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AbstractÐThis paper introduces a novel enhancement for unsupervised learning of conditional Gaussian networks that benefits from

feature selection. Our proposal is based on the assumption that, in the absence of labels reflecting the cluster membership of each

case of the database, those features that exhibit low correlation with the rest of the features can be considered irrelevant for the

learning process. Thus, we suggest performing this process using only the relevant features. Then, every irrelevant feature is added to

the learned model to obtain an explanatory model for the original database which is our primary goal. A simple and, thus, efficient

measure to assess the relevance of the features for the learning process is presented. Additionally, the form of this measure allows us

to calculate a relevance threshold to automatically identify the relevant features. The experimental results reported for synthetic and

real-world databases show the ability of our proposal to distinguish between relevant and irrelevant features and to accelerate learning;

however, still obtaining good explanatory models for the original database.

Index TermsÐData clustering, conditional Gaussian networks, feature selection, edge exclusion tests.

æ

1 INTRODUCTION

ONE of the basic problems that arises in a great variety of
fields, including pattern recognition, machine learning,

and statistics, is the so-called data clustering problem [1], [2],
[10], [11], [18], [22]. Despite the different interpretations and
expectations it gives rise to, the generic data clustering
problem involves the assumption that, in addition to the
observed variables (also referred to as predictive attributes
or, simply, features), there is a hidden variable. This last
unobserved variable would reflect the cluster membership
for every case in the database. Thus, the data clustering
problem is also referred to as an example of learning from
incomplete data due to the existence of such a hidden
variable. Incomplete data represents a special case of
missing data where all the missing entries are concentrated
in a single variable: The hidden cluster variable. That is, we
refer to a given database as incomplete when all the cases
are unlabeled.

From the point of view adopted in this paper, the data

clustering problem may be defined as the inference of the

generalized joint probability density function for a given

database. Concretely, we focus on learning conditional

Gaussian networks for data clustering [25], [26], [27], [36],

[37]. Roughly speaking, a conditional Gaussian network is a

graphical model that encodes a conditional Gaussian distribu-

tion [25], [26], [27] for the variables of the domain. Then

when applied to data clustering, it encodes a multivariate

normal distribution for the observed variables conditioned

on each state of the cluster variable.

As we aim to automatically recover the generalized joint
probability density function from a given incomplete
database by learning a conditional Gaussian network, this
paper is concerned with the understanding of data
clustering as a description task rather than a prediction task.
Thus, in order to encode a description of the original
database, the learned model must involve all the original
features instead of a subset of them. When unsupervised
learning algorithms focus on prediction tasks, feature
selection has proven to be a valuable technique to increase
the predictive ability of the elicited models. In this paper,
we demonstrate that, even when focusing on description,
feature selection (also known as dimensionality reduction) can
be a profitable tool for improving the performance of
unsupervised learning.

The general framework that we propose to show how
unsupervised learning of conditional Gaussian networks
can benefit from feature selection is straightforward and
consists of three steps: 1) identification of the relevant
features for learning, 2) unsupervised learning of a
conditional Gaussian network from the database restricted
to the relevant features, and 3) addition of the irrelevant
features to the learned network to obtain an explanatory
model for the original database. According to this frame-
work, feature selection is considered a preprocessing step
that should be accompanied by a postprocessing step to
fulfill our objective. This postprocessing step consists of the
addition of every irrelevant feature to the learned model to
have a final model that encodes the generalized joint
probability density function for the original data.

To completely define the framework, one should decide on
the automatic dimensionality reduction scheme to identify
the relevant features for learning. This paper introduces a
simple relevance measure to assess the relevance of the features
for the learning process in order to select a subset of them
containing the most salient ones. Additionally, we propose a
heuristic method to automatically qualify every feature as
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completely relevant or irrelevant for the learning process.
This is carried out by the automatic calculation of a relevance

threshold. Those features with relevance measure values
higher than the relevance threshold are considered relevant
for the learning process, whereas the rest are qualified as
irrelevant.

The experimental results reported in this paper show
that the framework depicted above provides us with good
explanatory models for the original database reducing the
cost of the learning process as only relevant features are
used in this process. In addition to its effectiveness, the
simplicity of the automatic dimensionality reduction
scheme that we propose represents a valuable advantage
as it allows the framework to reduce the dimensionality of
the database where to perform learning very efficiently.
Besides, our scheme is not tied to any particular learning
algorithm and, therefore, it can be adapted to most of them.

The remainder of this paper is organized as follows: In
Section 2, we introduce conditional Gaussian networks for
data clustering. Section 3 is dedicated to explaining in detail
our automatic dimensionality reduction scheme. We present
a new relevance measure as well as how to automatically
discover the relevant and irrelevant features through the
calculation of a relevance threshold. This section also
presents how to fit our proposal into the unsupervised
learning of conditional Gaussian networks under the frame-
work already outlined. Some experimental results showing
the ability of our proposal to identify the relevant features
and to accelerate the learning process are compiled in Section
4. Finally, we draw conclusions in Section 5.

2 CONDITIONAL GAUSSIAN NETWORKS FOR DATA

CLUSTERING

This section starts introducing the notation used throughout
this paper. Then, we give a formal definition of conditional
Gaussian networks. We also present the Bayesian Structural

EM algorithm [13], which is used for explanatory purposes
as well as in our experiments presented in Section 4 due to
its good performance in unsupervised learning of condi-
tional Gaussian networks.

2.1 Notation

We follow the usual convention of denoting variables by
uppercase letters and their states by the same letters in
lowercase. We use a letter or letters in boldface uppercase to
designate a set of variables and the same boldface lowercase
letter or letters to denote an assignment of a state to each
variable in a given set. The generalized joint probability
density function of X is represented as ��x�. Additionally,
��x j y� denotes the generalized conditional probability
density function of X given Y � y. If all the variables in X

are discrete, then ��x� � p�x� is the joint probability mass
function of X. Thus, p�x j y� denotes the conditional
probability mass function of X given Y � y. On the other
hand, if all the variables in X are continuous, then ��x� �
f�x� is the joint probability density function of X. Thus,
f�x j y� denotes the conditional probability density function
of X given Y � y.

2.2 Conditional Gaussian Networks

As we have already mentioned, when facing a data

clustering problem we assume the existence of a random

variable X partitioned as X � �Y; C� � �Y1; . . . ; Yn; C� into a

n-dimensional continuous variable Y and a unidimensional

discrete hidden cluster variable C. X is said to have a

conditional Gaussian distribution [25], [26], [27] if the

distribution of Y, conditioned on each state of C, is a

multivariate normal distribution. That is,

f�y j C � c� � fc�y� � N �y;���c�;���c�� �1�
whenever p�c� � p�C � c� > 0. Given C � c, ���c� is the

n-dimensional mean vector, and ���c�, the n� n variance

matrix, is positive definite.
We define a conditional Gaussian network (CGN) for X

as a graphical model that encodes a conditional Gaussian

distribution for X [25], [26], [27], [36], [37]. Essentially,

CGNs belong to a class of mixed graphical models

introduced for the first time by Lauritzen and Wermuth

[27] and further developed in [25], [26]. This class groups

models in which both discrete and continuous variables can

be present and for which the conditional distribution of the

continuous variables given the discrete variables is re-

stricted to be multivariate Gaussian. More recently, CGNs

have been successfully applied to data clustering [36], [37].
Concretely, a CGN is defined by a directed acyclic

graph s (model structure) determining the conditional

(in)dependencies among the variables of Y, a set of local

probability density functions, and a multinomial distribu-

tion for the variable C. The model structure yields to a

factorization of the generalized joint probability density

function for X as follows:

��x� � ��y; c� � p�c�f�y j c�

� p�c�fc�y� � p�c�
Yn
i�1

fc�yi j pa�s�i�;
�2�

where pa�s�i denotes the configuration of the parents of Yi,

Pa�s�i, consistent with x. The local probability density

functions and the multinomial distribution are those in the

previous equation and we assume that they depend on a

finite set of parameters ��s 2 ��s. Therefore, (2) can be

rewritten as follows:

��x j ��s� � ��y; c j ��s� � p�c j ��s�f�y j c; ��s�

� p�c j ��s�fc�y j ��cs� � p�c j ��s�
Yn
i�1

fc�yi j pa�s�i; ��ci�;

�3�
where ��cs � ���c1; . . . ; ��cn� denotes the parameters for the local

probability density functions when C � c.
If sh denotes the hypothesis that the conditional (in)-

dependence assertions implied by s hold in the true

generalized joint probability density function of X, then

we obtain from (3) that:
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��x j ��s; s
h� � ��y; c j ��s; s

h� � p�c j ��s; s
h�f�y j c; ��s; s

h�
� p�c j ��s; s

h�fc�y j ��cs; sh�

� p�c j ��s; s
h�
Yn
i�1

fc yi j pa�s�i; ��ci ; sh
ÿ �

: �4�

In order to encode a conditional Gaussian distribution for
X, each local probability density function of a CGN should
be a linear-regression model. Thus, when C � c:

fc yi j pa�s�i; ��ci ; sh
ÿ � � N�yi;mc

i �
X

yj2pa�s�i
bcji
ÿ
yj ÿmc

j

�
; vci

�
;

�5�
where N�y;�; �2� is a univariate normal distribution with
mean � and standard deviation � (� > 0). Given this form, a
missing arc from Yj to Yi implies that bcji � 0 in the linear-
regression model. When C � c, the local parameters are
��ci � �mc

i ;b
c
i ; v

c
i�, i � 1; . . . ; n, where bci � �bc1i; . . . ; bciÿ1i�t is a

column vector.
The interpretation of the components of the local

parameters ��ci , i � 1; . . . ; n, is as follows: Given C � c, mc
i

is the unconditional mean of Yi, vci is the conditional
variance of Yi given Pa�s�i, and bcji, j � 1; . . . ; iÿ 1, is a
linear coefficient reflecting the strength of the relationship
between Yj and Yi. See Fig. 1 for an example of a CGN with
three continuous variables and one binary cluster variable.

Note that the model structure is independent of the value
of the cluster variable C, thus the model structure is the

same for all the values of C. However, the parameters of the
local probability density functions do depend on the value
of C and they may differ from the distinct values of the
variable C.

2.3 Learning CGNs from Incomplete Data

One of the methods for learning CGNs from incomplete data
is the well-known Bayesian Structural EM (BS-EM) algorithm
developed by Friedman in [13]. Due to its good performance,
this algorithm has received special attention in the literature
and has motivated several variants of itself [32], [34], [35],
[41]. We use the BS-EM algorithm for explanatory purposes
as well as in our experiments presented in Section 4.

When applying the BS-EM algorithm in a data clustering
problem, we assume that we have a database of N cases,
d � fx1; . . . ;xNg, where every case is represented by an
assignment to the n observed variables of the n� 1 variables
involved in the problem domain. So, there are
�n� 1�N random variables that describe the database. Let
O denote the set of observed variables, that is, the nN

variables that have assigned values. Similarly, let H denote
the set of hidden or unobserved variables, that is, the N

variables that reflect the unknown cluster membership of
each case of d.

For learning CGNs from incomplete data, the BS-
EM algorithm performs a search over the space of CGNs
based on the well-known EM algorithm [7], [29] and direct
optimization of the Bayesian score. As shown in Fig. 2, the
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BS-EM algorithm is comprised of two steps: An optimiza-
tion of the CGN parameters and a structural search for
model selection. Concretely, the BS-EM algorithm alternates
between a step that finds the maximum a posteriori (MAP)
parameters for the current CGN structure usually by means
of the EM algorithm, and a step that searches over
CGN structures. At each iteration, the BS-EM algorithm
attempts to maximize the expected Bayesian score instead
of the true Bayesian score.

As we are interested in solving data clustering
problems of considerable size, the direct application of
the BS-EM algorithm as it appears in Fig. 2 may be an
unrealistic and inefficient solution. In our opinion, the
reason for this possible inefficiency is that the computation
of Score�s : sl� implies a huge computational expense as it
takes account of every possible completion of the
database. It is common to use a relaxed version of the
presented BS-EM algorithm that just considers the most
likely completion of the database to compute Score�s : sl�
instead of considering every possible completion. Thus,
this relaxed version of the BS-EM algorithm is comprised
of the iteration of a parametric optimization for the
current model and a structural search once the database
has been completed with the most likely completion by
using the best estimate of the generalized joint probability
density function of the data so far (current model). That is,
the posterior probability distribution of the cluster variable
C for each case of the database, p�c j yi;b��sl ; s

h
l �, is

calculated. Then, the case is assigned to the cluster where
the maximum of the posterior probability distribution of C
is reached. We use this relaxed version in our experiments
of Section 4.

To completely specify the BS-EM algorithm, we have to
decide on the structural search procedure (step 2 in Fig. 2).
The usual approach is to perform a greedy hill-climbing
search over CGN structures considering all possible
additions, removals, and reversals of a single arc at each
point in the search. This structural search procedure is
desirable as it exploits the decomposition properties of
CGNs and the factorization properties of the Bayesian score
for complete data. However, any structural search proce-
dure that exploits these properties can be used.

The log marginal likelihood of the expected complete data,
log ��d j sh�, is usually chosen as the score to guide the
structural search. We make use of it in our experiments.
According to [15], under the assumptions that 1) the
database restricted to the cluster variable C, dC , is a
multinomial sample, 2) the database d is complete, and
3) the parameters of the multinomial distribution of C are

independent and follow a Dirichlet distribution; we have
that:

� d j shÿ � �YN
l�1

� xl j x1; . . . ;xlÿ1; s
h

ÿ �
�
YN
l�1

p cl j x1; . . . ;xlÿ1; s
h

ÿ �
f yl j cl;x1; . . . ;xlÿ1; s

h
ÿ �

� p dC j shÿ �YN
l�1

f yl j cl;y1; . . . ;ylÿ1; s
h

ÿ �
� p dC j shÿ � Y

c2V al�C�
fc dY; c j shÿ �

;

�6�
where dY; c is the database d restricted to the continuous
variables Y and to cases where C � c, and V al�C� is the set
of values that the cluster variable C can take. The term
p�dC j sh� corresponds to the marginal likelihood of a trivial
Bayesian network having only a single node C. It can be
calculated in closed form under reasonable assumptions
according to [5]. Moreover, each term of the form
fc�dY; c j sh�, for all c 2 V al�C�, represents the marginal
likelihood of a domain containing only continuous variables
under the assumption that the continuous data is sampled
from a multivariate normal distribution. Then, these terms
can be evaluated in factorable closed form under some
reasonable assumptions according to [15], [16], [19].

3 AUTOMATIC DIMENSIONALITY REDUCTION IN

UNSUPERVISED LEARNING OF CGNS

This section is devoted to the detailed presentation of a new
automatic dimensionality reduction scheme applied to
unsupervised learning of CGNs. The section starts with
an introductory revision on the general problem of feature
selection and a brief discussion on some of the problems
that appear when adapting supervised feature selection to
the unsupervised paradigm.

3.1 From Supervised to Unsupervised Feature
Selection

In many data analysis applications, the size of the data can
be large. The largeness can be due to an excessive number
of features, the huge number of instances, or both. For
learning algorithms to work efficiently and even sometimes
effectively, one may need to reduce the data size. Feature
selection has proven to be a valuable technique to achieve
such a reduction of the dimensionality of the data by
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selecting a subset of features on which to focus the attention
in the subsequent learning process.

In its general form, feature selection is considered a
problem of searching for an optimal subset of the original
features according to a certain criterion [3], [23], [28]. The
criterion specifies the details of measuring the goodness of
feature subsets as well as the relevance of each feature. The
choice of a criterion is influenced by the purpose of feature
selection. However, what is shared by the different purposes
is the desire of improving the performance of the subsequent
learning algorithm usually in terms of the speed of learning,
the predictive ability of the learned models, and/or the
comprehensibility of the learned models.

Roughly speaking, feature selection involves an algo-
rithm to explore the space of potential feature subsets and
an evaluation function to measure the quality of these
feature subsets. Since the space of all feature subsets of
n features has size 2n, feature selection mechanisms
typically perform a nonexhaustive search. One of the most
popular techniques is the use of a simple hill-climbing
search known as sequential selection which may be either
forward or backward [3], [23], [28]. In the former, the search
starts with an empty set of selected features and, at each
time, it adds the best feature among unselected ones
according to the evaluation function. The process stops
when no further improvement can be made. Similarly,
backward sequential selection begins with the full set of
features and, at each time, it removes the worst feature
based on the evaluation function until no improvement is
found. As it is addressed by Doak [9], feature selection
mechanisms based on sequential selection can require a
great deal of processing time in databases with a large
number of features. Also, more complex and effective
search algorithms can be used to explore the space of
potential feature subsets. The main advantage of these
algorithms over sequential selection is that they avoid
getting stuck in local maxima by means of randomness.
However, these approaches usually involve a huge compu-
tational effort. One of the recent works in the field is
reported in [20]. In this paper, the authors propose
exploring the space of feature subsets according to an
evolutionary, population-based, randomized search algo-
rithm which represents an instance of the Estimation of
Distribution Algorithm (EDA) approach [24].

In [23], the authors distinguish two approaches to the
evaluation function for feature selection: wrapper and filter.
The wrapper approach implies a search for an optimal
feature subset tailored to the performance function of the
subsequent learning algorithm. That is, it considers feed-
back from the performance function of the particular
subsequent learning algorithm as part of the function to
evaluate feature subsets. On the other hand, the filter
approach relies on intrinsic properties of the data that are
presumed to affect the performance of the learning
algorithm but they are not a direct function of its
performance. Then, the filter approach tries to assess the
merits of the different feature subsets from the data,
ignoring the subsequent learning algorithm.

When applied to supervised learning, the main objective
of feature selection is the improvement of the classification

accuracy or class label predictive accuracy of the models
elicited by the subsequent learning algorithm considering
only the relevant features for the task. Independently of the
approach used, both filter and wrapper approaches require
the class labels to be present in the data in order to carry out
feature selection. Filter approaches evaluate feature subsets
usually by assessing the correlation of every feature with
the class label by using different measures [3], [28]. On the
other hand, wrapper approaches rely on the performance of
the learning algorithm itself by measuring the classification
accuracy on a validation set to evaluate the goodness of the
different feature subsets [3], [23], [28]. There is some
evidence from supervised feature selection research that
wrapper approaches outperform filter approaches [21].

Although feature selection is a central problem in data
analysis as suggested by the growing amount of research in
this area, the vast majority of the research has been carried
out under the supervised learning paradigm (supervised
feature selection), paying little attention to unsupervised
learning (unsupervised feature selection). Only a few works
exist addressing the latter problem. In [6], the authors
present a method to rank features according to an
unsupervised entropy measure. Their algorithm works as
a filter approach plus a backward sequential selection
search. Devaney and Ram [8] propose a wrapper approach
combined with either a forward or a backward sequential
selection search to perform conceptual clustering. In [39],
Talavera introduces a filter approach combined with a
search in one step and a wrapper approach combined with
either a forward or a backward sequential selection search
as feature selection mechanisms in hierarchical clustering of
symbolic data. The filter approach uses the feature
dependence measure defined by Fisher [11]. Whereas the
performance criterion considered in [39] is the multiple
predictive accuracy measured by the average accuracy of
predicting the values of each feature present in the testing
data, [40] applies the mechanism comprised of a filter
approach and a search in one step presented in [39] to
feature selection in conceptual clustering of symbolic data
considering the class label predictive accuracy as perfor-
mance criterion.

In our opinion, two are the main problems to translate
supervised feature selection into unsupervised feature
selection. First, the absence of class labels reflecting the
membership for every case in the database that is inherent
to the unsupervised paradigm makes impossible the use of
the same evaluation functions as in supervised feature
selection. Second, there is not a standard accepted perfor-
mance task for unsupervised learning. Due to this lack of a
unified performance criterion, the meaning of optimal
feature subset may vary from task to task. A natural
solution to both problems is proposed in [39] by interpret-
ing the performance task of unsupervised learning as the
multiple predictive accuracy. This seems a reasonable
approach because it extends the standard accepted perfor-
mance task for supervised learning to unsupervised
learning. Whereas the former learning comprises the
prediction of only one feature, the class, from the knowl-
edge of many, the latter aims the prediction of many
features from the knowledge of many [12]. On the other
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hand, [6], [8], [40] evaluate their unsupervised feature
selection mechanisms by measuring the class label pre-
dictive accuracy of the learned models over the cases of a
testing set after having performed learning in a training set
where the class labels were masked out. The speed of
learning and the comprehensibility of the learned models
are also studied in [8], [39], although they are considered
less important performance criteria.

3.2 How Learning CGNs for Data Clustering
Benefits from Feature Selection

Our motivation to perform unsupervised feature selection
differs from the motivation of the previously referred papers
due to our distinct point of view over the data clustering
problem. When the learned models for data clustering are
primarily evaluated regarding their multiple or class label
predictive accuracy, as it occurs in [6], [8], [39], [40], feature
selection has proven to be a valuable technique for reducing
the dimensionality of the database where learning is
performed. This usually pursues an improvement of the
performance of the learned models considering only the
relevant features for the task. However, when the main goal of
data clustering, as it happens in this paper, is description
rather than prediction, the learned models must involve all
the features that the original database has in order to encode a
description of this database.

It is well-known that unsupervised learning of CGNs for
solving data clustering problems is a difficult and time
consuming task, even more so when focusing on descrip-
tion as all the original features are usually considered in the
learning process. With the aim to solve these handicaps, we
propose a framework where learning CGNs for data
clustering benefits from feature selection. The framework
is straightforward and consists of three steps: 1) identifica-
tion of the relevant features for learning, 2) unsupervised
learning of a CGN from the database restricted to the
relevant features, and 3) addition of the irrelevant features
to the learned CGN for obtaining an explanatory model for
the original database. Thus, feature selection is considered a
preprocessing step that should be accompanied by a
postprocessing step to achieve our objective. The postpro-
cessing step consists of the addition of every irrelevant
feature to the elicited model as conditionally independent
of the rest given the cluster variable.

To make the framework applicable for unsupervised
learning of CGNs, we should define relevance. However,
the meaning of relevance depends on the particular
purpose of dimensionality reduction due to the lack of a
unified performance criterion for data clustering. In our
concrete case, the objective of reducing the dimensionality
of the databases when learning CGNs for data clustering is
to decrease the cost of the learning process while still
obtaining good explanatory models for the original data.
The achievement of such a goal can be assessed by
comparing, in terms of explanatory power and runtime of
the learning process, a CGN learned from the given original
database and a CGN elicited when using dimensionality
reduction in the learning process.

Such an assessment of the achievement of our objective
leads us to make the following assumption on the considera-
tion of a feature as either relevant or irrelevant for the learning

process: In the absence of labels reflecting the cluster
membership of each case of the database, those features that
exhibit low correlation with the rest of the features can be
considered irrelevant for the learning process. Implicitly, this
assumption defines relevance according to our purpose to
perform dimensionality reduction. It is important to note that
the assumption is independent of any clustering of the data,
so, it can be readily applied without requiring a previous
clustering of the database.

The justification of the previous assumption is straight-
forward. Features low correlated with the rest are likely to
remain conditionally independent of the rest of the features
given the cluster variable when learning a CGN from the
original database. Thus, a CGN elicited from the original
database restricted to features highly correlated with the
rest is likely to encode the same set of conditional
dependence assertions as a CGN learned from the original
database. The parameters for the local probability density
functions of the features that appear in both CGNs should
be similar as well. Furthermore, if low correlated features
are added to that CGN elicited from the restricted database
as conditionally independent of the rest given the cluster
variable, then this final CGN is likely to encode the same set
of conditional dependence and independence assertions as
the CGN learned from the original data. Thus, the
explanatory power of both CGNs should be almost the
same as the models are likely to be very similar.

Some other works that have successfully made use of a
similar assumption are [11], [39], [40]. Although the three
works present the assumption in its general form, they only
validate it for conceptual clustering of symbolic data. Our
paper is the first, to our knowledge, that verifies it for
continuous domains.

3.2.1 Relevance Measure

In order to assess the relevance of Yi, i � 1; . . . ; n, for
learning, we propose evaluating the following simple and,
thus, efficient relevance measure:

Xn
j�1; j 6�i

ÿN log�1ÿ r2
ijjrest�

nÿ 1
; �7�

where n is the number of features in the database, N is the
number of cases in the database, and rijjrest is the sample
partial correlation of Yi and Yj adjusted for the remainder
variables. This last quantity can be expressed in terms of the
maximum-likelihood estimates of the elements of the
inverse variance matrix as rijjrest � ÿŵij�ŵiiŵjj�ÿ

1
2 [43].

Then, the relevance measure value for each feature Yi,
i � 1; . . . ; n, is calculated as the average likelihood ratio test
statistic for excluding an edge between Yi and any other
feature in a graphical Gaussian model [38]. This means that
those features likely to remain conditionally independent of
the rest given the cluster variable as learning progresses
receive low relevance measure values. Thus, this measure
shows a reasonable behavior according to our definition of
relevance.

3.2.2 Relevance Threshold

After having calculated the relevance measure value for
every feature of the database, a decreasing relevance
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ranking of the features can be obtained. Now, we would
like to know how many of them are needed to perform
learning appropriately, that is, we would like to identify, in
the relevance ranking, the relevant features for the learning
process. If we knew that only k features were needed, we
could simply choose the first k features in our relevance
ranking, namely, those k features with the highest relevance
measure values. However, to have this kind of knowledge is
not at all usual. We propose a novel and automatic solution
for this problem.

The relevance measure value for each feature Yi,
i � 1; . . . ; n, can be interpreted as the average value of the
likelihood ratio test statistic for excluding a single edge
between Yi and any other feature in a graphical Gaussian
model. Thus, we propose the following heuristic: The
relevance threshold is calculated as the rejection region
boundary for an edge exclusion test in a graphical
Gaussian model for the likelihood ratio test statistic (see
[38] for details). This heuristic agrees with our purpose to
perform dimensionality reduction as it qualifies as irrele-
vant those features likely to remain conditionally indepen-
dent of the rest given the cluster variable as learning
progresses. As shown in [38], the distribution function of
the likelihood ratio test statistic is as follows:

F �x� � GX�x� ÿ 1

2
�2n� 1�x 1������

2�
p xÿ

1
2eÿ

1
2xNÿ1; �8�

where GX�x� is the distribution function of a X2
1 random

variable. Thus, for a 5 percent test, the rejection region
boundary (which is considered our relevance threshold) is
given by the resolution of the following equation:

0:95 � GX�x� ÿ 1

2
�2n� 1�x 1������

2�
p xÿ

1
2eÿ

1
2xNÿ1: �9�

By a simple manipulation, the resolution of the previous
equation turns into finding the root of an equation. The
Newton-Raphson method, used in our experiments, is only
an example of suitable methods for solving the equation.
Only those features that exhibit relevance measure values

higher than the relevance threshold are qualified as relevant
for the learning process. The rest of the features are treated
as irrelevant.

3.2.3 Fitting Automatic Dimensionality Reduction

into Learning

In this section, we present how to fit our automatic
dimensionality reduction scheme into the BS-EM algorithm
under the general framework previously introduced. How-
ever, it should be noticed that our scheme is not coupled to
any particular learning algorithm and it could be adapted to
most of them.

Fig. 3 shows that, after the preprocessing step that consists
of our automatic dimensionality reduction scheme, the BS-
EM algorithm is applied as usual but restricting the original
database to the relevant features, YRel, and the hidden cluster
variableC. That is, the database where learning is performed
consists of N cases, dRel � fxRel1 ; . . . ;xRelN g, where every case
is represented by an assignment to the relevant features. So,
there are �r� 1�N random variables that describe the
database, where r is the number of relevant features
(r � jYRelj). We denote the set of observed variables
restricted to the relevant features and the set of hidden
variables restricted to the relevant features by ORel �jORelj �
rN� and H �jHj � N�, respectively. Obviously, in Fig. 3, sRell

represents the model structure only when the relevant
features are considered in the learning process, and sRell

h

denotes the hypothesis that the conditional (in)dependence
assertions implied by sRell hold in the true joint probability
density function of YRel.

Learning ends with the postprocessing step that com-
prises the addition of every irrelevant feature to the model
returned by the BS-EM algorithm as conditionally indepen-
dent of the rest given the cluster variable. This results in an
explanatory model for the original database. The local
parameters for those nodes of the final model associated to
the irrelevant features can be easily estimated after
completing the original database d with the last completion
of the restricted database dRel.
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Fig. 3. A schematic of how to fit our automatic dimensionality reduction scheme into the BS-EM algorithm under the framework presented.



4 EXPERIMENTAL EVALUATION

This section is dedicated to showing the ability of our
proposal to perform an automatic dimensionality reduction
that accelerates unsupervised learning of CGNs without
degrading the explanatory power of the final models. In
order to reach such a conclusion, we perform two sorts of
experiments in synthetic and real-world databases. The first
evaluates the relevance measure introduced in Section 3.2.1
as a means to assess the relevance of the features for the
learning process. The second evaluates the ability of the
relevance threshold calculated as it appears in Section 3.2.2
to automatically distinguish between relevant and irrele-
vant features for learning.

As we have addressed, we use the BS-EM algorithm as our
unsupervised learning algorithm. In the current experiments,
we limit the BS-EM algorithm to learning Tree Augmented
Naive Bayes (TANB) models [14], [30], [36]. This is a sensible
and usual decision to reduce the otherwise large search space
of CGNs. Moreover, this allows us to efficiently solve data
clustering problems of considerable size as it is well-known
the difficulty involved in learning densely connected CGNs
from large databases and the painfully slow probabilistic
inference when working with these.

TANB models constitute a class of compromise CGNs
defined by the following condition: Predictive attributes
may have, at the most, one other predictive attribute as a
parent. Fig. 4 shows an example of a TANB model
structure. TANB models are CGNs where an interesting
trade-off between efficiency and effectiveness is achieved,
that is, a balance between the cost of the learning process
and the quality of the learned CGNs [36].

4.1 Databases Involved

Two synthetic and two real-world databases are involved in
our experimental evaluation. The knowledge of the CGNs
used to generate the synthetic databases allows us to assess
accurately the achievement of our objectives. Besides, the
real-world databases provide us with a more realistic
evaluation framework.

To obtain the two synthetic databases, we constructed
two TANB models of different complexity to be sampled.
The first TANB model involved 25 predictive continuous
attributes and one three-valued cluster variable. The first 15
of the 25 predictive attributes were relevant and the rest
irrelevant. The 14 arcs between the relevant attributes were
randomly chosen. The unconditional mean of every
relevant attribute was fixed to zero for the first value of
the cluster variable, four for the second, and eight for the
third. The linear coefficients were randomly generated in

the interval �ÿ1; 1� and the conditional variances were fixed
to one (see (5)). The multinomial distribution for the cluster
variable C was uniform. Every irrelevant attribute followed
a univariate normal distribution with mean zero and
variance one for each of the three values of the cluster
variable.

The second TANB model involved 30 predictive con-
tinuous attributes and one three-valued cluster variable.
The first 15 of the 30 predictive attributes were relevant and
the rest irrelevant. The 14 arcs between the relevant
attributes were randomly chosen. The unconditional mean
of every relevant attribute was fixed to zero for the first
value of the cluster variable, four for the second, and eight
for the third. The linear coefficients were randomly
generated in the interval �ÿ1; 1�, and the conditional
variances were fixed to two (see (5)). The multinomial
distribution for the cluster variable C was uniform. Every
irrelevant attribute followed a univariate normal distribu-
tion with mean zero and variance five for each of the three
values of the cluster variable. This second model was
considered more complex than the first due to the higher
degree of overlapping between the probability density
functions of each of the clusters and the higher number of
irrelevant attributes.

From each of these two TANB models, we sampled
4,000 cases for the learning databases and 1,000 cases for the
testing databases. In the forthcoming, the learning data-
bases sampled from these two TANB models will be
referred to as synthetic1 and synthetic2, respectively.
Obviously, we discarded all the entries corresponding to
the cluster variable for the two learning databases and the
two testing databases.

Another source of data for our evaluation consisted of two
well-known real-world databases from the UCI repository of
Machine Learning databases [33]:

. Waveform which is an artificial database consisting
of 40 predictive features. The last 19 predictive
attributes are noise attributes which turn out to be
irrelevant for describing the underlying three
clusters. We used the data set generator from the
UCI repository to obtain 4,000 cases for learning
and 1,000 cases for testing.

. Pima which is a real database containing 768 cases
and eight predictive features. There are two clusters.
We used the first 700 cases for learning and the last
68 cases for testing.

The first database was chosen due to our interest in working
with databases of considerable size (thousands of cases and
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Fig. 4. Example of a TANB model structure with seven predictive attributes.



tens of features). In addition to this, it represented an
opportunity to evaluate the effectiveness of our approach as
the true irrelevant features were known beforehand. The
second database, considerably shorter in both the number
of cases and the number of features, was chosen to get
feedback on the scalability of our dimensionality reduction
scheme. Obviously, we deleted all the cluster entries for the
two learning databases and the two testing databases.

4.2 Performance Criteria

There exist two essential purposes for focusing on the
explanatory power or generalizability of the learned models.
The first purpose is to summarize the given databases into
the learned models. The second purpose is to elicit models
which are able to predict unseen instances [28]. Thus, the
explanatory power of the learned CGNs should be assessed
by evaluating the achievement of both purposes. The log
marginal likelihood, sc_final, and the multiple predictive
accuracy, L(test), of the learned CGNs seem to be sensible
performance measures for the first and the second purpose,
respectively. The multiple predictive accuracy is measured
as the logarithmic scoring rule of Good [17]:

L�test� � 1

jdtestj
X

y2dtest

log f�y j ��s; s
h�; �10�

where dtest is a set of test cases and jdtestj is the number of
test cases. The higher the value for this criterion, the higher
the multiple predictive accuracy of the learned CGNs. Note
that L(test) is not the primary performance measure but one
of the two measures to assess the explanatory power of the
learned CGNs. When focusing on description, L(test) is
extremely necessary to detect models that, suffering from
overfitting, have high sc_final values although they are not
able to generalize the learning data to unseen instances.

It should be noted that (10) represents a kind of
probabilistic approach to the standard multiple predictive
accuracy understanding the latter as the average accuracy of
predicting the value of each feature present in the testing
data. When the data clustering problem is considered as the
inference of a generalized joint probability density function
from the learning data via unsupervised learning of a CGN,
the probabilistic approach presented in (10) is more
appropriate than the standard multiple predictive accuracy.
This can be illustrated with a simple example. Let us
imagine two different CGNs that exhibit the same standard
multiple predictive accuracy but different multiple predic-
tive accuracy measured as the logarithmic scoring rule of
Good. This would reflect that the generalized joint prob-
ability density functions encoded by the two CGNs are
different. Moreover, this would imply that one of the two
CGNs generalizes the learning data to unseen instances
better (i.e., the likelihood of the unseen instances is higher)
than the other, although their standard multiple predictive
accuracy is the same. Thus, the standard multiple predictive
accuracy would not be an appropriate performance criterion
in this context as it would be unable to distinguish between
these two models. Some other works that have made use of
the logarithmic scoring rule of Good to assess the multiple
predictive accuracy are [31], [34], [36], [37], [41].

The runtime of the overall learning process, runtime, is
also considered as valuable information. Every runtime
reported includes the runtimes of the preprocessing step
(dimensionality reduction), learning algorithm, and post-
processing step (addition of the irrelevant features).

All the results reported are averaged over 10 indepen-
dent runs for the synthetic1, synthetic2, and waveform
databases, and over 50 independent runs for the pima
database due to its shorter size. The experiments are run on
a Pentium 366 MHz computer.

4.3 Results: Relevance Ranking

Fig. 5 plots the relevance measure values for the features of
each of the four databases considered. Additionally, it
shows the relevance threshold (dashed line) for each
database. In the case of the synthetic databases, the 10 true
irrelevant features of the synthetic1 database and the 15 of
the synthetic2 database clearly appear with the lowest
relevance measure values.

In the case of the waveform database, it may be
interesting to compare the graph of Fig. 5 with other
graphs reported in [4], [40], [42] for the same database.
Caution should be used as a detailed comparison is not
advisable due to the fact that relevance is defined in
different ways depending on the particular purpose of each
of these works. Moreover, the work by Talavera [40] is
limited to conceptual clustering of symbolic data, then, the
original waveform database was previously discretized.
However, it is noticeable that the 19 true irrelevant features
appear plotted with low relevance values in the four
graphs. Although the shape of the graphs restricted to the
21 relevant features varies for the three works reported ([4],
[40], [42]), these agree with our graph and consider the first
and last few of these relevant features less important than
the rest of the 21. The shape of our graph is slightly closer to
those that appear in [4], [42] than to the one plotted in [40].

Then, we can conclude that the relevance measure
proposed exhibits a desirable behavior for the databases
where the true irrelevant features are known as it clearly
assigns low relevance values to them. The following section
evaluates if these values are low enough to automatically
distinguish between relevant and irrelevant features
through the calculation of a relevance threshold.

Fig. 6 shows the log marginal likelihood (sc_final) and
multiple predictive accuracy (L(test)) of the final CGNs for
the four databases considered as functions of the number of
features selected as relevant for learning. In addition to this,
Fig. 7 reports on the runtime needed to learn the final CGNs
as a function of the number of features selected as relevant
for learning. The selection of k features as relevant means
the selection of the k first features of the decreasing
relevance ranking obtained for the features of each concrete
database according to their relevance measure values. Thus,
in this first part of the experimental evaluation, we do not
perform an automatic dimensionality reduction. Instead,
we aim to study performance as a function of the number of
features involved in learning. This allows us to evaluate the
ability of our relevance measure to assess the relevance of
the features for the learning process.

In general terms, Fig. 6 confirms that our relevance
measure is able to induce an effective decreasing relevance
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ranking of the features of each database considered. That is,
the addition of the features that have low relevance
measure values (last features of the rankings) does not
imply a significant increase in the quality of the final
models, even in some cases, it hurts the explanatory power.
Thus, this figure confirms that the assumption that low
correlated features are irrelevant for the learning process
works very well on the continuous domains considered. On
the other hand, the addition of these irrelevant features
tends to increase the cost of the learning process measured
as runtime (see Fig. 7).

Particularly interesting are the results for the synthetic
databases where the original models are known. The
selection of true irrelevant features to take part in learning
does not produce better models but increases the runtime of
the learning process. Also, it is known that the last 19 of the
40 features of the waveform database are true irrelevant
features. According to the relevance measure values for the
features of the waveform database (see Fig. 5), all the 19 true
irrelevant features would appear in the last 21 positions of
the decreasing relevance ranking. Furthermore, it can be
appreciated from Fig. 6 that the addition of these
19 irrelevant features does not significantly increase the
explanatory power of the final CGNs. The results obtained
for the pima database, where there is no knowledge on the
existence of true irrelevant features, share the fact that using
all the features in the learning process degrades the quality
of the final models as well as makes the learning process
slower. Thus, the explanatory power of the final CGNs
appears to be not monotonic with respect to the addition of
features as relevant for learning. Hence, the need for
automatic tools for discovering irrelevant features that
may degrade the effectiveness and enlarge the runtime of
learning.

4.4 Results: Automatic Dimensionality Reduction

Fig. 5 shows the relevance threshold (dashed line) calcu-
lated as it appears in Section 3.2.2 for each of the databases
considered. Only those features that exhibit relevance
measure values higher than the relevance threshold are
qualified as relevant. The rest of the features are considered
irrelevant for learning.

It is interesting to notice that, for the two synthetic

databases, all the true irrelevant features are identified

independently of the complexity of the sampled model. It

should be remembered that the synthetic2 database was

sampled from a model more complex than the one used to

generate the synthetic1 database. The results obtained for

the waveform database are also specially appealing as the

19 true irrelevant features are correctly identified. More-

over, our scheme considers eight features of the remainder

21 features also as irrelevant. This appears to be a sensible

decision as these eight features correspond to the first four

and the last four of the 21 relevant features. Remember that

[4], [40], [42] agree in this point: The first and last few of the

21 relevant features are less important than the rest of

relevant features.
Table 1 compares, for the four databases considered, the

performance achieved when no dimensionality reduction is
carried out and the performance achieved when our auto-
matic dimensionality reduction scheme is applied to learn
CGNs. The column relevant indicates the number of relevant
features automatically identified by our scheme for each
database (see Fig. 5). It clearly appears from the table that our
scheme is able to automatically set up a relevance threshold
that induces a saving in runtime but still obtains good
explanatory models. The application of our scheme as a
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Fig. 5. Relevance measure values for the features of the databases used. The dashed lines correspond to the relevance thresholds.



preprocessing step for the BS-EM algorithm (Fig. 3) provides

us with a saving of runtime over the original BS-EM algorithm

that achieves 22 percent for the synthetic1 database and 30

percent for the synthetic2 database. Moreover, the explana-

tory power of the CGNs elicited from the original synthetic

databases and the CGNs obtained when using the automatic

dimensionality reduction scheme is exactly the same.

For the waveform database, our automatic dimensionality

reduction scheme proposes a reduction of the number of

features of 68 percent: Only 13 out of the 40 original features

are considered relevant. This reduction induces a gain in

terms of runtime of 58 percent, whereas our scheme does not

significantly hurt the quality of the learned models. On the

other hand, the CGNs learned with the help of our automatic
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Fig. 6. log marginal likelihood (sc_final) and multiple predictive accuracy (L(test)) of the final CGNs for the databases used as functions of the

number of features selected as relevant from a decreasing relevance ranking.



dimensionality reduction scheme from the pima database

exhibit, on average, a more desirable behavior than the CGNs

elicited from the original pima database: Higher log marginal

likelihood and multiple predictive accuracy, whereas the

runtime of the learning process is shortened.

5 CONCLUSIONS

The main contribution of this paper is twofold. First, the

proposal of a novel automatic scheme to perform

unsupervised dimensionality reduction comprised of 1) a

simple and efficient measure to assess the relevance of

every feature for the learning process and 2) a heuristic to

calculate a relevance threshold to automatically distinguish

between relevant and irrelevant features. Second, to

present a framework where unsupervised learning of

CGNs benefits from our proposed scheme in order to

obtain models that describe the original databases. This

framework proposes performing learning taking into

account only the relevant features identified by the

automatic dimensionality reduction scheme presented.

Then, every irrelevant feature is incorporated into the

learned model in order to obtain an explanatory CGN for

the original database.
Our experimental results for synthetic and real-world

domains have suggested great advantages derived from the

use of our automatic dimensionality reduction scheme in

unsupervised learning of CGNs: A huge decrease of the

runtime of the learning process and an achievement of final

models that appear to be as good as and, sometimes, even

better than the models obtained using all the features in the

learning process. Additionally, the experimental results

have proven that the assumption that we made, once

relevance was defined according to our purpose to perform
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Fig. 7. Runtime needed to learn the final CGNs for the databases used as a function of the number of features selected as relevant from a

decreasing relevance ranking.

TABLE 1
Comparison of the Performance Achieved when Learning CGNs from the Original Databases

and when Our Automatic Dimensionality Reduction Scheme Is Applied



dimensionality reduction, works fairly well in the contin-
uous domains considered.

This paper has primarily focused on the gain in
efficiency without degrading the explanatory power of the
final models derived from the use of the referred scheme as
a preprocessing for the learning process. However, it is
worth noticing that the identification of the relevant and
irrelevant features for the learning process allows us to
reach a better comprehensibility and readability of the
problem domains and the elicited models.

Few works have addressed the problem of unsupervised
feature selection as a preprocessing step [6], [8], [39], [40].
However, all of them differ from our work. Whereas we
focus on the description of the original database, [6], [8],
[40] are interested in the class label predictive accuracy and
[39] in the multiple predictive accuracy. This impossibilities
a fair comparison between these different approaches.
Moreover, our automatic dimensionality reduction scheme
offers a series of advantages over the other existing
mechanisms. In addition to its simplicity and efficiency,
our scheme is not coupled to any particular learning
algorithm and it could be adapted to most of them. On
the other hand, the existing unsupervised feature selection
mechanisms based on wrapper approaches are tailored to
the performance criterion of the particular subsequent
learning algorithm (see [8], [39]) and, thus, usually require
a great deal of processing time for large databases.
Furthermore, [6], [40] propose feature selection mechanisms
based on filter approaches that only provide the user with a
ranking of the features leaving open the problem of
determining how many features should be used to perform
a proper learning. Our scheme is able to automatically
distinguish between relevant and irrelevant features in the
relevance ranking. Then, one line of future research could
be the extension of our current contribution to categorical
data in order to overcome the problem of determining the
number of features to be used by the subsequent learning
algorithm.

We are aware that the contribution presented in this paper
is unable to deal properly with domains where redundant
features exist (i.e., features whose values can be exactly
determined from the rest of the features). The reason is that
the relevance measure introduced in Section 3.2.1 scores each
feature separately instead of as groups of features. Thus,
redundant features would be considered relevant although
they would not provide the learning process with additional
information over the true relevant features. To detect these
features is necessary because they have an effect on the
runtime of the learning process. One of the lines of research
that we are currently exploring is concerned with the
extension of the general framework depicted in this paper
to the case where redundant features exist. Our current work
is focused on the derivation of a new relevance measure to
assess the gain in relevance of each feature in relation to the
features considered relevant so far.
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