
Abstract Feature selection aims to choose a feature

subset that has the most discriminative information

from the original feature set. In practical cases, it is

preferable to select a feature subset that is universally

effective for any kind of classifier because there is no

underlying information about a given dataset. Such a

trial is called classifier-independent feature selection.

We took notice of Novovičová et al.’s study as a clas-

sifier-independent feature selection method. However,

the number of features have to be selected beforehand

in their method. It is more desirable to determine a

feature subset size automatically so as to remove only

garbage features. In this study, we propose a divergence

criterion on the basis of Novovičová et al.’s method.
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1 Introduction

In pattern recognition, the goal of feature selection is

to find a feature subset that has the most discriminative

information from a given set of candidate features. The

main benefits of feature selection are (i) to reduce of

the measurement cost and storage requirements, (ii) to

cope with the degradation of classification perfor-

mance due to the finiteness of training sample sets, (iii)

to reduce training and utilization time and (iv) to

facilitate data visualization and data understanding.

Algorithms of feature selection can be divided into

two groups. One group is called classifier-specific feature

selection (CSFS) or wrapper approach. CSFS selects a

feature subset that maximizes the value of a given cri-

terion function such as the estimated recognition rate

for a specified classifier. A large number of CSFS

methods have been proposed in the field of pattern

recognition and machine learning [1–8], and there have

been some comparative studies on CSFS algorithms for

large-scale feature selection problems [9–11]. The Filter

approach [12–16] does not assume any classifier but

needs a measure for evaluating a feature subset such as

contextual merit [12], correlation [13, 14] and mutual

information [15, 16]. There have also been some studies

in which those measures have been compared in terms

of the performance of practical classifiers [17–20].

However, once a specific measure is assumed, it implies

the existence of a hypothetical classifier to which

the metric works best. Hence, we regard such filter

approaches as belonging to the CSFS group.

The other group is called classifier-independent fea-

ture selection (CIFS). In CIFS, we seek a feature subset

that is effective for any classifier. To do this, we find a

feature subset that maximizes the separation measure

between class-conditional probability densities. This

means that we have to estimate the class-conditional

probability densities as precisely as possible and

implicitly consider the Bayes classifier that achieves the

minimal expected error rate. In other words, CIFS is
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equivalent to CSFS for the Bayes classifier, and the goal

of CIFS is to remove garbage features that have no

discriminative information for any kind of classifier. To

perform CIFS, we can choose one of two approaches on

the basis of training samples: (1) try to estimate the

class-conditional density of each class so that we can

have a quasi Bayes classifier or (2) try to estimate the

Bayes classification boundary. The first approach was

used in the Novovičová et al.’s work [21] and the sec-

ond approach was used in the subclass method [22], RFI

[23] and PRISM [17]. The subclass method selects a

feature subset on the basis of hyper-rectangles that

approximate the class boundary. RFI measures the

degree of separation between class-conditional joint

feature distributions, and a feature subset is selected by

ranking features by their RFI values. PRISM evaluates

a feature subset on the basis of the class separability

called neighborhood separability which approximates

the decision boundaries. Among these CIFS ap-

proaches, we noticed that the work by Novovičová

et al. is the most straightforward, and we therefore

decided to use it as the basis. Hereafter, we denote their

method by ‘‘DIV’’ because it uses a Kullback-Leibler J-

divergence criterion. In DIV, the class-conditional

probability densities are firstly estimated by axis-par-

allel Gaussian mixtures, and then a feature subset is

selected according to the J-divergence values [24] be-

tween the estimated densities. The problem when we

use DIV as a CIFS method is that we have to determine

the number of features to be selected beforehand. This

is not satisfactory, because it is desirable to remove the

garbage features regardless of the feature subset size.

In Sect. 2, the algorithm of DIV is explained first. In

Sect. 3, we propose a divergence criterion to determine

the number of features automatically so as to remove

only garbage features on the basis of DIV. In Sect. 4, the

proposed criterion is applied to one synthetic and nine

real-world datasets to investigate the effectiveness of the

proposed criterion. Moreover, we try two-stage feature

selection, in which CIFS is carried out first and then

CSFS is executed, to reveal the effectiveness of such a

trial. The effectiveness of the proposed criterion is dis-

cussed in Sect. 5, and conclusions are given in Sect. 6.

2 Novovičová et al.’s work

2.1 Estimation of class-conditional probability

densities

In many parametric approaches for density estimation,

overly simple assumptions about the given data tend to

be used. For more flexibility, a mixture model is used in

DIV [21]. The following Gaussian mixture model is

postulated for the class-conditional probability density

function of class x:

pðxjxÞ ¼
XMx

m¼1

ax
mpðxjm;xÞ

¼
XMx

m¼1

ax
m

YD

i¼1

f ðxijbx
miÞ

/i f0ðxijb0iÞ1�/i

n o
;

Ud ¼ ð/1;/2; . . . ;/DÞ 2 f0; 1gD:

ð1Þ

Here, ax
m

PMx
m¼1 ax

m ¼ 1
� �

is a mixing weight, Mx is the

number of components, and D is the number of features

of given data. In addition, Ud is a parameter to indicate a

feature subset that consists of d 1’s and (D – d) 0’s,

where /i = 1 (i = 1,2,...,D) means that the ith feature is

used and /i = 0 means that the ith feature is not used.

Also, f is a Gaussian with mean lx
mi and variance rx

mi,

which are combined into bx
mi ¼ ðlx

mi; r
x
miÞ, and f0 is the

background density common to all classes with mean l0i

and variance r0i which is specified by b0i = (l0i, r0i). In

Eq. (1), the limitation due to the assumption of feature

independence can be absorbed by mixing the necessary

number of components. That is, we can estimate any

density as precisely as possible by mixing many compo-

nents. The parameters b0i, bx
mi and ax

m are calculated by

the EM algorithm [25]. In Ref. [21], determination of the

number of components Mx is not described. Therefore,

we rely on MDL criterion [26] to determine the number

of components Mx in each class. The background density

f0 is only used in the construction of a sub-optimal Ba-

yes classifier and thus can be ignored for the feature

selection procedure. Therefore, we estimate the class-

conditional probability density function without f0.

2.2 Evaluation of a feature subset

In this section, we will explain how we evaluate the

importance of features on the basis of the DIV method.

A feature subset Ud is evaluated using J-divergence

between densities of two classes defined by

JðUdÞ ¼
X

x2X
PðxÞEx log

pðxjxÞ
pðxjX� xÞ

� �
; ð2Þ

where Ud is embedded into p(Æ). We consider only two

classes W = {x1,x2} in the following, but it is naturally

extended to multi-class problems in the formula (2) by

taking into account the two hypothetical classes of x
and W – x. Therefore, the abbreviation W – x means

the class opposite to x. To calculate this value, we need

the log likelihood
P

x2x log pðxjxÞ for each x. Thus, let
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us consider only one class by ignoring x. By Bayes

theorem, for any component m, we have

log pðxÞ ¼ log
pðxjmÞpðmÞ

pðmjxÞ ¼ log
pðmÞ

pðmjxÞ þ log pðxjmÞ:

Here, we notice that only the second term is directly

related to the density form of p(x|m). Next, we con-

sider the membership value p(m|x) of sample x to

component m and the expected probability mass

v(x|m) = p(m|x)/
P

y p(m|y) of x given m, as we do in

the EM algorithm. Also, we assume that each sample x

arises from a certain component m. Then according to

the expectation step of the EM algorithm and the

feature-independence assumption, we obtain the ex-

pected log likelihood with N samples by

Eflog pðxÞg ’ 1

N

X

x

log pðxÞ

¼ 1

N

X

x

X

m

pðmjxÞ log pðxÞ

¼ 1

N

X

x

X

m

NâmvðxjmÞ log pðxÞ

*Nâm,

X

y

pðmjyÞ
 !

¼
X

x

X

m

âmvðxjmÞ

log
pðmÞ

pðmjxÞ þ log pðxjmÞ
� �

¼
X

x

X

m

âmvðxjmÞ

log
pðmÞ

pðmjxÞ þ
X

i

/i log f ðxijb̂miÞ
( )

: ð3Þ

Therefore, by (3) and by adding class symbol x, the

value of J-divergence in (2) is estimated as

JðUdÞ ¼
X

x2X
PðxÞExflog pðxjxÞ � log pðxjX� xÞg

¼
X

x2X
PðxÞ

X

x2x

XMx

m¼1

âx
mvðxjm;xÞ

(

�
XD

i¼1

/i log f xijb̂x
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� � !

�
XMX�x
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âX�x
m0 vðxjm0;X� xÞ

�
XD
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/i log f xijb̂X�x
m0i

� � !)
þ C

¼
XD

i¼1

/iJi þ C; ð4Þ

where

Ji ¼
X

x2X
PðxÞ

X

x2x

XMx

m¼1

âx
mvðxjm;xÞ log f ðxijb̂x

miÞ
(

�
XMX�x

m0¼1

âX�x
m0 vðxjm0;X� xÞ log f xijb̂X�x

m0i

� �)
:

ð5Þ

In (4), we put all terms that work for every feature in

common into a constant C. For example, the proba-

bility of a component, pðmÞ � âx
m; affects evenly to

every feature. After all, we can measure the impor-

tance of the ith feature by Ji, which is a weighted

version of the original estimated divergence

1=Nx
P

x log f ðxijbx
miÞ=f ðxijbX�x

m0i Þ
� �

over any pair of m

(for class x) and m¢ (for class W – x). The parameters

(am
x , bmi

x ) are estimated by

âx
m ¼

1

Nx

X

x2x
pðmjx;xÞ;

b̂x
mi ¼ arg max

b

X

x2x
vðxjm;xÞ log f ðxijbÞ

( )
:

Here, Nx is the number of samples in x. Once

we have in the decreasing order JðUDÞ ¼
Ji1 þ Ji2 þ � � � þ JiDðJij � Jijþ1

Þ by dropping a constant C,

it suffices to choose the indices of the first d terms for a

given d for obtaining Ud: In DIV, starting from

UD ¼ ð1; 1; . . . ; 1Þ of D 1’s, we repeat EM steps until

the parameters (am
x , bm

x) converge and Ud becomes

unique for a given d. If Ud does not converge, then

repeat the EM steps with the current Ud: This makes

sense because JðUdÞ can be affected by C other

than the current Ud in (4). However, in practice, it is

sufficient to obtain Ud after one convergence of EM

steps.

3 Feature selection with divergence criterion

In DIV, the size d of a feature subset to be selected has

to be given in advance by the user. However, in prac-

tice, it is difficult to determine the correct size d

without knowing the background information of the

given data. In the light of CIFS, it is preferable to find

the size automatically as a result of removing all the

garbage features. In this section, we propose a diver-

gence criterion so as to achieve this goal. Hereafter,

DIV incorporated with such an automatic selection

mechanism of the number of features is abbreviated as

‘‘MDIV’’.
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3.1 Divergence-based backward feature selection

The most important point of CIFS is to leave only

informative features, in other words, to remove all

garbage features. To do this, we obey Kudo and

Sklansky’s suggestion [27] that a criterion curve is ex-

pected to simulate the performance of a given feature

subset in each size. Then we choose the smallest fea-

ture subset that keeps almost the same criterion value

as that of the full feature set.

To achieve this, we take a sequential backward

procedure. Since the best feature subset of size d is

obtained by {i1,i2,...,id} for Ji1 � Ji2 � � � � � Jid ; we re-

move the worst feature iD, then iD-1, and so on. For a

specific degradation parameter h (0 < h < 1), we stop

the procedure when
Pd�1

j¼1 Jij\ð1� hÞ
PD

j¼1 Jij is satis-

fied for the first time (Fig. 3b). It is preferable to

reconstruct the axis-parallel Gaussian mixture models

after the removal of one feature. However, as de-

scribed in [21], there are often cases in which the

ranking of features does not change after the first

evaluation of Ji (i = 1,2,...,D). Therefore, in MDIV, we

first construct a mixture model of some components in

(1) without the function f0 in each class through the

EM algorithm using all features. Then we evaluate the

importance of individual features in the J-divergence

criterion so that we can have a criterion curve JðUdÞ by

JðUdÞ ¼
Pd

j¼1 JijðJij � Jijþ1
Þ: Moreover, in MDIV, we

do not need initialization and updating of Ud owing to

this algorithm. To make this greedy algorithm work,

we have to confirm that ‘‘monotonicity’’ is satisfied in

our divergence-based criterion curve. Indeed, it is well

known that the divergence holds this property in the

set inclusion relation of feature subsets.

To quantify the degree of degradation of perfor-

mance, we introduce a degradation parameter, h. For

a given degradation value h, we find a feature subset

of size d by removing the worst-evaluated D – d

features in such a way that the remaining feature

subset still keeps JðUdÞ � ð1� hÞJðUDÞ: As for the

value of h, it is ideally desired to let it be zero. This

means that we want to remove only non-informative

(garbage) features. However, as a practical require-

ment, we are often requested to choose a smaller

subset at the expense of a small degree of perfor-

mance degradation. In our approach, such a demand

suggests to take a small but positive value of h.

Therefore, in this paper, we use two typical values:

h = 1% for removal of garbage features and h = 10%

for a practical demand.

3.2 Apparent J-divergence

If the number of training samples is sufficiently large,

the estimated distribution is expected to be close to the

true distribution. In that case, the estimated J-diver-

gence is also reliable. However, it is not so reliable

when the number of available samples is limited. For

example, in Fig. 1a, we can recognize separability to

some extent, although these points are generated ran-

domly according to the same distribution regardless of

classes. Indeed, if we estimate Gaussians for the two

classes separately, the means and the covariance

matrices differ (Fig. 1b). In such a case, J-divergence

also shows some amount of the difference against the

fact that the true J-divergence is zero. This phenomena

is generally observed in almost all modelings. Such an

apparency is also justified by the concept of VC

dimension [28], which tells us that up to a certain

number of samples we can recognize such an apparent

separability for any labelling of classes, though the

degree depends on the flexibility of the family of

-3
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-1
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 3

-3 -2 -1  0  1  2  3

(a) Two-class samples randomly
generated from the same distribution.

(b) Estimated parameters.
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Fig. 1 Apparent separability
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classifiers. In this study, we call this kind of apparency

in J-divergence apparent J-divergence.

To confirm the existence of apparent J-divergence,

we conducted a simple experiment. In this experiment,

we considered two classes that shared the same uni-

form distribution in [0, 1]d of d-dimensional space. In

this case, no feature has discriminative information and

it is expected that JðUdÞ takes a value of almost zero.

We investigated whether this was the case or not. The

number of training samples was the same for two

classes. A Gaussian mixture of (1) was used for the

estimation of this uniform distribution in each class.

We examined how the value of JðUdÞðUd ¼
ð1; 1; . . . ; 1ÞÞ changes as the number of features d in-

creases for several sizes of training samples. The

number of features was set to d = 2, 4, 8, 16, 32, 64, 128

and the total number of training samples was varied as

N = 50, 100, 200, 400, 800, 1,600. The results are shown

in Fig. 2.

In Fig. 2, a large degree of apparent J-divergence is

seen in a small number of training samples, and it is

also seen that the degree of apparent J-divergence is

almost proportional to the dimensionality d. From

these points, the apparent J-divergence can be

approximated by the following linear regression form:

�JðUdÞ ¼
a

N
� d: ð6Þ

To estimate a, we carried out regression analysis

using all of the obtained 42 ( = 7 · 6) points of

ðd=N; JðUdÞÞ at the same time. As a result, we obtained

a = 3.186. In Fig. 2, the regression lines of (6) using

a = 3.186 for N = 50, 100, 200, 400, 800, 1,600 are

shown.

It is possible to use the score 3.186/N as the degree

of apparent J-divergence of a single garbage feature for

a given N. However, we do not think that 3.186/N is

universally invariant for all kinds of distribution.

Therefore, we take a more straightforward approach

instead of using 3.186/N.

We assume that there exists at least one garbage

feature and that it can be found as the worst-evaluated

feature in the ranking of Ji (i = 1,2,...,D), namely, JiD of

the sequence Ji1 � Ji2 � � � � � JiD : Since it can be as-

sumed that every feature includes this degree of

apparent J-divergence, we estimate its true divergence

by subtracting JiD : Therefore, in the criterion curve, we

correct the criterion curve by

JðUdÞ  
Xd

j¼1

Jij � d� JiD ðd ¼ 1; 2; . . . ;DÞ: ð7Þ

Such an estimation of apparent J-divergence and a

modified criterion curve is shown in Fig. 3a. Here, we

notice that the estimated apparent divergence JiD in-

cludes implicitly the sample size N in itself. In this

study, the feature selection with the modification of J-

divergence is denoted as ‘‘MDIV’’. In MDIV, after

modification of the J-divergence value, we find size dh

on the basis of the modified J-divergence curve with

the h-degradation criterion (Fig. 3b). The algorithm of

MDIV is shown in Fig. 4.

4 Experiments

4.1 Effectiveness of considering apparent

separability

We used a synthetic friedman dataset [29] to investi-

gate the effectiveness of subtracting the amount of

apparent J-divergence. In the friedman dataset, there

are two classes, x1 and x2. The samples of x1 are

generated according to a Gaussian with a unit

covariance matrix and zero mean. The samples of x2

surround those of x1 in the first four features that are

distributed uniformly within a four-dimensional

spherical slab centered at the origin with an inner

radius of 3.5 and an outer radius of 4.0. The last six

features of x2 are distributed as a Gaussian with a

unit covariance matrix and zero mean. Therefore, the

best discriminative feature subset is the first four

features.

The number of total samples N was set to N = 10,

50, 100, 500, 1,000 and 5,000. We compared the se-

lected feature subsets between the criterion curve

subtracting apparent J-divergence (with correction)

and the criterion curve using the original accumulation
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Fig. 2 Experimental results of apparent J-divergence. The lines
are the regression lines of 3.186/N · d
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value (without correction). The number of components

in (1) was determined using the way described in

Sect. 2.1. The threshold h should be set to a small value

in order to remove only garbage features. Therefore, in

this study, the threshold h was taken by 1.0%. The

selected feature subsets are shown in Table 1. In

Table 1, it was confirmed that the divergence criterion

subtracted apparent J-divergence is better than that of

the case without subtraction.

4.2 Evaluation by recognition rates of classifiers

In this experiment, we compared the recognition rates

of many classifiers before and after the removal of

garbage features using the proposed divergence crite-

rion. If garbage features are removed properly, the

performance of classifiers is expected to be maintained

or improved. We examined whether this was actually

the case or not using seven practical classifiers in nine

real-world datasets taken from UCI machine learning

repository [30]. The nine real-world datasets are shown

in Table 2. The problems were divided into small-

scaled problems and large-scaled problems according

to the product of the sample size and the dimension-

ality D · N.

The seven classifiers used were the plug-in linear

classifier (LDF), the plug-in quadratic classifier (QDF),

the nearest neighbor classifier (1NN), a decision tree

classifier (C4.5), a hyper-rectangle classifier [31]

(SUB), a neural network classifier (NNC) and a sup-

port vector machine [32] with the linear kernel (SVM).

The software c4.5 [33] was used for a decision tree

classifier, and the program SVMTorch [34] was used

for the support vector machine classifier. In C4.5 and

SVM, we tuned the parameters for each dataset so as

to obtain the best classification performance. In C4.5,

such a parameter tuning did not show a significant

difference compared with the case using default values

Fig. 4 Algorithm of the proposed method

(a) (b)

Fig. 3 Modification of
J-divergence values and
choice of the number of
features with a degradation
parameter h in MDIV

Table 1 Effectiveness of the
correction by the apparent J-
divergence in MDIV with
h = 1.0% on friedman dataset

#Samples Without correction With correction

#Feature Selected #Feature Selected

10 10 1 2 3 4 5 6 7 8 9 10 8 1 2 3 4 5 6 7 8
50 7 1 2 3 4 7 9 10 7 1 2 3 4 7 9 10
100 8 1 2 3 4 5 7 9 10 7 1 2 3 4 5 7 9
500 5 1 2 3 4 6 4 1 2 3 4
1,000 4 1 2 3 4 4 1 2 3 4
5,000 4 1 2 3 4 4 1 2 3 4

132 Pattern Anal Applic (2006) 9:127–137
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for all of the datasets. Therefore, we used the default

parameters equipped with c4.5. In SVM, the margin

parameter C was chosen to attain the best performance

from 1,000.0, 100.0, 10.0, 1.0, 0.1, 0.01, and 0.001 (Ta-

ble 3). The iteration number was set to 1,000 in SUB.

The number of layers was three and the number of

units in the hidden layer was set to (number of fea-

tures + number of classes)/2 in NNC. The features

were normalized, and the number of components for

each class was determined by the method described in

Sect. 2.1. The threshold h was taken as 1.0 and 10.0%.

The recognition rates of seven classifiers were calcu-

lated by tenfold cross validation.

The number of improved classifiers and the size of

the selected feature subset are shown in Table 4. The

curves of recognition rates of classifiers and the crite-

rion curve in the waveform dataset are shown in Fig. 5.

In the waveform dataset, the last 19 features are known

to be garbage features [30], and the best size of the

feature subset is 21. The selected feature subset on

waveform dataset using h = 1.0 and 10.0% are shown

in Table 5. From Fig. 5, we see that the curves of

recognition rates in the waveform dataset showed a

flatness or a gently downward-slope after the selected

size using h = 1.0%. As shown in Table 4, the perfor-

mance of seven classifiers was improved compared

with the case in which all features were used with

h = 1.0%. On the other hand, for h = 10.0%, a little

smaller feature subsets were chosen at the expense of

the loss of discriminative information.

4.3 Evaluation in two-stage feature selection

In this experiment, the effectiveness of the proposed

method was evaluated in a two-stage feature selection

scheme [27]. In two-stage feature selection, we use a

CIFS method in the first step and then a CSFS method.

We expect that a better feature subset can be found

compared with the case in which CSFS is directly ap-

plied to the whole feature set as long as the same

computation time is allowed. This is because CSFS

takes longer than CIFS. We used the sequential

backward floating search (SBFS) [4] for CSFS. The

criterion in SBFS was taken as the recognition rate of

the nearest neighbor classifier with tenfold cross vali-

Table 2 Real-world datasets
used in the experiments

Problem scale
(D · N)

Name #Class #Feature
(D)

#Sample
(1st class,2nd class,...)

#Total
(N)

Small (<10K) Spect 2 44 40,40 80
Wpbc 2 30 47,151 198
Bupa 2 6 145,200 345

Large ( ‡ 10K) Wdbc 2 30 212,357 569
Tic-tac-toe 2 27 626,332 958
Sonar 2 60 97,111 208
Musk 2 166 269,207 476
Waveform 3 40 327,348,325 1,000
Mushroom 2 125 3488,2156 5,644

Table 3 The margin
parameter C of SVM using
the linear kernel

Margin(C) Dataset

1,000.0 Mushroom
100.0 Tic-tac-toe,

bupa
1.0 Musk
0.1 Spect, wdbc,

sonar,
waveform

0.01 Wpbc

Table 4 Number of improved
or maintained classifiers and
selected feature subset sizes

a c Is the number of
improved or maintained
classifiers, and c0 is the
number of classifiers used

Problem scale Dataset h = 1.0% h = 10.0%

c/c0
a dh/D c/c0

a dh/D

Small Spect 4/6 38/44 4/6 27/44
Wpbc 5/7 23/30 3/7 11/30
Bupa 4/7 5/6 4/7 4/6

Large Wdbc 7/7 27/30 7/7 21/30
Tic-tac-toe 4/7 22/27 2/7 15/27
Sonar 6/7 53/60 6/7 37/60
Musk 6/7 108/166 3/7 25/166
Waveform 7/7 18/40 7/7 14/40
Mushroom 6/7 27/125 2/7 14/125
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dation, and we tried to find the best feature subset that

attained the maximum recognition rate during the

feature subset search. In the first stage, we removed

garbage features by the proposed method with

h = 1.0%, and we applied SBFS to the selected feature

subsets in the second stage. This combined method is

denoted as MDIV(1%) + SBFS. For comparison, a

single SBFS was performed directly on the original

feature set. The results are shown in Table 6.

From Table 6, we can see that MDIV(1%) + SBFS

found a feature subset with comparable performance in

a shorter time than a single SBFS for large-scale

datasets and that it succeeded to find a feature subset

with better performance in small-scale datasets. From

this point, the effectiveness of the garbage feature re-

moval by the proposed method is confirmed. It is also

noted that the time consumed by SBFS in the two-

stage feature selection was less than that of the single-

stage SBFS even though SBFS consumed much than

MDIV in time. We can use any CSFS method instead
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(a) Modified J-divergence-based criterion curve

(b) Recognition rates and selected number of features.

Fig. 5 Experimental results
on waveform dataset

Table 5 Feature subset selected by the proposed method on the
waveform dataset

h dh Selected features

1% 18 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10% 14 4 5 6 7 9 10 11 12 13 14 15 16 17 18

Nos. 22–40 are garbage features
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of SBFS after CIFS. This means that we may use more

time-consuming but more sophisticated algorithms for

CSFS in the second stage to find a better feature subset.

5 Discussion

Our study was a trial to distinguish so-called garbage

features from informative features. It was carried out

on the basis of an approximation of class densities in

terms of a mixture model of the axis-parallel Gaussian

components. If this approximation is precise enough,

we can measure the importance of features by their J-

divergence values. To do this, we have done two things

as follows. First, we subtracted the apparent J-diver-

gence value from the estimated J-divergence value so

that we could compensate the insufficient number of

training samples to enable more accurate evaluation.

Next, we introduced a threshold to distinguish useful

and useless features. It should be taken to zero ideally;

however, we have to keep a small margin for it due to

the insufficiency of training information.

We succeeded in having fairly good results on nine

real-world datasets in feature selection, especially in

classifier-independent feature selection by these trials.

However, there are some problems when dealing with

more datasets. The main problem is that the mixture

model is sometimes not sufficient to approximate class

densities precisely. This comes from two factors: the

incorrect number of components and the limited type

for components. We determined the number of com-

ponents by means of an MDL criterion. MDL criteria

are known as being not good for small-sample cases. In

addition, our mixture model uses Gaussian compo-

nents of a diagonal covariance matrix. However, we

need this simplicity for evaluating feature importance

independently. A sufficient number of components

guarantees a good approximation for a general density.

Moreover, Gaussian mixture with diagonal covariance

matrices brings us a stability in estimation of densities

for small-sample cases. Therefore, in this study, this

simplicity worked in such two ways.

We have to pay attention to the precision of the

approximation of the densities. Some confirmations are

required for general usage. Data partitioning tech-

niques such as cross validation would be useful for this

goal. It is also noted that this way may not work for

highly nonlinear densities. The diagonal covariance

assumption is not suitable for such cases, even if a

sufficient number of components is used. This is be-

cause a larger number of components requires more

training samples for obtaining better approximation.

Table 6 Comparison of two-stage feature selection (CIFS + CSFS) and single CSFS

Problem scale Dataset SBFS MDIV(1%) MDIV(1%) + SBFS

Small Spect Time (s) 4.5 8.4 12.5(8.4+4.1)
Rate(%) 91.2 67.5 93.8
#Feature 14 38 9

Wpbc Time(s) 18.0 11.8 20.1(11.8+8.3)
Rate(%) 73.7 63.1 73.7
#Feature 2 23 2

Bupa Time(s) 0.2 6.6 6.7(6.6+0.1)
Rate(%) 67.5 61.4 67.5
#Feature 4 5 4

Large Wdbc Time(s) 43.3 28.0 56.0(28.0+28.0)
Rate(%) 94.2 91.2 94.2
#Feature 4 27 4

Tic-tac-toe Time(s) 138.2 32.0 97.8(32.0+65.8)
Rate(%) 100.0 77.2 90.9
#Feature 18 22 10

Sonar Time(s) 269.4 19.4 128.9(19.4+109.5)
Rate(%) 94.2 82.2 92.8
#Feature 14 53 16

Musk Time(s) 27444.0 113.8 6221.8(113.8+6108.0)
Rate(%) 97.9 84.8 97.1
#Feature 22 108 46

Waveform Time(s) 623.8 54.6 96.6(54.6+42.0)
Rate(%) 94.6 91.9 94.7
#Feature 22 18 11

mushroom Time(s) 354044.0 711.0 4263.5(711.0+3552.5)
Rate(%) 100.0 100.0 100.0
#Feature 5 27 5
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6 Conclusion

We proposed a divergence criterion to determine the

size of a feature subset automatically on the basis of

Novovičová et al.’s method. This was done by remov-

ing garbage features that were totally useless for any

classifier. We also introduced a measure of apparent J-

divergence to compensate the insufficient number of

training samples. We investigated the effectiveness of

the proposed criterion by comparing recognition rates

of many classifiers before and after garbage feature

removal. With nine real-world datasets, we confirmed

the basic effectiveness of the proposed criterion. In

addition, we demonstrated that the two-stage feature

selection scheme is effective in practical feature subset

selection. For a further study, we will try to find a

criterion to determine the optimal value of h for a gi-

ven dataset and to estimate apparent J-divergence

without the assumption that we have to remove at least

one feature.
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