tion stage in data mining systems.

The use of appropriate input data can result in

improvements in performance, with minor effort.

This study explores this idea of effectively utilizing

input data. Several studies have shown that se-
lecting and appropriately transforming features

influence learning performance of feed-forward

neural networks significantly (e.g., Battiti, 1994;

Malki and Moghaddamjoo, 1991; Piramuthu and

Shaw, 1994). The current pattern recognition lit-

erature attempts feature selection through varied

means, such as statistical (e.g., Kerber et al., 1995),

geometrical (e.g., Elomaa and Ukkonen, 1994), in-
formation-theoretic measures (e.g., Battiti, 1994),

mathematical programming (e.g., Bradley et al.,

1998), among others. We evaluate several distance-

based feature selection methods in this study, as to

their effectiveness on preprocessing input data for

inducing decision trees. The classification perfor-

mance of the resulting decision trees are used as the

performance measure in this study.
This paper is organized as follows: Section 2

provides an overview of recent developments in

feature selection methods. Experimental results

using several feature selection methods with five

real-world data sets are given in Section 3 and

Section 4 conclude the paper with a brief discus-

sion of lessons learned from this study.
2. Recent developments in feature selection

Feature selection is the problem of choosing a

small subset of features that ideally is necessary

and sufficient to describe the target concept (Kira

and Rendell, 1992). The terms features, variables,
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measurements, and attributes are used inter-
changeably in the literature. Selecting the appro-

priate set of features is extremely important since

the feature set selected is the only source of in-

formation for any learning algorithm using the

data of interest.

A goal of feature selection is to avoid selecting

too many or too few features than is necessary. If

too few features are selected, there is a good
chance that the information content in this set of

features is low. On the other hand, if too many

(irrelevant) features are selected, the effects due to

noise present in (most real-world) data may over-

shadow the information present. Hence, this is a

tradeoff which must be addressed by any feature

selection method.

The marginal benefit resulting from the pres-
ence of a feature in a given set plays an important

role. A given feature might provide more infor-

mation when present with certain other feature(s)

than when considered by itself. Cover (1974),

Elashoff et al. (1967), and Toussaint (1971), among

others, have shown the importance of select-

ing features as a set, rather than selecting the

best features to form the (supposedly) best set.
They have shown that the best individual features

do not necessarily constitute the best set of fea-

tures.

However, in most real-world situations, it is not

known what the best set of features is nor the

number (n) of features in such a set. Currently,

there is no means to obtain the value of n, which
depends partially on the objective of interest. Even
assuming that n is known, it is extremely difficult

to obtain the best set of n features since not all n of

these features may be present in the data com-

prising the available set of features.

It should be noted that feature selection is not

appropriate for certain classes of data sets. Clear

examples are those of parity problems, an example

of which is the exclusive-OR (XOR) problem. This
is because all the attributes are necessary to de-

termine the category (here, odd or even parity).

Deletion of even one attribute would result in half

the cases being categorized incorrectly.

There exists a vast amount of literature on

feature selection, including books that specifically

cover the topic (e.g., Liu and Motoda, 1998a; Liu
and Motoda, 1998b). Researchers have attempted
feature selection through varied means, such as

statistical (e.g., Kittler, 1975), geometrical (e.g.,

Elomaa and Ukkonen, 1994), information-theo-

retic measures (e.g., Battiti, 1994), mathematical

programming (e.g., Bradley et al., 1998), among

others.

In statistical analyses, forward and backward

stepwise multiple regression (SMR) are widely
used to select features, with forward SMR being

used more often due to the lesser magnitude of

calculations involved. The output here is the

smallest subset of features resulting in an R2 (cor-

relation coefficient) value that explains a signifi-

cantly large amount of the variance. In forward

SMR, the analyses proceeds by adding features to

a subset until the addition of a new feature no
longer results in a significant (usually at the 0.05

level) increment in explained variance (R2 value).

In backward SMR, the full set of features are used

to start with, while seeking to eliminate features

with the smallest contribution to R2.

Malki and Moghaddamjoo (1991) apply the K–

L transform on the training examples to obtain the

initial training vectors. Training is started in the
direction of the major eigenvectors of the corre-

lation matrix of the training examples. The re-

maining components are gradually included in

their order of significance. The authors generated

training examples from a synthetic noisy image

and compared the results obtained using the pro-

posed method to those of standard backpropaga-

tion algorithm. The proposed method converged
faster than standard backpropagation with com-

parable classification performance.

Siedlecki and Sklansky (1989) use genetic al-

gorithms for feature selection by encoding the

initial set of n features as n-element bit string with

1 and 0 representing the presence and absence re-

spectively of features in the set. They used classi-

fication accuracy, as the fitness function (for
genetic algorithms while selecting features) and

obtained good neural network results compared to

branch and bound and sequential search (Stearns,

1976) algorithms. They used a synthetic data as

well as digitized infrared imagery of real scences,

with classification accuracy as the objective func-

tion. Yang and Honavar (1997) report a similar
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study. However, later Hopkins et al. (1994) shows
that classification accuracy may be a poor fitness

function measure when searching for reducing the

dimension of the feature set.

Using rough sets theory (Pawlak, 1982), PRE-

SET (Modrzejewski, 1993) determines the degree

of dependency (c) of sets of attributes for selecting
binary features. Features leading to a minimal

preset decision tree, which is the one with minimal
length of all path from root to leaves, are selected.

Kohavi and Frasca (1994) use best-first search,

stopping after a predetermined number of non-

improving node expansions. They suggest that it

may be beneficial to use a feature subset that is not

a reduct, which has a property that a feature

cannot be removed from it without changing

the independence property of features. A table-
majority inducer was used with good results.

The wrapper method (Kohavi, 1995) searches

for a good feature subset using the induction al-

gorithm as a black box. The feature selection al-

gorithm exists as a wrapper around the induction

algorithm. The induction algorithm is run on data

sets with subsets of features, and the subset of

feature with the highest estimated value of a per-
formance criterion is chosen. The induction algo-

rithm is used to evaluate the data set with the

chosen features, on an independent test set.

Almuallim and Dietterich (1991) introduce

MIN-FEATURES (if two functions are consistent

with the training examples, prefer the function that

involves fewer input features) bias to select fea-

tures in the FOCUS algorithm. They used syn-
thetic data to study the performance of the

FOCUS, ID3, and FRINGE algorithms using

sample complexity, coverage, and classification

accuracy as performance criteria. They increased

the number of irrelevant features and showed that

FOCUS performed consistently better.

The IDG algorithm (Elomaa and Ukkonen,

1994) takes the positions of examples in the in-
stance space to select features for decision trees.

They limit their attention to boundaries separating

examples belonging to different classes, while re-

warding (penalizing) rules that separate examples

from different (same) classes. Eight data sets are

used to compare the performance (% accuracy,

number of nodes in decision tree, time) of decision
trees constructed using the proposed algorithm
with ID3 (Quinlan, 1987). Decision trees generated

using the proposed algorithm had better accuracy

whereas those with ID3 had fewer number of

nodes and took more than an order of magnitude

less time.

Based on the positions of instances in instance

space, the Relief algorithm (Kira and Rendell,

1992) selects features that are statistically relevant
to target concept, using a relevancy threshold that

is selected by the user. Relief is noise-tolerant and

is unaffected by feature interaction. The complex-

ity of relief is O(pn), where n and p are the number

of instances and number of features respectively.

Relief was studied using two 2-class problems with

good results, compared to FOCUS (Almuallim

and Dietterich, 1991) and heuristic search (Devij-
ver and Kittler, 1982). Kononenko (1994) ex-

tended RELIEF to deal with noisy, incomplete,

and multi-class data sets.

Milne (1995) used neural networks to measure

the contribution of individual input features to the

output of the neural network. A new measure of

input features� contribution to output is proposed,

and evaluated using data mapping species occur-
rence in a forest. Using a scatter plot of contri-

bution to output, subsets of features were removed

and the remaining feature sets were used as input

to neural networks. Setino and Liu (1997) present

a similar study using neural networks to select

features.

Battiti (1994) developed MIFS to use mutual

information for evaluating the information con-
tent of each individual feature with respect to the

output class. The features thus selected were used

as input in neural networks. The author shows

that the proposed method is better than those

feature selection methods that use linear depen-

dence (e.g., correlations as in principal compo-

nents analysis) measures. Koller and Sahami

(1996) use cross-entropy to minimize the amount
of predictive information lost during feature se-

lection. Piramuthu and Shaw (1994) use C4.5

(Quinlan, 1990) to select features used as input in

neural networks. Their results showed improve-

ments, over just backpropagation, both in terms of

classification accuracy and time taken by neural

networks to converge.
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The most popular feature selection methods in
machine learning literature are variations of se-

quential forward search (SFS) and sequential

backward search (SBS) as described in Devijver

and Kittler (1982) and its variants (e.g., Pudil

et al., 1994; Quinlan, 1987). SFS (SBS) obtains a

chain of nested subsets of features by adding

(subtracting) the locally best (worst) feature in the

set. These methods are particular cases of the more
general �plus l––take away r� method (Stearns,

1976). Results from previous studies indicate that

the performance using forward and backward

searches are comparable. In terms of computing

resources, forward search has the advantage since

fewer number of features are evaluated at each

iteration, compared to backward search where the

process begins using all the features.
3. Experimental results

In this study, we evaluate SFS with several

different distance measures. Both inter-class dis-

tance as well as probabilistic distance measures are

used. Specifically, the probabilistic distance mea-

sures used are the Bhattacharyya measure, the

Matusita measure, the divergence measure, the

Mahalanobis distance measure, and the Patrick-

Fisher measure. The inter-class distance measures
used are the Minkowski distance measure, city

block distance measure, Euclidean distance mea-

sure, the Chebychev distance measure, and the

nonlinear (Parzen and hyperspheric kernel) dis-

tance measure.

Inter-class distance is taken as the selection

criterion for all the inter-class distance-based fea-

ture selection methods, where both the between
and within class distances are taken into account.

The Euclidean distance between examples of

concepts is based on the idea that the greater the

distance between the examples from different

concepts the better the class separability. The be-

tween-class scatter matrix, B, is given as

B ¼
Xm
i¼1

P ðxiÞmimTi ð1Þ

and the averaged within class scatter matrix, W , is

given as
W ¼
Xm
i¼1

P ðxiÞEfðx� miÞðx� miÞTg: ð2Þ

The Euclidean distance is calculated from the ratio

of the scatter matrices:

d ¼ jW þ Bj
jW j : ð3Þ

For the nonlinear (Parzen and hyperspheric
kernel) method, we use g (the parameter for the

calculus of the radius) ¼ 0.5.

The class conditional probability density of

pattern x with a priori probability of occurrence of

normally distributed classes xi, (i ¼ 1; 2) is given

by

pðxjxiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð2pÞn Rij jÞ
p

� exp � 1

2
ðx� miÞTR�1

i ðx� miÞ
� �

ð4Þ

where mi and Ri are the mean vector and the co-

variance matrix of the distribution respectively.

Consider the following matrix with a set of five

examples measuring three variables:

X ¼

4:0 2:0 0:60

4:2 2:1 0:59

3:9 2:0 0:58

4:3 2:1 0:62

4:1 2:2 0:63

2
6666664

3
7777775
:

The mean vector for this set of examples, con-
taining the arithmetic averages of the three vari-

ables, is

mi ¼ ½4:10 2:08 0:604�
and the covariance matrix, containing the vari-

ances of the variables along the main diagonal and

the covariances between each pair of variables in
the rest of the positions, is

Ri ¼
0:025 0:0075 0:00175

0:0075 0:0070 0:00135

0:00175 0:00135 0:00043

2
64

3
75:

Some of the probabilistic distance measures can

be expressed in terms of distribution parameters

(Fukunaga, 1972).
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The Bhattacharyya distance (JB) is represented
as

JBðx1;x2Þ ¼
1

8
ðm2 � m1ÞT

R1 þ R2

2

� ��1

�ðm2 � m1Þ þ
1

2
ln

1
2
R1 þ R2j j

� �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
R1R2j j

p : ð5Þ

Similarly, the divergence distance (JD) is repre-

sented as

JDðx1;x2Þ ¼
1

2
ðm2 � m1ÞT R�1

1

�
þ R�1

2

�
ðm2 � m1Þ

þ 1

2
tr R�1

1 R2

�
þ R�1

2 R1 � 2I
�

ð6Þ

and the Matusita distance (JM) is represented as

JMðx1;x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ð1� exp½�JBðx1;x2Þ�ÞÞ

p
: ð7Þ

When the covariance matrices R1 and R2 are

identical, i.e., R1 ¼ R2 ¼ R, both the Bhattachary-

ya distance and the divergence distance simplify

even further to become the Mahalanobis distance.

The Mahalanobis distance (Jm) is represented as

Jmðx1;x2Þ ¼ 8JBðx1;x2Þ
¼ ðm2 � m1ÞTR�1ðm2 � m1Þ: ð8Þ

We study the performance of these distance

measures as feature selectors and as preprocessors

for induced decision trees (C4.5, as described in

Quinlan (1990)), using five real-world application

data. These data sets have been used in previous

studies. Since there is no hard and fast rule on the

number of features to be used in any given appli-
cation, using feature selection methods we select

about half the number of features that are avail-

able in each of the data sets.

3.1. Credit approval data

The credit approval data was used in Quinlan

(1987), among others. The data set was cleaned to
remove examples with missing attribute values.

This data is from a large bank. Each of the ex-

amples in this data corresponds to a credit card

application, with nine discrete and six real attri-

butes. The discrete attributes have anywhere from

2 through 14 possible values. This is a binary
classification data, corresponding to positive and
negative decisions. There were 690 examples in this

data set. We removed the incomplete examples and

ended up with 653 examples of which 296 belong

to positive class and 357 belong to negative class,

where the classes correspond to whether or not

credit was approved. This data set is also known to

be noisy. We select eight attributes from this data

set using the various feature selection methods.
The results using credit approval data in in-

duced decision trees with data preprocessed

through the different feature selection methods are

given in Table 1. We report here the results from

before pruning (BP) as well as after pruning (AP)

the induced decision trees, although the results

corresponding to AP are of primary importance.

Tenfold cross-validation was used––the data set
was randomly split into 10 identical samples, and

each of these samples were used as the testing

(holdout) data set one after another when the

other nine were used as the training data set for

inducing decision trees. Hence, 10 decision trees

were generated with 90% of the data being used to

generate the decision trees and the rest for testing

the performance of these trees generated. Feature
selection was done using 90% (training sample) of

the data.

The first column refers to the feature selection

method used. Here, ‘‘Random’’ refers to the case

where the same number of features (as the feature

selection methods) were selected randomly. This

was done as a benchmark to compare the feature

selection methods using the same number of fea-
tures. ‘‘None’’ refers to the case where the entire

set of features in the data set. That is, no feature

selection was done in the ‘‘None’’ case.

The classification accuracies for both the

training as well as the testing (holdout) examples

are given as percentage correctly classified. Each of

the entries in the table are the average of 10 runs

(tenfold cross-validation), and the corresponding
standard deviation values are given in parentheses.

As can be seen from Table 1, the tree size using

different methods are comparable, with minor

variations except for the ‘‘Random’’ case. The

average tree size BP and AP did not differ appre-

ciably across the different methods except in the

‘‘None’’ and ‘‘Random’’ cases. The tree sizes in the



Table 1

Results using credit approval data set

Distance mea-

sure

Tree size Classification accuracy

BP AP Training examples Testing examples

BP (%) AP (%) BP (%) AP (%)

Minkowski 11.4 (1.74) 11.4 (1.74) 97.68 (1.04) 97.68 (1.04) 77 (15.5) 77 (15.5)

City Block 11.4 (1.74) 11.4 (1.74) 97.68 (1.04) 97.68 (1.04) 77 (15.5) 77 (15.5)

Euclidean 10.8 (1.66) 9.4 (2.15) 97.91 (1.25) 97.23 (2.45) 71.5 (15.8) 69 (17)

Chebychev 13 (2.19) 12.2 (2.56) 95.85 (2.68) 95.38 (2.92) 60 (14.8) 58 (18.3)

Nonlinear 10.8 (1.4) 10.2 (1.6) 97.92 (0.7) 97.45 (1.63) 80 (20) 82 (18.9)

Bhattacharyya 14.2 (1.83) 14.2 (1.83) 95.61 (1.91) 95.61 (1.91) 59 (14.3) 59 (14.3)

Matusita 14.2 (1.83) 14.2 (1.83) 95.61 (1.91) 95.61 (1.91) 59 (14.3) 59 (14.3)

Divergence 12.6 (2.65) 11.4 (1.96) 96.76 (1.54) 96.3 (1.86) 71.5 (18.2) 71.5 (18.2)

Mahalanobis 10.6 (1.5) 9.6 (1.8) 97.69 (1.45) 97.46 (1.9) 74 (18) 69 (17)

Patrick-Fisher 15.8 (2.86) 14.4 (2.84) 96.3 (1.86) 95.6 (2.43) 61 (12.8) 61 (9.17)

Random 91 (15.66) 30.9 (10.28) 91.73 (0.38) 89.44 (0.97) 64.37 (3.86) 60.39 (3.45)

None 91.8 (9.92) 55 (8.43) 96.76 (0.45) 95.04 (0.86) 81.62 (5.10) 84.23 (3.84)
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latter two cases are significantly (P � 0:001 using
two-tailed t-test) different than those in the cases

where a feature selection method (other than

random) was used. The classification results using

training examples are at least as good as those

using testing examples. This is expected since the

data is noisy, and it is hard for any method to

learn to generalize noisy examples. The classifica-

tion results using the training examples are almost
similar, based on the average as well as the stan-

dard deviation values for the training examples

being small. Also, as expected, the percentage of

training examples correctly classified decreased

AP. This is because pruning helps remove some of

the problems associated with over-fitting noise in

the examples by removing some nodes near the

leaf-level of the decision tree, thus resulting in re-
duced classification performance on training ex-

amples. The time taken by the feature selection

methods was in the order of a few seconds in an

IBM/sp2 machine.

Given that the tree sizes and classification ac-

curacy on training examples are comparable

across the different methods, let us now consider

the last two columns in Table 1. Of these, the last
column (classification accuracy on testing exam-

ples, using pruned decision trees) is of interest in

practice since these are the results using the final

decision trees on heretofore unseen examples.

Here, some of the methods perform clearly better

than some others.
The case where no feature selection was used
resulted in the best classification performance

[84.23 (3.84)] on testing examples. This could be

because of the importance of more variables, than

are used in the feature selection methods, for

classification purposes. That is, we used only eight

of the attributes in the cases using feature selec-

tion. It is unlikely that every attribute in the

original data set is necessary for the best classifi-
cation result like in the XOR problem. However, it

is likely that at least nine of the variables in the

data set are deemed important for improved clas-

sification of the examples. The method based on

nonlinear distance measure resulted in the second

best performance [82 (18.9)]. The differences in

classification performence on testing examples

between the ‘‘None’’ and nonlinear cases are not
statistically significant (using two-tailed t-test).
Similarly the difference between the classification

performance on holdout sample using random

feature selection and the worst performer

(Chebychev) is not statistically significant.

Feature selection using the Chebychev measure

resulted in the worst performance [58 (18.3)]. The

difference between the classification performance
on holdout sample using random feature selection

and the worst performer (Chebychev) is not sta-

tistically significant. Some (e.g., the Minkowski

and city block; the Bhattacharyya and Matusita)

of the distance measures resulted in similar per-

formance throughout. It should be noted that the
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tree size in the case where no feature selection was
used is about five times that of the nonlinear case.

For this data set, feature selection based on non-

linear distance measure is clearly the method of

choice based on both tree size and classification

performance on testing examples.

3.2. Loan default data

This data has been used in previous studies

(e.g., Abdel-Khalik and El-Sheshai, 1980) to clas-

sify a set of firms into those that would default and

those that would not default on loan payments.

The source of this data is the Index of Corporate

Events in the 1973–1975 issues of Disclosure

Journal. Sixteen defaulted firms were matched

with 16 nondefaulted firms to obtain data for the
study. Another set of sixteen examples, all be-

longing to the nondefault case, were also used. The

second data set (of sixteen examples) was used by

Abdel-Khalik and El-Sheshai (1980) as the hold-

out data set. Since we are using tenfold cross-val-

idation in this study, we combined the two data

sets together, resulting in a data set with 48 ex-

amples from which subsets were formed randomly.
There are 18 variables in this data: (1) net in-

come/total assets, (2) net income/sales, (3) total

debt/total assets, (4) cash flow/total debt, (5) long-

term debt/net worth, (6) current assets/current li-

abilities, (7) quick assets/sales, (8) quick assets/
Table 2

Results using loan default data set

Distance measure Tree size Classific

BP AP Training

BP (%)

Minkowski 118.4 (8.9) 39 (7.32) 95.93 (0

City Block 118.4 (8.9) 39 (7.32) 95.93 (0

Euclidean 97.8 (4.21) 45.8 (8.54) 95.47 (0

Chebychev 75 (3.9) 25.6 (6.45) 92 (0.63

Nonlinear 117.8 (10.17) 32.2 (6.71) 95.13 (0

Bhattacharyya 99 (9.51) 44.4 (6.26) 95.3 (0.4

Matusita 99 (9.51) 44.4 (6.26) 95.3 (0.4

Divergence 102.6 (4.88) 35.2 (9.57) 95.37 (0

Mahalanobis 97.8 (4.21) 45.8 (8.54) 95.47 (0

Patrick-Fisher 172.8 (10.75) 91 (12.13) 95.54 (0

Random 87 (1.54) 51.4 (1.02) 90.3 (1.2

None 9.6 (1.28) 9.4 (1.49) 97.45 (1
current liabilities, (9) working capital/sales, (10)
cash at year-end/total debt, (11) earnings trend,

(12) sales trend, (13) current ratio trend, (14) trend

of LTD/NW, (15) trend of WC/sales, (16) trend of

NI/TA, (17) trend of NI/sales, and (18) trend of

cash flow/TD. For detailed description of this

data, the reader is referred to Abdel-Khalik and

El-Sheshai (1980). Using the feature selection

methods, we select 10 of the attributes for evalu-
ation.

Table 2 provides results from decision trees

generated after preprocessing input through the

feature selection methods. The classification per-

formance on training examples (both BP and AP

the decision trees) are comparable. Unlike the

credit approval data set case, here the average tree

size both BP and AP did differ appreciably across
the various methods. For example, both BP and

AP, among feature selection cases the Chebychev

measure resulted in the smallest tree and the Pat-

rick-Fisher measure resulted in the largest tree. As

before, there are similar results for both Min-

kowski and city block as well as Bhattacharyya

and Matusita measures.

The classification accuracy on testing examples,
AP, does show variations although not as pro-

nounced as in the credit approval data case. Here,

the best result [86.5 (4)] corresponds to the Bhat-

tacharyya as well as the Matusita measures. This is

followed quite closely by all the other measures
ation accuracy

examples Testing examples

AP (%) BP (%) AP (%)

.33) 92.48 (0.76) 81.9 (3.03) 85.1 (4.52)

.33) 92.48 (0.76) 81.9 (3.03) 85.1 (4.52)

.57) 93.25 (1.04) 84.5 (3.34) 86.1 (4.36)

) 90.01 (0.9) 85.8 (3.66) 86.2 (3.98)

.31) 91.73 (0.63) 82.8 (4.38) 86.2 (4.67)

6) 93.06 (0.44) 85 (3.65) 86.5 (4)

6) 93.06 (0.44) 85 (3.65) 86.5 (4)

.5) 91.66 (0.95) 82.5 (5.32) 85.3 (4.3)

.57) 93.25 (1.04) 84.5 (3.34) 86.1 (4.36)

.65) 90.44 (1.53) 70.3 (5.77) 74.3 (2.72)

4) 86.3 (1.13) 70.1 (7.65) 72.2 (8.82)

.25) 97.45 (1.25) 68.5 (14.15) 68.5 (14.15)
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except for Patrick-Fisher measure which trails
behind the others at [74.3 (2.72)]. The results using

Chebychev measure are right behind the best re-

sults, unlike in the credit approval data case.

Moreover, the results using the nonlinear measure

are quite good, just behind those using Chebychev

measure, based on classification results on testing

examples. The classification performance on test-

ing examples of the ‘‘Random’’ case is statistically
significantly different compared to the worst per-

former (Patrick-Fisher) in this case (p < 0:5 using

two-tailed t-test).

3.3. Web traffic data

The data used were collected from Silicon In-

vestor�s Web site (www.techstocks.com). Specifi-
cally, the data comprises data-log of chat sites

from six different companies. These include Apple

Computers, Compaq Computers, Hasbro, Net-

work Appliance, Seagate and Western Digital.

Each had a chat room with varying number of

messages. Data were collected from the beginning

of July 1998 through early July 1999. The number

of messages varied widely, from 130 for Network
Appliance to 35,000 for Compaq. The data on

each company�s stock were also obtained. This

include the open, close, high and low price for each

company from the beginning of July 1998 through

early July 1999. The data on the closing value of

four indices of stocks are from their Web sites. The

New York Stock Exchange (NYSE) Composite

index are from their Web site (www.nyse.com)
while the data on the NASDAQ Composite,

NASDAQ 100 and NASDAQ Computer indices

are from their Web site (www.nasdaq-amex.com).

These indices were chosen because four of the

stocks are listed on the NYSE while the other two

are on NASDAQ.

The independent variables used are daily

change in stock price, direction of daily change in
stock price, range of movement of daily stock

price, change in NYSE Composite Index value,

direction of change in NYSE Composite Index

value, change in NASDAQ Composite Index va-

lue, direction of change in NASDAQ Composite

Index value, change in NASDAQ 100 Index value,

direction of change in NASDAQ 100 Index value,
change in NASDAQ Computer Index value, di-
rection of change in NASDAQ Computer Index

value, weekend binary, and daily trading volume.

The weekend binary takes on values 0 or 1 de-

pending on whether the day is a day when the

stock markets are closed or open. The direction

and magnitude variables are discretized. The di-

rection variables take values up, no change, or

down. The change variables take values low, me-
dium, and high. We select five features using the

feature selection methods.

Table 3 provides results from decision trees

generated after preprocessing input through the

feature selection methods. The classification per-

formance on training examples (both BP and AP

the decision trees) are comparable for all the cases

where feature selection methods were used except
Patrick-Fisher. Here, the classification perfor-

mance on testing examples for Patrick-Fisher and

‘‘Random’’ cases are statistically significant

(p < 0:005 using two-tailed t-test). The differences

in tre sizes for these two cases are also statistically

significant (p � 0:001 using two-tailed t-test).
However, the classification performance on testing

examples for Chebychev and ‘‘None’’ cases are not
statistically significant.

3.4. Tam and Kiang (1992) data

This data set was used in the Tam and Kiang

(1992) study. Texas banks that failed during 1985–

1987 were the primary source of data. Data from a

year and two years prior to their failure were used.
Data from 59 failed banks were matched with 59

nonfailed banks, which were comparable in terms

of asset size, number of branches, age and charter

status. Tam and Kiang had also used holdout

samples for both the one- and two-year prior

cases. The one-year prior case consists of 44 banks,

22 of which belongs to failed and the other 22 to

nonfailed banks. The two-year prior case consists
of 40 banks, 20 of which belongs to failed and 20

to nonfailed banks. The data describes each of

these banks in terms of 19 financial ratios. For a

detailed overview of the data set, the reader is re-

ferred to Tam and Kiang (1992). For both the data

sets, we select 10 of the features using the feature

selection methods.

http://www.techstocks.com
http://www.nyse.com
http://www.nasdaq-amex.com


Table 3

Results using web traffic data

Distance measure Tree size Classification accuracy

BP AP Training examples Testing examples

BP (%) AP (%) BP (%) AP (%)

Minkowski 104.6 (25.6) 54.2 (18.7) 82.43 (0.6) 81.38 (0.7) 78.21 (1.4) 78.35 (1.1)

City Block 102.6 (23.9) 52.6 (15.8) 82.16 (0.7) 81.19 (0.6) 77.79 (2.5) 78.79 (1.9)

Euclidean 122.2 (17.8) 34 (7.4) 82.15 (0.4) 80.74 (0.4) 76.97 (2.2) 78.36 (2)

Chebychev 102.6 (23.9) 52.6 (15.8) 82.16 (0.7) 81.19 (0.6) 77.79 (2.5) 78.79 (1.9)

Nonlinear 87.6 (27.4) 36.4 (7.7) 81.56 (0.6) 80.71 (0.5) 76.47 (2.1) 77.12 (2)

Bhattacharyya 74.8 (16.8) 26 (8.7) 81.29 (0.3) 80.34 (0.3) 78.12 (1.7) 78.6 (1.2)

Matusita 74.8 (16.8) 26 (8.7) 81.29 (0.3) 80.34 (0.3) 78.12 (1.7) 78.6 (1.2)

Divergence 74.8 (16.8) 26 (8.7) 81.29 (0.3) 80.34 (0.3) 78.12 (1.7) 78.6 (1.2)

Mahalanobis 94.2 (22.4) 29.6 (11.9) 81.73 (0.6) 80.41 (0.5) 76.73 (2.2) 78.45 (2.3)

Patrick-Fisher 29.8 (6.1) 4.4 (5.8) 73.36 (0.3) 72.53 (0.4) 72.13 (1.3) 71.78 (0.9)

Random 116.4 (17.4) 34.6 (13.5) 76.74 (0.7) 75.22 (0.8) 71.33 (1.7) 68.87 (1.6)

None 349.6 (27.24) 112 (17) 88.54 (0.5) 84.2 (0.5) 75.2 (2.9) 77.69 (2.5)
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Table 4 provides results from decision trees

generated after preprocessing input through the

feature selection methods for the one-year prior

case. The classification performance on training
examples (both BP and AP the decision trees) are

comparable for all the cases where feature selec-

tion methods were used. The classification per-

formance on testing examples between the

‘‘Random’’ case and the worst performers using

feature selection (Minkowski and City Block

methods) is not statistically significant (using two-

tailed t-test). However, the tree-sizes between these
cases are statistically significantly different.
Table 4

Results using one-year prior data set

Distance measure Tree size Classific

BP AP Training

BP (%)

Minkowski 39.8 (5.59) 24.8 (5.03) 94.64 (0

City Block 39.8 (5.59) 24.8 (5.03) 94.64 (0

Euclidean 33.6 (4.99) 17.6 (5.25) 94.38 (2

Chebychev 37.2 (5.53) 23.8 (3.01) 94.85 (1

Nonlinear 37.6 (4.22) 18 (5.35) 94.43 (0

Bhattacharyya 30.6 (5.79) 16.2 (3.91) 93.36 (1

Matusita 30.6 (5.79) 16.2 (3.91) 93.36 (1

Divergence 27.2 (6.89) 14 (4.35) 92.6 (1.7

Mahalanobis 33.6 (4.99) 17.6 (5.25) 94.38 (2

Patrick-Fisher 26.6 (4.09) 11.8 (3.29) 91.44 (1

Random 36.6 (8.15) 26.4 (3.66) 94.58 (0

None 42.8 (2.90) 33.4 (6.38) 96.44 (0
Table 5 provides results from decision trees

generated after preprocessing input through the

feature selection methods for the two-year prior

case. The classification performance on training
examples (both BP and AP the decision trees) are

comparable for all the cases where feature selec-

tion methods were used except for the Patrick-

Fisher case. The classification performance on

testing examples between the ‘‘Random’’ case and

the worst performer using feature selection (Pat-

rick-Fisher) is not statistically significant (using

two-tailed t-test). However, the tree-sizes between
these cases are statistically significant.
ation accuracy

examples Testing examples

AP (%) BP (%) AP (%)

.98) 91.91 (1.48) 73.05 (14.23) 75.56 (13.75)

.98) 91.91 (1.48) 73.05 (14.23) 75.56 (13.75)

.25) 91.36 (2.73) 74.81 (14.75) 80.99 (13.32)

.16) 92.53 (2.15) 79.71 (9.96) 80.93 (8.81)

.61) 90.47 (2.15) 82.16 (5.08) 80.26 (6.36)

) 90.67 (1.27) 83.96 (7.28) 80.23 (7.16)

) 90.67 (1.27) 83.96 (7.28) 80.23 (7.16)

6) 89.57 (2.24) 78.93 (7.33) 78.29 (9.91)

.25) 91.36 (2.73) 74.81 (14.75) 80.99 (13.32)

.46) 88.47 (1.91) 79.56 (10.22) 79.63 (8.31)

.88) 90.82 (1.81) 70.84 (7.45) 73.89 (8.46)

.89) 94.11 (2.16) 82.75 (8.09) 78.4 (9.90)



Table 5

Results using two-year prior data set

Distance measure Tree size Classification accuracy

BP AP Training examples Testing examples

BP (%) AP (%) BP (%) AP (%)

Minkowski 44.4 (5.3) 25.2 (6.2) 93.34 (1.2) 89.09 (3.1) 74.13 (12) 72.22 (10.3)

City Block 44.4 (5.3) 25.2 (6.2) 93.34 (1.2) 89.09 (3.1) 74.13 (12) 72.22 (10.3)

Euclidean 37.8 (8.2) 20.2 (3.3) 91.78 (1) 88.51 (1.7) 79.83 (10.4) 81.12 (9.7)

Chebychev 43.6 (6.6) 23.6 (6.9) 91.78 (1.9) 87.95 (2.6) 69.74 (11.9) 68.37 (14.7)

Nonlinear 43.6 (6.6) 23.6 (6.9) 91.78 (1.9) 87.95 (2.6) 69.74 (11.9) 68.37 (14.7)

Bhattacharyya 35.4 (6.9) 16.8 (7.1) 90.28 (1.9) 86.34 (3.3) 75.87 (8.5) 74 (10.1)

Matusita 35.4 (6.9) 16.8 (7.1) 90.28 (1.9) 86.34 (3.3) 75.87 (8.5) 74 (10.1)

Divergence 37 (9.4) 21.6 (6.9) 90.76 (1.8) 87.74 (2.8) 72.17 (10.5) 73.46 (8.2)

Mahalanobis 38.6 (2.8) 22.6 (3.2) 91.7 (1.5) 89.29 (1.9) 79.92 (14) 81.12 (11.3)

Patrick-Fisher 29 (3.8) 11.8 (6) 82.07 (2) 77.27 (3.3) 71.66 (16.9) 67.31 (17.4)

Random 39.6 (4.6) 32.7 (6.8) 91.04 (1.2) 85.92 (2.7) 75.84 (12.8) 66.8 (9.1)

None 41.8 (5.7) 26.4 (5.1) 94.96 (1) 91.41 (2) 73.29 (12.1) 73.38 (11.5)
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4. Discussion

We studied the effects feature selection methods

have on learning in induced decision trees. Using

SFS algorithm, we tested several different distance
measures as to their effectiveness for feature se-

lection applications.

Although there is no one ‘‘best’’ distance mea-

sure for these applications, it is likely that some

methods do perform better in general depending

on the characteristics of the data. Given the results

from this paper, based on the tree-size and classi-

fication accuracy on testing examples, the nonlin-
ear measure is the one of choice in most cases.

The results also show that learning in induced

decision trees is sensitive to the input data used. By

selecting appropriate features through prepro-

cessing, the performance of induced decision trees

can be improved without much effort since most of

these preprocessing techniques are not time/com-

puting intensive. This is true for any learning al-
gorithm, since the complexity of the data used

directly affects the learning algorithm�s perfor-

mance. Feature selection, when used along with

any learning system, can help improve perfor-

mance of these systems even further with minimal

additional effort.

By selecting useful features from the data set,

we are essentially reducing the number of features
needed for these decisions. This in turn translates
to reduction in data gathering costs as well as

storage and maintenance costs associated with

features that are not necessarily useful for the de-

cision problem of interest.

We studied the performance of induced decision

trees with data preprocessed by several feature
selection methods using five real-world data sets.

These are important problems where the stakes are

high. Any improvement over the methods cur-

rently being used translates to tremendous savings

for the institutions involved, both in monetary

terms as well as in terms of efficiently using the

available raw data to extract useful information.
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