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Abstract

We incorporate auditory-based features into an unconventional pattern classification system, consisting of a network of spiking

neurones with dynamical and multiplicative synapses. Although the network does not need any training and is autonomous, the analysis

is dynamic and capable of extracting multiple features and maps. The neural network allows computing a binary mask that acts as a

dynamic switch on a speech vocoder made of an FIR gammatone analysis/synthesis bank of 256 filters. We report experiments on

separation of speech from various intruding sounds (siren, telephone bell, speech, etc.) and compare our approach to other techniques by

using the log spectral distortion (LSD) metric.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Separation of mixed signals is a major issue in many
applications in the context of audio processing. It can be
used, for instance, to assist a robot in segregating multiple
speakers, to ease the automatic transcription of video via
the audio tracks, to separate musical instruments before
automatic transcription; to clean a signal before perform-
ing speech recognition on it, etc. The ideal instrumental
setup would use an array of microphones during the
recording phase in order to gather many audio channels.
Unfortunately, in many situations, only one channel is
available to the audio engineer that has to solve the
separation problem. As such, the automatic separation of
the sources is much more difficult. Most of the mono-
phonic systems described in the scientific literature perform
reasonably well on specific signals (generally voiced
speech), but fail to efficiently separate a broad range of
e front matter r 2007 Elsevier B.V. All rights reserved.
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signals. These relatively unsatisfactory results may be
enhanced by exploiting expertise and knowledge of
engineering, psychoacoustics, physiology, and computer
science.
In this paper we assume that monophonic source

separation systems consist of two main stages: auditory
map generation and auditory grouping. Our approach is
based on auditory scene analysis. An auditory map is a
visual representation of how a sound mixture is perceived
in the brain.

2. Auditory scene analysis

A remarkable feat of the auditory system is its ability to
disentangle the acoustic mixture and group the acoustic
energy from the same event. This fundamental process of
auditory perception is called auditory scene analysis. Of
particular importance in auditory scene analysis is the
separation of speech from interfering sounds, or speech
segregation.

2.1. Auditory scene analysis according to Bregman

Bregman [7] defines the concept of ‘‘auditory streams’’,
i.e., the mental percept of a succession of auditory events.
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2This is not the case for the proposed neural network architecture.
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Auditory streaming entails two complementary domains
of study. The first one tries to determine how sounds
cohere to create a sense of continuation. That is the
subject of stream fusion. Since more than one source
can sound concurrently, the second domain of study
examines how concurrent activities retain their indepen-
dent identities; that is the subject of stream segregation.
For instance, auditory streaming is important in assigning
consecutive speech elements to the same speaker, or in
following a melodic line in a background of other musical
sounds.

In this paper, auditory stream segregation and integra-
tion are performed by our proposed neural network.

2.2. Computational auditory scene analysis

Computational auditory scene analysis (CASA) is an
attempt to realise auditory scene analysis systems with
computers. In Bregman’s terminology, bottom-up proces-
sing corresponds to primitive processing, and top-down
processing means schema-based processing. The auditory
cues proposed by Bregman for simple tones are not
directly applicable to complex sounds. Therefore, one
should develop more sophisticated cues based on different
auditory maps.

One of the first attempts to perform CASA has been
done by Weintraub [65]. Ellis [13] uses sinusoidal tracks
created by the interpolation of the spectral peaks of the
output of a cochlear filterbank. Mellinger’s model [37]
uses partials. A partial is formed if an activity on the onset
maps (the beginning of an energy burst) coincides with an
energy local minimum of the spectral maps. Using the
aforementioned assumption Mellinger proposed a CASA
system in order to separate musical instruments. Cooke [9]
has introduced the ‘‘synchrony strands’’, which is the
counterpart of Mellinger’s cues in speech. The integration
and segregation of streams is done using Gestalt and
Bregman’s heuristics. Berthommier and Meyer use ampli-
tude modulation maps [5] (see also [60,44,38]). Gaillard [15]
follows a more conventional approach by using the first
zero crossings for the detection of pitch and harmonic
structures in the frequency–time map. Brown’s algorithm
[8] is based on the mutual exclusivity Gestalt principle. Hu
and Wang use a pitch tracking technique [23]. Wang and
Brown [63] use correlograms in combination with bio-
inspired neural networks. Grossberg et al. [18] propose a
neural architecture that implements Bregman’s rules for
simple sounds. Sameti et al. [57] use hidden Markov models
(HMM), while in [56,55,48] factorial HMMs are used. Jang
and Lee [28] use a technique based on maximum a
posteriori (MAP) criterion. For another probability-based
CASA see [12].

Irino and Patterson [25] propose an auditory representa-
tion that is synchronous to the glottis and preserves fine
temporal information. Their representation makes the
synchronous segregation of speech possible. In [19] a
model of multi-resolution with both high- and low-
resolution representations of the audio signal in parallel
is used. The authors propose an implementation for speech
recognition. Nix et al. [40] perform a binaural statistical
estimation of two speech sources by an approach that
integrates temporal- and frequency-specific features of
speech. It tracks magnitude spectra and direction on a
frame-by-frame basis.
Most of the aforementioned systems require training and

are supervised.2 Other works are reported in [51,11].
3. Segregation and integration with binding

Neurone assemblies (groups) of spiking neurones can be
used to implement segregation and fusion (integration) of
objects into an auditory image representation. Usually, in
signal processing, correlations (or distances) between
signals are implemented with delay lines, products
and summations. With spiking neurones, comparison
(temporal correlation) between signals can be made with-
out the implementation of delay lines. This has been
achieved by presenting auditory images to spiking neu-
rones with dynamic synapses. Then, a spontaneous
organisation appears in the network by a set of neurones
firing in synchrony. Neurones with the same firing phase
belong to the same auditory object. In 1976 and 1981,
the temporal correlation that performs binding was
proposed by Milner in [39] and by Malsburg [34–36]. They
observed that synchrony is a crucial feature to bind
neurones associated to similar characteristics. Objects
belonging to the same entity are bound together in time.
In other words, synchronisation between different neu-
rones and desynchronisation among different regions
perform the binding. On the other hand, there are other
approaches such as the hierarchical coding, or attentional
models that try to find a solution without using the
synchronisation concept (for a review see [49]). To
a certain extent, such property has been exploited in [6]
to perform unsupervised clustering for recognition on
images, in [58] for vowel processing with spike synchrony
between cochlear channels, in [21] to propose pattern
recognition with spiking neurones, and in [32] to perform
cell assembly of spiking neurones using Hebbian learning
with depression. In [64] an efficient and robust technique
for image segmentation is presented. Wang and Brown [63]
studied the potential application of neural synchrony in
CASA.
Bio-inspired neural networks are well adapted to signal

processing whenever processing time is an important issue.
They do not always require a training period and can work
in a fully unsupervised mode. Adaptive and unsupervised
recognition of sequences is a crucial property of living
neurones. Among the many properties listed in this section,
this paper implements the segregation and integration with
sets of synchronous neurones.
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4. Proposed system strategy

We propose a bio-inspired bottom-up CASA system.
Fig. 1 shows the building blocks of this approach. The
sound mixture is filtered by an FIR gammatone filterbank
giving birth to 256 different signals, each belonging to one
of the cochlear channels. We propose two different
representations: the CAM (Cochleotopic/AMtopic Map)
and the CSM (Cochleotopic/Spectropic Map) as described
in Section 6. Depending on the nature of the intruding
sound (speech, music, noise, etc.) one of the maps is
selected as explained later in Section 6. The map is applied
to our proposed two-layered spiking neural network
(Section 7). We propose to generate a binary mask based
on the neural synchrony in the output of the neural
network (Section 8). The binary mask is then multiplied
with the output of the FIR gammatone synthesis filterbank
and the channels are summed up.

Our bio-inspired approach has the following advantages,
when compared to other non-bio-inspired techniques:
�

Fig

sep
It does not need the knowledge of explicit rules to create
the separation mask. In fact, finding a suitable extension
of the rules developed by Bregman for simple sounds to
the real world is difficult. Therefore, as long as the
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. 1. The block diagram for the proposed bio-inspired sound source

aration technique.
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aforementioned rules are not derived and well docu-
mented [11], expert systems will be difficult to use.

�
 It does not need any time-consuming training phase

prior to the separation phase. This is contrary to
approaches based on statistics like HMMs [57], factorial
HMMs [48,56] or MAP [28].

�
 It is autonomous as it does not use hierarchical

classification [35].

The work by Wang and Brown [63] is a breakthrough in the
field of bio-inspired neural network CASA and, to our
knowledge, is one of the first in the field. Our work uses the
same oscillatory neurones as in [63], but with a different neural
architecture and a different preprocessing stage. We propose
two-dimensional representation maps that do not require
pitch estimation. Moreover, the signal is continuously
presented to the system, i.e., no segmentation is required.
Our proposed architecture uses a 2-layered neural network, in
which the second layer is one-dimensional. We use an FIR
gammatone filterbank with much less synthesis distortion [46].

5. Analysis/synthesis filterbank

We use an FIR implementation of the well-known
gammatone filterbank [41] as the analysis/synthesis filter-
bank. Two hundred and fifty six channels having centre
frequencies from 100 to 3600Hz and uniformly spaced on
an equivalent rectangular bandwidth (ERB) scale [41] are
used. The sampling rate is 8000 samples/s.
The actual time-varying filtering is done by the mask.

Our technique is based on generating masks obtained by
grouping synchronous oscillators of the neural net (see
Section 7.4). The outputs of the synthesis filterbank are
multiplied by the mask (defined in Section 7). Thus,
auditory channels belonging to interfering sound sources
are muted and channels belonging to the sound source of
interest remain unaffected.3

Before the signals of the masked auditory channels are
added to form the synthesised signal, they are passed
through the synthesis filters, whose impulse responses are
time-reversed versions of the impulse responses of the
corresponding analysis filters.4

This non-decimated FIR analysis/synthesis filterbank
was proposed in [26] and also used in a perceptual speech
coder in [31] (in the latter only 20 channels were used). For
more details on the design of the analysis/synthesis
filterbank see [46].

6. Analysis and auditory image generation

We propose two spectral two-dimensional representa-
tions that are generated simultaneously:
This is, equivalent to labelling—for each time frame—cochlear

nnels. A value of one is associated to the target signal and a value of

the interfering signal.

For cancelling out cochlear channel delays.
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A modified version of the well-known and documented
amplitude modulation map, which we call CAM Map—
closely related to modulation spectrograms as defined by
other authors [2,38].
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The CSM that encodes the averaged spectral energies of
the cochlear filterbank outputs.

By proposing the CAM, it was desired to somewhat
reproduce the AM processing performed by multipolar
cells (Chopper-S) from the anteroventral cochlear nucleus
[59]. The second representation (CSM) is motivated by the
functioning of the spherical bushy cell processing from the
ventral cochlear nucleus [20].

Our CAM/CSM generation algorithm is as follows:
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Filter the sound source using a 256-filter ERB-scaled
cochlear filterbank ranging from 100 to 3.6 kHz.
Fig. 2. Example of a 24 channel CAM for a mixture of /di/ and /da/
(2)

pronounced by two speakers; mixture at SNR ¼ 0 dB and frame centre at

t ¼ 166ms. Channels 10–18 belong to one of the sources and other

channels belong to the other source.
� For CAM: Extract the envelope (AM demodulation)
for channels 30–256; for other low frequency
channels (1–29) use raw outputs.5

� For CSM: Do nothing in this step.
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(3)
 Compute the STFT of each cochlear output using a
Hamming window.6
(4)
 In order to increase the spectro-temporal resolution of
the STFT, find the reassigned spectrum of the STFT
[47] (this consists of applying an affine transform to the
points in order to relocate the spectrum).7
(5)
 Compute the logarithm of the magnitude of the STFT.
The logarithm enhances the presence of the stronger
source in a given two-dimensional frequency bin of the
CAM/CSM.8
It has recently been observed that the efferent loop between
the medial olivocochlear system (MOC) and the outer hair
cells modifies the cochlear response in such a way that
speech is enhanced from the background noise [29]. We
suppose here that envelope detection and selection between
the CAM and the CSM, in the auditory pathway, could be
associated to the change of stiffness of hair cells combined
with cochlear nucleus processing [17,33]. For now, in the
present experimental setup, selection between the two
auditory images is done manually. In near future, we plan
to implement efferent feedback control for signal repre-
sentation adaptation.

Fig. 2 is an example of a CAM computed through a 24
cochlear channels filterbank for a /di/ and /da/ mixture
pronounced by a female and male speaker. Ellipses outline
the auditory objects.
-frequency channels are said to resolve the harmonics while others

It suggests a different strategy for low frequency channels [53].

-overlapping adjacent windows with 4 or 32ms lengths have been

e that one can do a compromise by not computing the time-

ing reassigned spectrum for slightly worse performance.

1 þ e2Þ ’ maxðlog e1; log e2Þ (unless e1 and e2 are both large and

equal) [55].
7. Architecture of the neural network

In this section, we propose a novel neural architecture
based on bio-inspired neurones.

7.1. Bio-inspired neural networks

Bio-inspired (Spiking) neural networks try to mimic the
behaviour of real neurones in animals and humans. They
allow the processing of temporal sequences, contrary to
most classical neural networks that are only suitable for
static (time-invariant) data.
In the case of bio-inspired neural networks, temporal

sequence processing is done naturally because of the
intrinsic dynamic behaviour of the neurones. The pioneer-
ing work in the field of bio-inspired neural networks
has been done by Hodgkin and Huxley at the University
of Plymouth [16]. In the 1950s, they came up with a
mathematical model to describe the behaviour of a squid
axon. Although this model is the most complete so far
(it can predict most of the behaviours seen in simple
biological neurones), it is very complex and difficult to
simulate in an artificial neural network paradigm. Hence,
simplified models like the Wang–Terman model described
in the following subsection has been proposed in the
literature.

7.2. Building blocks of the neural architecture

Building blocks of our architecture are the well-known
‘‘Wang–Terman’’ oscillators [64]. There is an active phase
when the neurone spikes and a relaxation phase when the
neurone is silent. Information in our network is conveyed
in the relative phase of each oscillation (spike).
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The state-space equations for this dynamical system are
as follows:

dx

dt
¼ 3x� x3 þ 2� yþ rþ pþ S, (1)

dy

dt
¼ �½gð1þ tanhðx=bÞÞ � y�, (2)

where x is the membrane potential (output) of the neurone
and y is the state for channel activation or inactivation. r
denotes the amplitude of a Gaussian noise, p is the external
input to the neurone, and S is the coupling from other
neurones (connections through synaptic weights). �, g and b
are constants. The Euler integration method is used to
solve the equations.

The network consists of two layers. The first layer is two-
dimensional and the second layer is one-dimensional.
7.3. First layer: auditory image segmentation

The first layer essentially performs a segmentation of the
auditory map image. A good reference on image segmenta-
tion with oscillatory neurones can be found in [64]. The
dynamics of the neurones we use is governed by a modified
version of the Van der Pol relaxation oscillator (Wang–
Terman oscillators [63]). The first layer is a partially
connected network of relaxation oscillators [63]. Each
neurone is connected to its four neighbours. The CAM (or
the CSM) is applied to the input of the neurones. Our
observations have shown that the geometric interpretation
of pitch (ray distance criterion) is less clear for the first 29
channels (channels where harmonics are usually resolved).
Neuron
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Fig. 3. Architecture of the two-layer bio-inspired neural network. G:

Stands for global controller (the global controller for the first layer is not

shown in the figure). One long range connection is shown in the figure.
For this reason, we have also established long-range
connections from clear (high frequency) zones to confusion

(low frequency) zones. These connections exist only across
the cochlear channel number axis of the CAM. This
architecture helps the network to better extract harmonic
patterns (Fig. 3).
The weight at time t between neuroneði; jÞ and

neuroneðk;mÞ of the first layer is computed via the
following formula:

wi;j;k;mðtÞ ¼
1

CardfNði; jÞg

0:25

eljpði;j;tÞ�pðk;m;tÞj
. (3)

Here pði; j; tÞ and pðk;m; tÞ are, respectively, external inputs
to neuronði; jÞ and neuronðk;mÞ 2 Nði; jÞ. CardfNði; jÞg is a
normalisation factor and is equal to the cardinal number
(number of elements) of the set Nði; jÞ containing neigh-
bours connected to the neuroneði; jÞ (can be equal to 4, 3 or
2 depending on the location of the neuron on the map, i.e.,
centre, corner, etc.). The external input values are normal-
ised. The value of l depends on the dynamic range of the
inputs and is set to l ¼ 1 in our case. This same weight
adaptation is used for long range clear to confusion zone

connections (Eq. (7)) in CAM processing case. The
coupling at time t, Si;jðtÞ defined in Eq. (1) is

Si;jðtÞ ¼
X

k;m2Nði;jÞ

wi;j;k;mðtÞHðxðk;m; tÞÞ � ZGðtÞ þ kLi;jðtÞ.

(4)

Hð:Þ is the Heaviside function and Z is a constant. xðk;m; tÞ
is the membrane potential. GðtÞ is a global controller whose
dynamics is governed by the following equation:

GðtÞ ¼ aHðz� yÞ, (5)

dz

dt
¼ s� xz. (6)

s is equal to 1 if the global activity of the network is greater
than a predefined threshold z and is zero otherwise. a, x
and y are constants. z is an internal state variable.
Table 1

The numerical values of the different parameters used in the first layer of

the network

Constant’s name Value

l 1

y 0.9

a �0.1

x 0.4

z 0.2

Z 0.05

g 4.0

� 0.02

r 0.02

b 0.1

k 0.2
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Table 2

The numerical values of the different parameters used in the second layer

of the network

Constant’s name Value

a 1

m 2

R. Pichevar, J. Rouat / Neurocomputing 71 (2007) 109–120114
Li;jðtÞ is the long-range coupling as follows:

Li;jðtÞ ¼
0; jX30;P

k¼225...256wi;j;i;kðtÞHðxði; k; tÞÞ; jo30:

(
(7)

k is a binary variable defined as follows:

k ¼
0:2 for CAM

0 for CSM:

�
(8)

For a given frequency i, channels j that have an index
smaller than 30 have connections from channels k indexed
between 225 and 256.

The first layer is designed to handle presentations of
auditory maps with continuous sliding and overlapping
windows on the signal—with real application perspectives
in mind (see Table 1 for the parameter values).
7.4. Second layer: temporal correlation and multiplicative

synapses

The second layer performs temporal correlation between
neurones. Each of the neurones represents a cochlear
channel of the analysis/synthesis filterbank. For each
presented auditory map, the second layer establishes
binding between neurones whose entry is dominated by
the same source. The dendrites establish multiplicative
synapses with the first layer. The second layer is an array of
256 neurones (one for each channel) similar to those
described by Eqs. (1) and (2) in Section 7.3. Each neurone
receives the weighted product of the outputs of the first
layer neurones along the frequency axis of the CAM/CSM.
The weights between layer one and layer two are defined as
wllðiÞ ¼ a=i, where i can be related to the frequency bins of
the STFT and a is a constant for the CAM case, since we
are looking for structured patterns. For the CSM, wllðiÞ ¼

a is constant along the frequency bins as we are looking for
energy bursts. Therefore, the input stimulus to neuronðjÞ in
the second layer is defined as follows:

yðj; tÞ ¼
Y

i

wllðiÞXfxði; j; tÞg. (9)

The operator X is defined as

Xfxði; j; tÞg ¼
1 for xði; j; tÞ ¼ 0;

xði; j; tÞ elsewhere;

(
(10)

where ðÞ is the averaging over a time window operator (the
duration of the window is on the order of the discharge
period). The multiplication with xði; j; tÞ is done only for
non-zero xði; j; tÞ (outputs of the first layer) (in which a
spike is present) [14,42]. This behaviour has been observed
in the integration of interaural time difference (ITD) and
inter level difference (ILD) information in the barn owl’s
auditory system [14] or in the monkey’s posterior parietal
lobe neurones that show receptive fields that can be
explained by a multiplication of retinal and eye or head
position signals [1].
The synaptic weights inside the second layer are adjusted
through the following rule:

w0ijðtÞ ¼
0:2

emjpði;tÞ�pðj;tÞj
. (11)

m is chosen to be equal to 2. The ‘‘binding’’ is done via this
second layer. In fact, it is an array of fully connected
neurones along with a global controller—global controller
defined as in Eqs. (5) and (6). The global controller
desynchronises the synchronised neurones from different
auditory objects by emitting inhibitory activities whenever
there is activity (spikings) in the network [63]. Thus, the
network can adapt quickly to input changes (see Table 2
for parameter values).
The selection strategy at the output of the second layer is

based on temporal correlation:
�
 Neurones belonging to the same source synchronise
(same spiking phase).

�
 Neurones belonging to other sources desynchronise

(different spiking phase).

8. Masking

Based on the phase synchronisation described in the
previous section, a mask is generated by associating
zeros and ones to different channels. Energy is normalised
in order to have the same sound pressure level (SPL)
for all frames. Note that two-source mixtures are
considered throughout this article but the technique can
be potentially used for more than two sources. In this case,
for each time frame n, the labelling of individual channels
is equivalent to the use of multiple masks (one for each
source).
9. Experiments

9.1. Database and comparison

Martin Cooke’s database [10] is used for evaluation
purposes. The following intruding signals have been tested:
1 kHz tone, FM siren, white noise trill telephone noise
and speech. The aforementioned noises have been added
to the target utterance. The results (i.e., audio files)
can be found at [43]. Each mixture is applied to our
proposed system and the mixed sound sources are
separated. The log spectral distortion (LSD) is used as
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Table 3

The log spectral distortion (LSD) for four different methods

Intrusion SNR of the initial mixture (dB) P–R (LSD) W–B (LSD) H–W (LSD) B–R (LSD)

Tone �2 5.38 18.87 13.59 9.77

Siren �5 8.93 20.64 13.40 18.94

Tel. ring 3 16.43 18.35 14.05 16.18

White noise �5 16.82 35.25 26.51 14.84

Male (da) 0 14.92 N/A N/A 17.70

Female (di) 0 19.70 N/A N/A 24.04

P–R (our proposed approach), W–B (the method proposed in [63]), H–W (the method proposed in [23]), and B–R (the method proposed in [4]). The

intrusion noises are as follows: (a) 1 kHz pure tone, (b) FM siren, (c) telephone ring, (d) white noise, (e) male-speaker intrusion (/di/) for the French /di//

da/ mixture, (f) female-speaker intrusion (/da/) for the French /di//da/ mixture. Except for the last two tests, the intrusions are mixed with a sentence taken

from Martin Cooke’s database.

Table 4

LSD for two different methods

Mixture Separated sources P–R (LSD) J–L (LSD) B–R (LSD)

Music and female (AF) Music 8.01 21.25 14.00

Voice 17.54 16.49 18.16

P–R (our proposed approach), J–L [27], and B–R [3,4]. The mixture comprises a female voice with musical rock background.

R. Pichevar, J. Rouat / Neurocomputing 71 (2007) 109–120 115
a performance criterion [61,62]. It is defined as9

LSD ¼
1

L

XL�1
l¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK�1
k¼0

20 log10
jIðk; lÞj þ �

jOðk; lÞj þ �

� �2vuut , (12)

where Iðk; lÞ and Oðk; lÞ are the FFT of IðtÞ (ideal source
signal) and OðtÞ (separated source), respectively. L is the
number of frames, K is the number of frequency bins and �
is meant to prevent extreme values (equal to 0.001 in our
case). We compare our performance with four different
approaches proposed in the literature:
�

9

qua
The system proposed in [63] is a neural-network-based
CASA system that uses a different neural architecture
and a different type of preprocessing.

�
 The expert-system-based CASA approach proposed in

[23], which uses more conventional cues, such as pitch
tracking for grouping different sources.

�
 An approach based on statistical learning from [27].

Note that in the latter case a training is necessary prior
to separation.

�
 A speech enhancement technique based on wavelets by

Bahoura and Rouat [3,4].

9.2. Separation performance

Table 3 gives comparison results based on the LSD for a
first set of sound files:
�
 In all cases, our proposed architecture performs better
than [63]. Our system causes less distortion of the target
For other criteria, such as the PESQ (perceptual evaluation of speech

lity) see [54,45].

1

16.
1

signal at the expense of less noise rejection. This is an
advantageous strategy in hearing aid design.

�
 Our proposed technique outperforms [23] when the

intrusion is a tone, siren or white noise. For telephone
ring, [23] has better scores.

�
 Our technique outperforms [4] in all cases except for

white noise.10 However, the technique in [4] is a speech
enhancement technique that has never been designed for
source separation. Speech enhancement techniques are
more adapted to background noise (including white
noise) removal than to sound source separation tasks.
Note that the price to pay for a better performance with
our proposed technique, is a higher computational
complexity when compared with more conventional
speech enhancement techniques such as the one pre-
sented in [4].

�
 For the double-vowel, the LSD has the highest value—

showing that separation is more difficult when the
interference is speech.

Table 4 shows comparison results based on the LSD for
a second set of sound files:
�
 Sound files used in [27]11 are used for comparison
purposes. The current work is compared with two other
techniques from [27,4]. B–R gives only one output
(processed sound), in contrast with P–R and J–L, which
give two extracted sounds for each method (Tables 3
and 4). Therefore, the result of B–R is compared (and
the LSD extracted) once with the original music and
0Even if the LSD is lower for the telephone ring (16.18 instead of

43), the perceptive quality for B–R is not as good as that of P–R.
1http://home.bawi.org/jangbal/research/demos/rbss1/sepres.html

http://home.bawi.org/jangbal/research/demos/rbss1/sepres.html
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Fig. 4. Mixture of the utterance ‘‘Why were you all weary?’’ with a trill

telephone noise.
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Fig. 5. Top: The synthesised ‘‘Why were you all weary?’’ after the

separation by the approach proposed in this article. Bottom: The

synthesised trill telephone after the separation by the approach proposed

in this article.
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Fig. 6. The synthesised ‘‘Why were you all weary?’’ by the approach

proposed in [63] for the trill telephone and utterance mixture.
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Fig. 7. Mixture of the utterance ‘‘I’ll willingly marry Marilyn’’ with 1 kHz

tone.
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once with the original female speaker. Results from the
three techniques are comparable for the extraction of
the female speaker voice, while our technique outper-
forms the other two for the extraction of music from
background. Note that our technique does not require
any prior statistical training, in contrast with [27].

In the following subsections, spectrograms for different
sounds and different approaches are given for visual
comparison purposes.
9.3. Separation examples

9.3.1. Separation of speech from telephone trill

Fig. 4 shows the mixture of the utterance ‘‘Why were you
all weary?’’ with the telephone trill noise (from Martin
Cooke’s database). The trill telephone noise (ring) is
wideband, interrupted, and structured. Fig. 5 shows the
spectrograms of separated utterance and trill telephone,
obtained by using our approach. It is interesting to note
that the medium- to low-frequency range of the telephone
trill has been preserved. Fig. 6 shows the extracted
utterance by using [63]. As can be seen, our approach
performs better in medium to higher frequencies.
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Fig. 8. Top: The separation result for the 1 kHz plus utterance mixture

using the approach described in this article. The dynamic range between

the darkest gray level and the brightest level is 50 dB. Bottom: The

synthesised ‘‘Why were you all weary?’’ by the approach proposed in [63].

The high-frequency information is missing.
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Fig. 9. Mixture of a siren and the sentence ‘‘I’ll willingly marry Marilyn’’.
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Fig. 10. Top: The separation result for the utterance extraction from the

siren plus sentence mixture with our proposed technique. Bottom: The

separation result for the siren extraction from the siren plus sentence

mixture with our proposed technique.
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9.3.2. Separation of speech from 1 kHz tone

In this experiment the utterance ‘‘I’ll willingly marry
Marilyn’’ with a 1 kHz pure tone is used. The tone is
narrowband, continuous and structured. Fig. 7 shows the
original utterance plus the 1 kHz tone. Fig. 8 shows the
separation results for our approach and the approach
proposed in [63]. The method proposed in [63] removes
speech in middle and high frequencies, while these
frequencies remain unaffected by our approach. When
listening to the signal and according to the LSD (equals to
7:07), the tone has been removed (even if a gray bar is
shown on the top panel of Fig. 8.

9.3.3. Separation of speech from an FM signal (siren)

Fig. 9 shows the mixture of the utterance ‘‘I’ll willingly
marry Marylin’’ with a siren. The siren is a locally
narrowband, continuous, structured signal. The bottom panel
of Fig. 10 shows the separated siren obtained by our proposed
technique. The top panel of Fig. 10 shows the spectrogram of
the separated utterance. Fig. 11 shows the spectrogram for the
separated utterance using the method proposed in [63].

9.4. Discussions

Other signal-to-noise-ratio (SNR)-like criteria such as
the SNR, segmental SNR, PEL (percentage of energy loss),
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Fig. 11. The synthesised ‘‘Why were you all weary?’’ by the approach

proposed in [63] for the siren plus utterance mixture case.
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and PNR (percentage of noise residue) are used in the
literature in [63,30,22–24,50,44] and can be used as
performance scores.

Although criteria like the PEL/PNR, the SNR, the
segmental SNR, and the LSD are used in the literature as
performance criteria, they do not always reflect the real
perceptive performance of a given sound separation
system. For example, the SNR, the PEL and the PNR
ignore high-frequency information. The LSD does not take
into account temporal aspects such as phase. Therefore,
LSD will not detect phase distortions in separation results.
It is known that performance evaluation cannot be based
only on measures such as LSD.12 Other criteria like the
PESQ (perceptual evaluation of speech quality) [54,45] can
be used as well for comparison purposes. More investiga-
tion should be made to modify the criteria commonly used
in source separation.

At any instant of time, the intruding noise such as tones,
telephone rings and sirens have narrow bandwidths with
strong localised spectral energy. These noises appears easily
on the CSM representation. On the other hand, intruding
signals such as music and speech are wideband and would
not separate from other speech sources based on the CSM,
while they do with CAM. CAM and CSM are comple-
mentary representations, at least for the limited database
used here. Referring back to first sections of the paper, we
can write that the separation of two interfering unvoiced
speech sounds will very likely not be feasible based only on
the CSM and CAM representations. We know from
physiology that other representations are available to the
auditory system and should be implemented for a more
robust system. These new representations should not
assume the stationarity of signals, as it has been assumed
here by using the Fourier transform.

From the siren interfering signal we observe that the
neural network is able to follow the dynamic changes in
12Sound and demo files are available for listening at: http://www-edu.

gel.usherbrooke.ca/picr1601/Demos.htm
time and frequency, which is a crucial property of the
system. However, the limiting factor is the number of
cochlear channels and the width of the sliding window.
Audio files with the results for three-source sound
separation can be found on the web pages at [43,52].

10. Conclusion

A new system that comprises a perceptive analysis to
extract multiple and simultaneous features to be processed
by an unsupervised neural network has been proposed.
There is no need to tune-up the neural network when
changing the nature of the signal. Furthermore, there is no
training or recognition phase.
The proposed system has been tested on a limited

corpus. Many improvements should be made before
considering an extensive use of the approach in real
situations. Among them, there is a need for creating
new feature maps for onset, offset, etc. Nevertheless, the
experiments have led us to the conclusion that computa-
tional neuroscience in combination with speech processing
offers a strong potential for unsupervised and dynamic
speech processing systems.
Even with crude approximation such as binary masking

and non-overlapping and independent windows,13 we
obtain relatively good synthesis intelligibility.
Future developments will include the implementation of

an efferent feedback control for signal representation
adaptation and feature selections as a top-down (schema-
driven) processing.
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