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Abstract

This paper presents average-case analyses of instance-based learning algorithms. The algo-
rithms analyzed employ a variant of k-nearest neighbor classi-er (k-NN). Our analysis deals
with a monotone m-of-n target concept with irrelevant attributes, and handles three types of
noise: relevant attribute noise, irrelevant attribute noise, and class noise. We formally represent
the expected classi-cation accuracy of k-NN as a function of domain characteristics including
the number of training instances, the number of relevant and irrelevant attributes, the threshold
number in the target concept, the probability of each attribute, the noise rate for each type of
noise, and k. We also explore the behavioral implications of the analyses by presenting the
e ects of domain characteristics on the expected accuracy of k-NN and on the optimal value of
k for arti-cial domains.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Instance-based learning (IBL) is one of the most widely applied learning frame-
work, and many IBL algorithms have performed well in challenging learning tasks
[1,2,7,26,30,32,33]. Most IBL algorithms are based on a k-nearest neighbor classi-er
(k-NN), originated in the -eld of the pattern recognition [8,9,11]. Informally, k-NN
is explained as follows: k-NN stores the entire training set into memory. When a test
instance is given, k-NN selects the k nearest training instances to the test instance, and
predicts the majority class of these k instances as the class of the test instance.
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Many researches have theoretically analyzed the learning behavior of k-NN by com-
paring it with Bayesian induction, with the probably approximately correct (PAC)
learning model, and with the best-case model. Cover and Hart [6] showed that the
upper bound of k-NN error rate is twice the optimal Bayes risk under the assumption
of an in-nite number of training instances. Cover [5] also showed that k-NN risk con-
verges to the optimal Bayes risk as k approaches in-nity. Rachlin et al. [26] showed
that their IBL algorithm PEBLS is not less accurate than the Bayesian classi-er in the
limit. Although these analyses are important, all of these studies assumed an in-nite
number of training instances, which are rarely available in practice. Moreover, these
analyses assumed noise-free instances and did not deal with irrelevant attributes.
By using the PAC learning model [13,31], Aha et al. [2] showed the learnability and

sample complexity of an IBL algorithm, IB1, for a class of closed regions bounded
by a -xed length. Albert and Aha [3] extended this study to k-NN, and presented
sample complexity for k-NN for the same target concept. By using the best-case anal-
ysis, Salzberg et al. [28,29] showed sample complexities of 1-NN for several types of
geometric target concepts. Although these studies gave quite general results, their pre-
dictions of the learning behavior of IBL algorithms are often far from those observed
in practice. This means that it is diFcult to relate their results to experimental ones
directly. Also, all of these studies assumed noise-free instances and did not take into
account irrelevant attributes.
The framework of average-case analysis is useful for understanding the e ects of

domain characteristics, such as the number of training instances, the number of at-
tributes, and noise rate on the behavior of a learning algorithm [24]. This is because
the average-case analysis is based on the formal computation of the behavior of the
learning algorithm as a function of these characteristics. Moreover, this framework en-
ables us to explore the average-case behavior of the learning algorithm. Hence, formal
results provided in this framework can be directly related to empirical ones.
Many learning algorithms have been analyzed using this framework, such as con-

junctive learning algorithms [14,27,24], a Bayesian classi-er [17,18], and decision-tree
induction [15]. Also, average-case analyses of IBL algorithms have been presented,
including 1-NN [16,21,23] and k-NN [20,22].
In this paper, we present average-case analyses of the k-NN classi-er. Our analyses

deal with m-of-n concepts whose positive instances are de-ned by having m or more
of n relevant attributes, and with irrelevant attributes which play no role in the target
concept. Moreover we handle three types of noise: relevant attribute noise, irrelevant
attribute noise, and class noise. Our analyses are individually presented in a noise-free
domain and in a noisy domain.
First, in the noise-free domain, our analysis formally represents the expected clas-

si-cation accuracy of k-NN after a certain number of training instances are given.
The expected accuracy is represented as a function of domain characteristics including
the number of training instances, the number of relevant and irrelevant attributes, the
threshold number in the target concept, the probability of each attribute, and k. We
also explore the behavioral implications of the analysis by predicting the e ects of
each domain characteristic on the expected accuracy and on the optimal value of k to
achieve the highest accuracy for arti-cial domains.
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Next, in the noisy domain, our analysis formally expresses the expected accuracy of
k-NN as a function of the domain characteristics, including the noise rate for each type
of noise. Then, we examine the behavioral implications of the analysis by presenting
the e ects of each type of noise on the expected accuracy and on the optimal value
of k.
In closing, we discuss the implications of this work, and point out interesting direc-

tions for future research.

2. Problem description

This section gives the problem description used in our average-case analyses of an
IBL algorithm employing a variant of k-NN classi-er.
As the target concept, our analysis deals with a monotone m-of-n function of n

relevant Boolean attributes which returns TRUE (positive class label) if at least m out
of these n attributes occur (i.e., have the value of 1), and returns FALSE (negative
class label) otherwise [19,25]. We further handle irrelevant Boolean attributes that play
no role in the target concept. We express the m-of-n concept with l irrelevant attributes
as the m-of-n=l concept. Then, given a certain vector (w1; : : : ; wn+l)∈{0; 1}n+l where
|{wi |wi=1}|=n and |{wi |wi=0}|=l, the m-of-n=l concept can be represented as

f : (a1; : : : ; an+l) ∈ {0; 1}n+l �→



1 if

n+l∑
i=1

wiai ¿ m;

0 otherwise:

(1)

Note that each ai is a relevant attribute if wi=1, and is an irrelevant attribute otherwise.
To generate probability distributions over instance space {0; 1}n+l, our analysis as-

sumes that every relevant and irrelevant attribute independently occurs with a certain
-xed probability p and q, respectively. Each instance �∈{0; 1}n+l is independently
drawn from the instance space in accordance with these probabilities, and then the
class label f(�) is attached to �.
Each type of noise is introduced by the following common de-nition. Relevant

attribute noise >ips the value of every relevant attribute in each instance with a certain
-xed probability �r (06�r61). In a similar way, irrelevant attribute noise >ips the
value of every irrelevant attribute with a certain -xed probability �i (06�i61). Class
noise replaces the class label for each instance with its opposite with a certain -xed
probability �c (06�c61). We assume that each noise type independently a ects each
instance.
The IBL algorithms analyzed employ a variant of k-NN classi-er explained as fol-

lows: k-NN receives a set of training instances (k-NN knows the class label for each
training instance), and stores all training instances into memory. When a test instance
is given (the class label for test instance is unknown to k-NN), k-NN selects k near-
est training instances to the test instance according to the Hamming distance (i.e., the
number of attributes on which two instances di er) among all training instances. Then
k-NN predicts that the test instance belongs to a majority class among these selected
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Table 1
Domain characteristics used in the analysis

k Number of nearest neighbors
N Number of training instances
n Number of relevant attributes
l Number of irrelevant attributes
m Threshold value in target concepts
p Occurrence probability for relevant attribute
q Occurrence probability for irrelevant attribute
�c Noise rate for class
�r Noise rate for relevant attribute
�i Noise rate for irrelevant attribute

k nearest training instances. While several tie-breaking procedures have been proposed
for the selection of k-NNs [4,10], we assume that k-NN randomly breaks a tie case for
k-NNs. Moreover, if the selected k-NNs contain exactly the same number of positive
and negative training instances, then k-NN randomly determines the class of the test
instance. This situation can occur only when k is an even number.
The characteristics of the problem domain are summarized in Table 1. Our analy-

ses will express the expected accuracy of the k-NN classi-er as a function of these
characteristics. Here, the expected accuracy is the probability that the classi-er predicts
correctly the class label for an arbitrary test instance. To get accuracy function, we
will often use the binomial probability, the trinomial probability, and the hypergeo-
metric probability. The expressions of these probabilities are given as the following
de-nitions.

De�nition 1. For any � (06�61), and for any integers a and x (x6a), the binomial
probability is expressed as

B(x; a; �) =




(
a

x

)
�x(1− �)a−x if x¿0;

0 otherwise:

(2)

De�nition 2. For any �; � (06�; �61), and for any integers a, x (x6a), and y (y6
a− x), the trinomial probability is expressed as

T (x; y; a; �; �)

=




(
a

x

(
a− x

y

)
�x�y(1− �− �)a−x−y if x ¿ 0 and y ¿ 0;

0 otherwise:

(3)
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De�nition 3. For any integers a, b, and c (06b; c6a), and for any integer x, the
hypergeometric probability is expressed as

H (x; a; b; c) =





 b
x




 a− b
c − x





 a
c




if x ¿ max(0; c − a+ b) and

x 6 min(b; c);

0 otherwise:

(4)

3. Analysis in a noise-free domain

In this section, we assume that every instance is noise-free, and present an average-
case analysis of the k-NN classi-er.
First, our analysis represents the expected classi-cation accuracy of k-NN for the

m-of-n=l target concept, after k-NN receives N training instances. The expected accu-
racy is represented as a function of the domain characteristics given in Table 1 with
the exception of the noise rate for each type of noise: �r ; �i, and �c. However, to avoid
complicated notation, we do not explicitly express these characteristics as the arguments
of the accuracy function. Then, using the accuracy function, we make average-case pre-
dictions about the behavior of k-NN, including the e ects of each domain characteristic
on the expected accuracy of k-NN, and on the optimal value of k.

3.1. Expected accuracy

In this subsection, our analysis represents the expected accuracy of the k-NN for
m-of-n=l target concepts in the noise-free domain.
To simplify the computation of the expected accuracy of k-NN, our analysis uses a

set of instances in which x relevant attributes and y irrelevant attributes simultaneously
occur. This set is referred to as �(x; y), and let Pocc(x; y) be the probability that
an arbitrary instance drawn from the instance space belongs to �(x; y). From the
assumption of independence of attributes, using the binomial probabilities, we can
express Pocc(x; y) as

Pocc(x; y) = B(x; n; p)B(y; l; q): (5)

Let Ppos(x; y) be the probability that k-NN classi-es any test instance in �(x; y) as
positive after an arbitrary training set with the size of N . For any test instance in
�(x; y), this probability has the same value. Moreover, from the de-nition of the target
concept, we clearly have that any test instance in �(x; y) belongs to the negative class
if x¡m and to the positive class label if x¿m. Therefore, after k-NN receives N
training instances, the expected accuracy of k-NN for the m-of-n=l target concept can
be represented as

A =
l∑

y=0

{
m−1∑
x=0

Pocc(x; y)(1− Ppos(x; y)) +
n∑

x=m
Pocc(x; y)Ppos(x; y)

}
: (6)
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Let �(x; y) be an arbitrary test instance in �(x; y). To compute Ppos(x; y), we use
the distance from �(x; y) to its kth nearest training instances. When the kth nearest
training instance has the distance d (06d6n + l) from �(x; y), we consider the sit-
uation that exactly Nl out of N training instances occur with the distance less than
d from �(x; y) and exactly Ne training instances appear with the distance d. Let
Pnum(x; y; d; Nl; Ne) be the probability that this situation occurs. Also, when this situation
occurs, let Psp(x; y; d; Nl; Ne) be the probability that k-NN classi-es �(x; y) as positive.
Then, we can represent Ppos(x; y) by summing over all possible numbers of Nl; Ne, and
d, in each case multiplying Psp(x; y; d; Nl; Ne) by Pnum(x; y; d; Nl; Ne). For the possible
regions of Nl and Ne, we have clearly 06Nl6k−1 and (k−Nl)6Ne6(N −Nl). That
is, Ppos(x; y) can be expressed as

Ppos(x; y) =
n+l∑
d=0

k−1∑
Nl=0

N−Nl∑
Ne=k−Nl

Pnum(x; y; d; Nl; Ne)Psp(x; y; d; Nl; Ne): (7)

First, we represent Pnum(x; y; d; Nl; Ne) by letting Pe(x; y; d) and Pl(x; y; d) be the prob-
abilities that an arbitrary training instance occurs with the distance equal to d and
less than d from �(x; y), respectively. Then, Pnum(x; y; d; Nl; Ne) can be represented by
using the trinomial probability for Pe(x; y; d) and Pl(x; y; d). That is, we can obtain
Pnum(x; y; d; Nl; Ne) as

Pnum(x; y; d; Nl; Ne) = T (Nl; Ne;N; Pl(x; y; d); Pe(x; y; d)): (8)

For any integer u (06u6n) and v (06v6l), let !(u; v) be an arbitrary training in-
stance in �(u; v), and Pdis(x; y; u; v; e) be the probability that !(u; v) has the distance
e from �(x; y). Then, we can obtain Pe(x; y; d) by summing the product of Pocc(u; v)
and Pdis(x; y; u; v; d) over all possible numbers of u and v. That is, we can represent
Pe(x; y; d) as

Pe(x; y; d) =
n∑

u=0

l∑
v=0

Pocc(u; v)Pdis(x; y; u; v; d): (9)

Also, Pl(x; y; d) is clearly given by

Pl(x; y; d) =
n∑

u=0

l∑
v=0

Pocc(u; v)
d−1∑
e=0

Pdis(x; y; u; v; e): (10)

To compute Pdis(x; y; u; v; e), we use the number of relevant attributes which take the
value of 1 in both �(x; y) and !(u; v), and use the analogous number for irrelevant
attributes. We denote the former number as sr and the latter one as si. Then, the
number of relevant attributes with the value of 1 in �(x; y) but with the value of 0 in
!(u; v) is x− sr . In contrast, the number of relevant attribute with the value 0 in �(x; y)
but with 1 in !(u; v) is u − sr . Similarly, the number of irrelevant attributes with the
value 1 in �(x; y) but with 0 in !(u; v) is y− si, and the number of irrelevant attributes
with 0 in �(x; y) but with 1 in !(u; v) is v − si. Using these, the distance e between
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�(x; y) and !(u; v) is given by

e= (x − sr) + (u− sr) + (y − si) + (v− si)

= x + u+ y + v− 2(sr + si): (11)

Rearranging, we have

sr + si =
x + u+ y + v− e

2
: (12)

For the possible regions of sr and si, we have

max(0; x + u− n)6 sr 6 min(x; u): (13)

max(0; y + v− l)6 si 6 min(y; v): (14)

Let S be the set of all pairs (sr ; si) that satisfy all of conditions (12), (13), and
(14). Then, we can represent Pdis(x; y; u; v; e) by summing over all possible pairs of
(sr ; si) in S, in each case multiplying the hypergeometric probabilities according to the
occurrence of relevant and irrelevant attributes. That is, we can represent Pdis(x; y; u; v; e)
as

Pdis(x; y; u; v; e) =
∑

(sr ;si)∈S

H (sr; n; x; u)H (si; l; y; v); (15)

where

S =



(sr; si)

∣∣∣∣∣∣∣∣∣
sr + si =

x + u+ y + v− e
2

;

max(0; x + u− n)6 sr 6 min(x; u);

max(0; y + v− l)6 si 6 min(y; v):




(16)

Note that we have Pdis(x; y; u; v; e)=0, when S=∅.
Next, we compute Psp(x; y; d; Nl; Ne) in Eq. (7). Let Plp(x; y; d) be the probability

that an arbitrary training instance appears with the distance less than d from �(x; y)
and has the positive class label. From Eq. (10), this probability is clearly given by

Plp(x; y; d) =
n∑

u=m

l∑
v=0

Pocc(u; v)
d−1∑
e=0

Pdis(x; y; u; v; e): (17)

When exactly Nl training instances have the distance less than d from �(x; y), let us
consider the situation that exactly Nlp out of these Nl instances belong to positive class.
We denote the occurrence probability for this situation by Plps(x; y; d; Nl; Nlp). Using
the binomial probability, we can represent this probability as

Plps(x; y; d; Nl; Nlp) = B
(
Nlp;Nl;

Plp(x; y; d)
Pl(x; y; d)

)
: (18)

In a similar way, when exactly Ne training instances have the distance d from �(x; y),
we consider the case that exactly Nep out of these Ne instances belong to positive. Let
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Peps(x; y; d; Ne; Nep) be the occurrence probability for this case, and Pep(x; y; d) be the
probability that an arbitrary training instance occurs with the distance of d from �(x; y)
and has the positive label. From Eq. (9), the latter probability is clearly given by

Pep(x; y; d) =
n∑

u=m

l∑
v=0

Pocc(u; v)Pdis(x; y; u; v; d): (19)

Using the binomial probability, we can represent Peps(x; y; d; Ne; Nep) as

Peps(x; y; d; Ne; Nep) = B
(
Nep;Ne;

Pep(x; y; d)
Pe(x; y; d)

)
: (20)

When exactly Nlp out of Nl training instances with the distance less than d from �(x; y)
have the positive class label and exactly Nep out of Ne instances with the distance d
have the positive label, let Pksp(Nl; Ne; Nlp; Nep) be the probability that k-NN classi-es
�(x; y) as positive. Then, we can obtain the probability Psp(x; y; d; Nl; Ne) as

Psp(x; y; d; Nl; Ne) =
Nl∑

Nlp=0

(
Plps(x; y; d; Nl; Nlp)

Ne∑
Nep=0

Peps(x; y; d; Ne; Nep)Pksp(Nl; Ne; Nlp; Nep)

)
: (21)

At this point, we have only to compute the probability Pksp(Nl; Ne; Nlp; Nep). To get k
nearest training instances for �(x; y), k-NN randomly selects exactly (k−Nl) out of Ne

training instances with the distance d from �(x; y). Let us consider the case that Nepk

out of these (k − Nl) instances belong to positive class. The occurrence probability
for this case is denoted with Pepk(Nl; Ne; Nep; Nepk). In this case, there exist exactly
(Nlp + Nepk) positive instances among selected k nearest training instances. That is, in
accordance with the value of (Nlp + Nepk), k-NN classi-es �(x; y) as follows:
• When Nlp + Nepk¿k=2, k-NN always classi-es �(x; y) as positive.
• When Nlp + Nepk¡k=2, k-NN always classi-es �(x; y) as negative.
• When Nlp +Nepk =k=2, k-NN classi-es �(x; y) as positive with the probability of 1

2 .
Note that the third condition never holds for any odd number of k. Hence, we can
obtain Pksp(Nl; Ne; Nlp; Nep) as

Pksp(Nl; Ne; Nlp; Nep) =
Nep∑

Nepk=�k+1=2�−Nlp

Pepk(Nl; Ne; Nep; Nepk)

+
1
2
Pepk

(
Nl; Ne; Nep;

k
2
− Nlp

)
; (22)

where the second term is always 0 for any odd number of k. When k-NN selects
exactly (k − Nl) out of Ne training instances with the distance d from �(x; y), these
(k−Nl) instances comprise exactly Nepk out of Nep instances belonging to the positive
class and exactly (k−Nl−Nepk) out of (Ne−Nep) instances belonging to the negative.
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That is, using the hypergeometric probability, we can represent Pepk(Nl; Ne; Nep; Nepk)
as

Pepk(Nl; Ne; Nep; Nepk) =

{
0 if Nepk is not integer;

H (Nepk;Ne; Nep; k − Nl) otherwise:
(23)

3.2. Predicted behavior

In the previous subsection, we gave a formal description of k-NNs behavior in the
noise-free domain as the accuracy function of the domain characteristics, but the im-
plications of our analysis are not obvious. However, we can use the analysis to make
average-case predictions about k-NNs accuracy and the optimal value of k under dif-
ferent domain characteristics. In this subsection, we explore the behavioral implications
of the analysis by presenting the e ects of domain characteristics on k-NN, such as the
e ects of the values of p and q on the accuracy, the e ect of the parameter k on the
accuracy, learning curves of 1-NN and k-NN with the optimal value of k, the storage
requirement to achieve a certain accuracy against the number of irrelevant attributes,
and the optimal value of k against the size of the training set.

3.2.1. E5ect of occurrence probability for each attribute
First, we explore the e ect of the occurrence probability for each attribute on the

expected accuracy of 1-NN.
Fig. 1(a) shows the e ect of the occurrence probability p for relevant attributes on

1-NNs accuracy. In this study, we used q= 1
2 as the probability for irrelevant attributes

and l=3 as the number of irrelevant attributes, but we varied the number of training
instances N , the threshold value m, the number of relevant attributes n, where we hold
m=(n + 1)=2. For each N and each concept, 1-NN exhibits the worst performance
when p= 1

2 , and its accuracy rapidly increases as p is far apart from the value of 1
2 .
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Fig. 1. The e ects on the expected accuracy of 1-NN of (a) the occurrence probability p for relevant
attributes and (b) the probability q for irrelevant attributes.
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Fig. 2. The e ects of the value of k on k-NNs accuracy (a) for the domain with two irrelevant attributes and
with varying the threshold value and the number of relevant attributes, and (b) when the domain involves
3-of-5 target concepts with several numbers of irrelevant attributes. Each circle indicates the highest accuracy
for the corresponding concept.

Especially, when p=0 and p=1, 1-NNs accuracy is perfect. This is because all in-
stances drawn from the instance space belong to the negative class if p=0 and to
positive if p=1. Thus, the probability p strongly a ects the appearance probabilities
for negative and positive instances, and the expected accuracy of 1-NN is very sensitive
to the value of p.
Fig. 1(b) presents the corresponding e ect of the probability q for irrelevant attribute.

Here, we used p= 1
2 as the probability for relevant attributes. As before, we varied

m, n, and N . Although the sensitivity of q to 1-NNs accuracy is less than that for p,
the accuracy again gradually increases as q is far apart from 1

2 for each setting. This
is because the probability q does not a ect the appearance probability of positive and
negative instances, but the e ect of irrelevant attributes on 1-NNs accuracy becomes
less with an increase or a decrease of q from 1

2 . Especially, when q=0 or 1, 1-NNs
accuracy is the same as that without irrelevant attributes.

3.2.2. E5ect of the parameter k
Next, we analyze the e ect of the parameter k on the expected accuracy of k-NN.
Fig. 2(a) shows k-NNs accuracy as a function of the odd value of k for several

target concepts with two irrelevant attributes. We used N=32 as the number of train-
ing instances and p=q= 1

2 as the probability for each attribute, but varied both the
threshold m and the number of relevant attributes n, where we have m=(n + 1)=2.
Each circle indicates the optimal value of k for the corresponding target concept. For a
2-of-3=2 concept, the optimal value of k is 1, and k-NNs accuracy gradually decreases
with an increase in the value of k. For a 3-of-5=2 concept, k-NNs performance exhibits
two peaks at k=1 and the optimal k=9. For a 4-of-7=2 concept, the expected accuracy
increases with an increase in k, then reaches a maximum before starting to deteriorate.
For each concept, the expected accuracy of k-NN markedly decreases with an increase
in the value of k after the optimal k. Especially, the classi-cation performance of k-NN
is quit poor when the number of k is closed to the number of training instances.
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Fig. 2(b) presents the corresponding e ect for 3-of-5 target concepts with several
numbers of irrelevant attributes. Again, we used N=32 and p=q= 1

2 , and each circle
denotes the optimal k. However, here we varied the number of irrelevant attributes l.
While two peaks appear at k=1 and the optimal k=9 when l=2, the peak at k=1
disappears with an increase in the number of irrelevant attributes. When l=5 and 10,
the accuracy improves as the value of k increases, then reaches a maximum before
starting to deteriorate. As before, k-NNs accuracy markedly decreases with an increase
in k after the optimum.
As can be seen in both Fig. 2(a) and (b), when k is closed to the size of the training

set, the classi-cation performance of k-NN is quite poor. Especially when the value of
k equals to the number of training instances, we can express the expected accuracy of
k-NN as follows.
When k=N , Ppos(x; y) in given Eq. (7) can be represented as

Ppos(x; y) =
N∑

w=�N+1=2�
B(w;N; Pp) +

1
2

(
N
N
2

)
PpN=2

(1− Pp)N=2; (24)

where Pp represents the probability that an arbitrary training instance has the positive
class label, and is given by

Pp =
n∑

z=m
B(z; n; p): (25)

As shown in Eq. (24), when k=N , Ppos(x; y) is independent of the values of x and
y. We simply denote this probability by Ppos. From Eqs. (24) and (25), the following
claim clearly holds.

Claim 4. When we have k=N , the expected accuracy of k-NN given in Eq. (6) can
be represented as

A = (1− Pp)(1− Ppos) + PpPpos: (26)

In Fig. 2(a) and (b), we used m=(n+1)=2 and p= 1
2 . For this setting, we straight-

forwardly have the following corollary.

Corollary 5. When we have k=N , p= 1
2 , and m=(n + 1)=2, the expected accuracy

of k-NN given in Eq. (6) is always 1
2 .

3.2.3. Learning curve
Next, our analysis illustrates the learning curves of 1-NN and k-NN with the optimal

value of k to achieve the highest accuracy. The learning curves of the optimal k-NN
were obtained by collecting the expected accuracy of k-NN with optimal k for each
number of training instances.
Fig. 3(a) shows the e ects of relevant attribute on learning rates of 1-NN and the

optimal k-NN. In this study, we used l=2 as the number of irrelevant attributes and
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Fig. 3. Learning curves of 1-NN and the optimal k-NN.

p=q= 1
2 as the probability for each attribute, but varied both the threshold m and the

number of relevant attributes n, where we have m=(n+1)=2. As typical with learning
curves, the accuracies begin low and gradually improve with the size of the training set.
Also, each accuracy of 1-NN and the optimal k-NN for the 4-of-7=2 concept is lower
than that for the 3-of-5=2 concept for each number of training instances. However, the
optimal k-NN exhibits almost the same learning rate for each concept. That is, the opt-
imal k-NNs rate of learning is mostly not a ected by relevant attributes. On the other
hand, 1-NNs learning rate is sensitive to the number of relevant attributes.
Fig. 3(b) shows the corresponding e ect of irrelevant attributes on learning rates.

Again, we used p=q= 1
2 as the probability for each attribute. Here we used 3-of-5

concepts, but varied the number of irrelevant attributes. As before, the accuracies begin
low and gradually improve with an increase in the size of the training set, and both
accuracies of 1-NN and the optimal k-NN drop o when l=10 for each number of
training instances. Also, the optimal k-NNs rate of learning is mostly not a ected by
irrelevant attributes, whereas 1-NNs rate is very sensitive to irrelevant attributes.

3.2.4. Storage requirement
Our analysis further explores the e ect of irrelevant attributes on k-NN. In this ex-

ploration, we represent the theoretical number of training instances required to achieve
a certain level of accuracy as a function of the number of irrelevant attributes.
Fig. 4 shows the storage requirement to achieve 85% and 90% accuracies for 1-NN

and the optimal k-NN for 2-of-3 target concepts. This study used p=q= 1
2 as the prob-

ability for each attribute, but varied the number of irrelevant attributes. From Fig. 4,
we can observe that the required number of training instances for 1-NN exponentially
increases with an increase in the number of irrelevant attributes for 2-of-3 target con-
cepts. That is, the learning behavior of 1-NN is strongly sensitive to the number of
irrelevant attributes. On the other hand, the storage requirement for the optimal k-NN
is almost linear of the number of irrelevant attributes. Thus, by optimizing the value of
k, we can dramatically restrain an increase in the required number of training instances
caused by increasing the number of irrelevant attributes. Especially for the domain with
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Fig. 5. The optimal value of k to achieve the highest accuracy as a function of the size of the training set.

a large number of irrelevant attributes, optimizing k is very important to achieve good
performance of k-NN.

3.2.5. Optimal value of k
Finally, we investigate the optimal value of k as a function of the number of training

instances. In this study, we used p=q= 1
2 as the probability for each attribute.

Fig. 5(a) shows the optimal value of k against the number of training instances
for several numbers of relevant attributes. We used l=2 as the number of irrelevant
attributes, but varied both the threshold m and the number of relevant attributes n,
where we have m=(n+ 1)=2. For a 2-of-3=2 concept, the optimal value of k remains
steady at 1 with an increase in the number of training instances. However, for both
3-of-5=2 and 4-of-7=2 concepts, the optimal value of k grows almost linearly with an
increase in the size of training set, after the optimal k leaves from k=1. For a large
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number of relevant attributes, the optimal value of k strongly depends on the number
of training instances.
Fig. 5(b) illustrates the corresponding optimal k for di erent numbers of irrelevant

attributes. We used 3-of-5 concepts, while varied the number of irrelevant attributes.
For each number of irrelevant attributes, the optimal value of k almost linearly increases
with an increase in the number of training instances. That is, the optimal value of k
is strongly sensitive to the size of training set regardless of the number of irrelevant
attributes. Moreover, the change in the optimal value of k is almost the same for
each number of irrelevant attributes. Especially, for 5 and 10 irrelevant attributes, the
optimal values of k are entirely the same at each size of the training set. Thus, the
number of irrelevant attributes does not signi-cantly a ect the optimal value of k.

4. Analysis in a noisy domain

In this section, we extend the analysis given in the previous section to handle noise,
and present an average-case analysis of the k-NN classi-er in a noisy domain. This
study deals with three types of noise: relevant attribute noise, irrelevant attribute noise,
and class noise.
First, our analysis formally represents the expected classi-cation accuracy of k-NN

as a function of the domain characteristics, including noise rate for each type of noise,
given in Table 1. However, to avoid complicated notation, we do not explicitly express
these characteristics as the arguments of the accuracy function. Our analysis expresses
three sorts of expected accuracy of k-NN according to the way that noise a ects the
instances. One is the expected accuracy of k-NN when each type of noise a ects only
training instances but not test instances, another is when noise a ects only test instances
but not test instances, and the last is when noise a ects both test and training instances.
Then, our analysis investigates the behavioral implications of the analysis by pre-

senting the e ects of each type of noise on the expected accuracy of k-NN and on the
optimal value of k.

4.1. Expected accuracy

In this subsection, our analysis represents the expected accuracy of k-NN for m-of-n=l
target concepts in the noisy domain after k-NN receives N training instances.
In the same way to the analysis in the noise-free domain given in Section 3.1, we

use �(x; y) which is a set of noise-free instances in which x relevant attributes and y
irrelevant attributes simultaneously occur. Also, let �′(x′; y′) be a set of noisy instances
in which x′ relevant attributes and y′ irrelevant attributes simultaneously occur after the
e ects of all types of noise. To compute the expected accuracy of k-NN in the noisy
domain, our analysis begins with representing the following probabilities according to
the occurrence probability for instances after the e ect of noise.
• P′

occ(x
′; y′): the probability that an arbitrary instance drawn from the instance space

belongs to �′(x′; y′).
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• P′
p′(x

′; y′): the probability that an arbitrary instance is in �′(x′; y′) and has the
positive class label.

• P′
n′(x

′; y′): the probability that an arbitrary instance is in �′(x′; y′) and has the
negative class label.

First, we compute P′
occ(x

′; y′) by considering the e ects of each type of attribute noise
individually.
For relevant attribute noise, let Pnr(x; x′) be the probability that the number of relevant

attributes with the value of 1 in any instance in �(x; y) is changed from x to x′

by the e ect of relevant attribute noise. To compute this probability, our analysis
considers relevant attributes corrupted from 1 to 0 and from 0 to 1 by relevant attribute
noise. Let s be the number of corrupted relevant attributes from 1 to 0, where max(0;
x − x′)6s6min(x; n − x′). In this case, the number of corrupted relevant attributes
from 0 to 1 is always x′ − x + s. Then, Pnr(x; x′) can be obtained by summing over
all the possible numbers of s, in each case multiplying the probability that exactly s
out of x relevant attributes are changed from 1 to 0 and the probability that exactly
x′ − x + s out of n− x relevant attributes are changed from 0 to 1. That is, using the
binomial probability, we can represent Pnr(x; x′) as

Pnr(x; x′) =
min(x;n−x′)∑

s=max(0;x−x′)
B(s; x; �r)B(x′ − x + s; n− x; �r): (27)

In a similar way to relevant attribute noise, we compute the probability that the number
of irrelevant attributes with the value of 1 in any instance in �(x; y) is changed from
y to y′ by irrelevant attribute noise. We denote this probability by Pni(y; y′), and let t
be the number of irrelevant attributes changed from 1 to 0 by irrelevant attribute noise.
Then, we can represent Pni(y; y′) as

Pni(y; y′) =
min(y;l−y′)∑

t=max(0;y−y′)
B(t;y; �i)B(y′ − y + t; l− y; �i): (28)

The probability that an arbitrary noise-free instance belongs to �(x; y) was repre-
sented as Pocc(x; y) in Eq. (5). Hence, we can obtain P′

occ(x
′; y′) by summing the

product of Pnr(x; x′), Pni(y; y′), and Pocc(x′; y′) over all the possible numbers of x
and y. This is because class noise does not a ect the occurrence probability of in-
stances and we assume the independence of each type of noise. That is, we can express
P′
occ(x

′; y′) as

P′
occ(x

′; y′) =
n∑

x=0

l∑
y=0

Pocc(x; y)Pnr(x; x′)Pni(y; y′): (29)

Let �′
an(x

′; y′) be a set of noisy instances in which x′ relevant attributes and y′ ir-
relevant attributes simultaneously occur after each type of attribute noise but before
class noise. To represent P′

p′(x
′; y′) and P′

n′(x
′; y′), our analysis computes the occur-

rence probability for an arbitrary instance in �′
an(x

′; y′) with positive and negative
class labels. Let P′

p (x
′; y′) be the former probability and P′

n (x
′; y′) be the latter. From
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Eq. (29), these probabilities are straightforwardly given by

P′
p(x

′; y′) =
n∑

x=m

l∑
y=0

Pocc(x; y)Pnr(x; x′)Pni(y; y′): (30)

P′
n(x

′; y′) =
m−1∑
x=0

l∑
y=0

Pocc(x; y)Pnr(x; x′)Pni(y; y′): (31)

Using these occurrence probabilities, from the assumption of independence of each type
of noise, we can represent P′

p′(x
′; y′) and P′

n′(x
′; y′) as

P′
p′(x

′; y′) = (1− �c)P′
p(x

′; y′) + �cP′
n(x

′; y′); (32)

P′
n′(x

′; y′) = �cP′
p(x

′; y′) + (1− �c)P′
n(x

′; y′): (33)

At this point, we obtain P′
occ(x

′; y′), P′
p′(x

′; y′) and P′
n′(x

′; y′). Using these probabilities,
our analysis represents three sorts of the expected accuracy of k-NN.
First, we compute the expected accuracy when each type of noise a ects only training

instances but not test instances. In this case, the occurrence probability for test instances
in �(x; y) is Pocc(x; y) given in Eq. (5). Hence, after k-NN receives N training instances
a ected by each type of noise, the expected accuracy of k-NN for noise-free test
instances as

A′ =
l∑

y=0

{
m−1∑
x=0

Pocc(x; y)(1− P′
pos(x; y)) +

n∑
x=m

Pocc(x; y)P′
pos(x; y)

}
; (34)

where P′
pos(x; y) represents the probability that k-NN classi-es an arbitrary test instance

in �(x; y) as positive when each type of noise a ects N training instances.
In the same way that we obtained Ppos(x; y) in Eq. (7), let �(x; y) be an arbitrary test

instance in �(x; y), and we use the distance d from �(x; y) to the kth nearest training
instance. Let us consider the case that exactly Nl (06Nl6k − 1) out of N training
instances occur with the distance less than d from �(x; y), and exactly Ne training
instances appear with the distance d. In this case, we have (k − Nl)6Ne6(N − Nl).
We use P′

num(x; y; d; Nl; Ne) to refer to the probability that this case occurs. We also
use P′

sp(x; y; d; Nl; Ne) to denote the probability that k-NN classi-es �(x; y) as positive
in this case. By multiplying P′

num(x; y; d; Nl; Ne) and P′
sp(x; y; d; Nl; Ne) over all possible

values of d, Nl, and Ne, we can represent P′
pos(x; y) as

P′
pos(x; y) =

n+l∑
d=0

k−1∑
Nl=0

N−Nl∑
Ne=k−Nl

P′
num(x; y; d; Nl; Ne)P′

sp(x; y; d; Nl; Ne): (35)

Let P′
l (x; y; d) and P′

e (x; y; d) be the occurrence probability for an arbitrary training
instance with the distance less than and equal to d from �(x; y) respectively. These
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probabilities are given by

P′
l (x; y; d) =

n∑
u′=0

l∑
v′=0

P′
occ(u

′; v′)
d−1∑
e=0

Pdis(x; y; u′; v′; e); (36)

P′
e(x; y; d) =

n∑
u′=0

l∑
v′=0

P′
occ(u

′; v′)Pdis(x; y; u′; v′; d); (37)

where Pdis(x; y; u′; v′; e) is the probability that an arbitrary training instance in �′(u′; v′)
has the distance e from �(x; y), and this probability was given in Eq. (15). Then we
have

P′
num(x; y; d; Nl; Ne) = T (Nl; Ne;N; P′

l (x; y; d); P
′
e(x; y; d)): (38)

Let P′
lps(x; y; d; Nl; Nlp)(P′

eps(x; y; d; Ne; Nep), resp.) be the probability that, when exactly
Nl (Ne, resp.) training instances a ected by noise have the distance less than (equal
to, resp.) d from �(x; y), exactly Nlp (Nep, resp.) out of these Nl (Ne, resp.) instances
have the positive class label. These probabilities can be represented as

P′
lps(x; y; d; Nl; Nlp) = B

(
Nlp;Nl;

P′
lp(x; y; d)

P′
l (x; y; d)

)
; (39)

P′
eps(x; y; d; Ne; Nep) = B

(
Nep;Ne;

P′
ep(x; y; d)

P′
e(x; y; d)

)
; (40)

where P′
lp(x; y; d) (P

′
ep(x; y; d), resp.) is the probability that an arbitrary training instance

a ected by noise occurs with the distance less than (equal to, resp.) d from �(x; y)
and has the positive class label. P′

lp(x; y; d) and P′
ep(x; y; d) are given by

P′
lp(x; y; d) =

n∑
u′=0

l∑
v′=0

P′
p′(u

′; v′)
d−1∑
e=0

Pdis(x; y; u′; v′; e); (41)

P′
ep(x; y; d) =

n∑
u′=0

l∑
v′=0

P′
p′(u

′; v′)Pdis(x; y; u′; v′; d): (42)

Then, we can represent P′
sp(x; y; d; Nl; Ne) as

P′
sp(x; y; d; Nl; Ne) =

Nl∑
Nlp=0

(
P′
lps(x; y; d; Nl; Nlp)

Ne∑
Nep=0

P′
eps(x; y; d; Ne; Nep)Pksp(Nl; Ne; Nlp; Nep)

)
; (43)

where Pksp(Nl; Ne; Nlp; Nep) is the probability that, when Nlp out of Nl training instances
with the distance less than d from �(x; y) and Nep out of Ne instances with the distance
d have the positive label, k-NN classi-es �(x; y) as positive, and this probability was
obtained in Eq. (22).
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Next, we compute the expected accuracy of k-NN when each noise a ects only
test instances but not training instances. In this case, the occurrence probability for
an arbitrary noisy test instance in �′(x′; y′) with the positive class label is P′

p′(x
′; y′)

given in Eq. (32). Also, that for the negative class label is P′
n′(x

′; y′) given in Eq. (33).
Hence, after N noise-free training instances, the expected accuracy of k-NN for noisy
test instances can be represented as

A′′ =
n∑

x′=0

l∑
y′=0

{P′
n′(x

′; y′)(1− Ppos(x′; y′)) + P′
p′(x

′; y′)Ppos(x′; y′)}; (44)

where Ppos(x′; y′) is the probability that k-NN classi-es an arbitrary test instance in
�′(x′; y′) as positive for noise-free N training instances, and this probability was ob-
tained in Eq. (7).
Finally, we compute the expected accuracy of k-NN when each noise a ects both

test and training instances. In this case, the expected accuracy of k-NN can be obtained
as

A′′′ =
n∑

x′=0

l∑
y′=0

{P′
n′(x

′; y′)(1− P′
pos(x

′; y′)) + P′
p′(x

′; y′)P′
pos(x

′; y′)}: (45)

4.2. Predicted behavior

In the previous subsection, we gave a formal description of k-NNs behavior as
the accuracy function of domain characteristics including the amount of each type of
noise, but the implications of this analysis are not obvious. However, using the accuracy
function, we can explore the average-case behavior of k-NN in the noisy domain. In
this subsection, we explore the implications of the analysis by predicting the e ects of
each type of noise on k-NN, such as the e ect of irrelevant attribute noise, the e ects
of relevant attribute noise and class noise on k-NNs accuracy against the value of k,
k-NNs accuracies as a function of noise level for relevant attribute noise and class
noise, and the e ects of relevant attribute noise and class noise on the optimal value
of k. Unless otherwise stated, our exploration deals with each noise type a ecting only
training instances but not test instances.

4.2.1. E5ect of irrelevant attribute noise
First, our analysis explores the e ect of irrelevant attribute noise.
Fig. 6 shows the expected accuracy of 1-NN as a function of the level of irrelevant

attribute noise. In this study, we used p= 1
2 and q= 1

3 as the probability for each
attribute, N=64 as the number of training instances, n=5 as the number of relevant
attributes, and �r =0 and �c=0 as the levels for relevant attribute noise and class noise.
However, we varied the number of irrelevant attributes and the threshold value. For
each concept, the expected accuracy of 1-NN decreases little with an increase in the
level of irrelevant attribute noise. Thus, 1-NNs accuracy is only slightly a ected by
irrelevant attribute noise.
Especially for q= 1

2 , the amount of irrelevant attribute noise makes no di erence.
That is, we can straightforwardly obtain the following claim.



S. Okamoto, N. Yugami / Theoretical Computer Science 298 (2003) 207–233 225

0 10 20 30 40 50

Noise Level (%)

0.6

0.7

0.8

0.9

1.0

E
xp

ec
te

d 
A

cc
ur

ac
y

1of5/1
1of5/3
3of5/1
3of5/3

Fig. 6. The e ect of irrelevant attribute noise on 1-NNs accuracy, where the number of training instances is
-xed at 64.
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Fig. 7. The expected accuracy of k-NN for a 3-of-5=2 concept as a function of the value of k, for several
levels for (a) relevant attribute noise and (b) class noise. Each circle denotes the optimal value of k. The
number of training instances is -xed at 32.

Claim 6. When q= 1
2 , each expected accuracy of k-NN given in Eqs. (34), (44), and

(45) has the same for any �i.

4.2.2. Accuracy against value of k
Next, we investigate the predicted behavior of k-NN against the value of k for

several levels of relevant attribute noise and class noise.
Fig. 7(a) shows the e ects of the value of k for several levels for relevant attribute

noise. In this study, we dealt with a 3-of-5=2 target concept, and used N=32 as
the number of training instances, p=q= 1

2 as the probability for each attribute, and
�i =�c=0 as the noise rates for irrelevant attribute noise and class noise. Each circle
indicates the highest accuracy according to the value of k. The expected accuracy of
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k-NN markedly decreases for each value of k with an increase in the level for relevant
attribute noise. That is, for the 3-of-5=2 concept, k-NN is strongly sensitive to relevant
attribute noise, regardless of the value of k. Also, k-NNs accuracy drops o for each
noise level when k is an even number. That is, the expected accuracy of k-NN for an
even number of k is lower than both accuracies of (k − 1)-NN and (k + 1)-NN for
each noise level. This negative in>uence is crucial especially for a small even number
of k.
Fig. 7(b) shows the corresponding e ect of the value of k for class noise. Again, this

study dealt with a 3-of-5=2 target concept, and used N=32, p=q= 1
2 , and �r =�i =0

as the level for each attribute noise. Each circle expresses the optimal value of k. The
behavior of k-NN for class noise is almost the same as that for relevant attribute noise.
That is, k-NN is strongly sensitive to class noise for the 3-of-5=2 concept, regardless
of the value of k.

4.2.3. E5ect against noise level
We further investigate the e ects of relevant attribute noise and class noise on the

expected accuracies of 1-NN and k-NN. Each curve for the optimal k-NN was obtained
by collecting the expected accuracy of k-NN with the optimal value of k at each noise
level.
Fig. 8(a) shows the e ect of relevant attribute noise for 1-of-5=2 and 3-of-5=2 tar-

get concepts. We used N=32 as the number of training instances, p=q= 1
2 as the

probability for each attribute, and �i =�c=0 as the noise rate for irrelevant attribute
noise and class noise, but varied the noise level for relevant attribute noise. When
the noise level is 0%, the accuracy of 1-NN is comparable to that for the optimal
k-NN, for both target concepts. However, the expected accuracy of 1-NN decreases
almost linearly with an increase in the noise level. In contrast, the expected accuracy
of the optimal k-NN exhibits slower degradation. For the 1-of-5=2 concept, the accu-
racy of the optimal k-NN is not greatly changed with the noise level. Moreover, from
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Fig. 8. The e ects on the expected accuracies of 1-NN and the optimal k-NN of (a) relevant attribute noise
and (b) class noise. The number of training instances is -xed at 32.
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Fig. 8(a), we can observe that both accuracies of 1-NN and the optimal k-NN are 1
2

for the 3-of-5=2 concept when the level for relevant attribute noise is 50%. When we
have p=q= 1

2 , �r = 1
2 , and �c=0, an arbitrary instance a ected by relevant attribute

noise has the positive class label with the probability of 1
2 for any m-of-n=l concepts

where m=(n+1)=2. Hence, this observation can be generalized as the following claim.

Claim 7. When we have �r = 1
2 , �c=0, p=q= 1

2 , and m=(n + 1)=2, each expected
accuracy of k-NN given in Eqs. (34), (44), and (45) is always 1

2 .

Fig. 8(b) shows the corresponding e ect of class noise. Again, we used N=32
and p=q= 1

2 . Here, we used �i =�r =0 as the noise rate for each attribute noise,
but varied the noise level for class noise. For the 3-of-5=2 concept, both 1-NN and
the optimal k-NN exhibit similar behavior to the corresponding tests with relevant
attribute noise. However, the e ect of class noise on the accuracy di ers entirely from
one of relevant attribute noise for the 1-of-5=2 concept. The expected accuracy of 1-NN
linearly decreases to 0.5. In contrast, the optimal k-NNs accuracy does not substantially
change until about a 30% noise level, whereafter it rapidly decreases to 50%. Also,
Fig. 8(b) shows that both expected accuracies of 1-NN and the optimal k-NN are 1

2
for each concept when the class noise level is 50%. For a 50% class noise, an arbitrary
instance a ected by class noise has the positive class label with the probability of 1

2 .
That is, we can generalize this observation for any domain characteristics with the
exception of �c as the following claim.

Claim 8. When �c= 1
2 , each expected accuracy of k-NN given in Eqs. (34), (44), and

(45) is always 1
2 .

As can be seen in Fig. 8(b), 1-NNs accuracy decreases linearly with an increase in
the class noise level. This observation can be generalized as the following claim.

Claim 9. Assume class noise a5ects only training instances but not test instances.
When we have k=1 and �r =�i =0, the expected accuracy, A′, given in Eq. (34)
can be expressed as

A′ = A+ (1− 2A)�c; (46)

where A denotes the corresponding expected accuracy of 1-NN for �c=0.

This claim shows that the expected accuracy of 1-NN changes linearly with the
inclination of (1 − 2A) with an increase in the level for class noise a ecting only
training instances, when �r =�i =0.
Moreover, when class noise a ects only test instances, this property holds for any

value of k. That is, we have the following claim.

Claim 10. Assume class noise a5ects only test instances but not training instances.
When we have �r =�i =0, the expected accuracy of k-NN , A′′, given in Eq. (44) can
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be represented as

A′′ = A+ (1− 2A)�c; (47)

where A denotes the corresponding expected accuracy of k-NN for �c=0.

Furthermore, when class noise a ects both test and training instances, the e ect of
class noise on 1-NNs accuracy can be shown as the following claim.

Claim 11. Assume class noise a5ects both training and test instances. When we have
k=1 and �r =�i =0, the expected accuracy, A′′′, given in Eq. (45) can be expressed
as

A′′′ = A− 2�c(1− �c)(2A− 1); (48)

where A represents the corresponding expected accuracy of 1-NN for �c=0.

4.2.4. Optimal value of k
Finally, we explore the relationship between the optimal value of k and the number of

training instances in the noisy domain. This study dealt with a 3-of-5=2 target concept.
Fig. 9(a) shows the e ect of relevant attribute noise on the optimal value of k as a

function of the number of training instances N . We used p=q= 1
2 as the probability

for each attribute, and �i =�c=0 as the noise rates for irrelevant attribute noise and
class noise, but varied the noise level for relevant attribute noise and the number of
training instances. For a 0% noise level, the optimal value of k remains k=1 until
N=28. There is a rapid increase in the optimal k at N=32, and then the optimal
k almost linearly increases with an increase of N . That is, the optimal value of k is
strongly sensitive to the size of the training set after the optimal k greater than k=1
with an increase in N . Moreover, the predicted behavior about the optimal value of
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Fig. 9. The optimal value of k as a function of the number of training instances for several noise levels of
(a) relevant attribute noise and (b) class noise. The target is a 3-of-5=2 concept.
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k is almost the same for 5%, 10%, and 30% levels of noise, regardless of N . Thus,
relevant attribute noise does not signi-cantly a ect the optimal value of d.
Fig. 9(b) shows the corresponding e ect of class noise. We used p=q= 1

2 and
�r =�i =0, but varied the class noise level and the number of training instances. As
before, the optimal value of k almost linearly increases as the number of training
instances increases for each level of class noise. That is, the optimal k is strongly
sensitive to the size of the training set, especially for a large number of N after the
optimal k greater than k=1. Also, class noise does not mostly a ect the optimal value
of k, regardless of the number of training instances.

5. Concluding remarks

In this paper, we have presented average-case analyses of the k-NN classi-er
(k-NN) employed in most instance-based learning algorithms. As the target concept,
we dealt with the m-of-n=l target concept. Our analyses were individually provided for
the noise-free domain and for the noisy domain including three types of noise: relevant
attribute noise, irrelevant attribute noise, and class noise.
First, in the noise-free domain, we have formally represented the expected accuracy

of k-NN as a function of domain characteristics, including the size of training set,
the number of relevant and irrelevant attributes, the probability of each attribute, the
threshold value, and k. To explore the implications of this analysis, we plotted the
predicted behavior of k-NN for arti-cial domains. The predicted behavior explored
involves the e ects of each domain characteristic on the expected accuracy of k-NN,
the required number of training instances to achieve a certain accuracy, and the optimal
value of k against the size of training set.
Next, we extended the analysis to handle three types of noise, and expressed the

expected accuracy of k-NN as a function of domain characteristics including the amount
of each type of noise. We also investigated the behavioral implications of the analysis
by predicting the e ects of each type of noise on k-NNs accuracy and on the optimal
value of k.
One issue we have not addressed is the tractability of our analysis. Although our

analysis presented a formal description of k-NNs behavior as the accuracy function,
the function’s form was complicated and the calculations needed to predict behav-
ior could take extremely long for large numbers of training instances and attributes.
The diFculty resulted from the analyses’ reliance on the exact calculation of prob-
abilities for all possible combinations of events. Some researchers pointed out this
computational limitation of average-case analysis, and proposed approaches to realize
tractable average-case analysis of induction. Golea and Marchand [12] presented an
average-case analysis of perceptrons with binary weights by using an approximation
of the expected accuracy, and Langley and Sage [18] analyzed a Bayesian classi-er
using this technique. Also, Reischuk and Zeugmann [27] gave upper and lower bounds
on the mind change complexity which is closely related to the number of prediction
errors for conjunctive learning algorithms. Moreover, by introducing a new domain
characteristic which is the number of instance pairs belonging to the same class with a
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certain distance, we gave a simple expression of the expected accuracy of 1-NN, and
showed the predicted behavior of 1-NN for large training and attribute sets where em-
pirical approaches such as Monte Carlo simulations are diFcult [23]. Following these
approaches, we should overcome the computational drawback of the current average-
case analyses of k-NN.
Another direction for future research involves using average-case analysis to better

understand the behavior of k-Nearest neigbhor and other induction algorithms in natural
domains. This would require extending the analysis to handle non-Boolean attributes
and a broader range of target concepts. Recently, we presented an average-case analysis
of 1-NN for any target concept de-ned over discrete attribute domains [23]. In the near
future, we would like to extend this analysis to k-NN and to apply other induction
algorithms.
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Appendix A. Proof of Claim 9

Proof. When we have k=1, Psp(x; y; d; Nl; Ne) given in Eq. (21) can be represented
as

Psp(x; y; d; Nl; Ne) =
Ne∑

Nep=0
Peps(x; y; d; Ne; Pep)Pksp(0; Ne; 0; Nep)

=
Ne∑

Nep=0
B
(
Nep;Ne;

Pep(x; y; d)
Pe(x; y; d)

)
Nep

Ne

=
Pep(x; y; d)
Pe(x; y; d)

: (A.1)

In a similar way, P′
sp(x; y; d; Nl; Ne) given in Eq. (43) can be expressed as

P′
sp(x; y; d; Nl; Ne) =

P′
ep(x; y; d)

P′
e(x; y; d)

: (A.2)

On the other hand, when �r =�i =0, P′
p′(x; y) given in Eq. (32) can be represented as

P′
p′(x; y) =

{
�cPocc(x; y) if 06 x ¡ m;

(1− �c)Pocc(x; y) if m6 x 6 n;
(A.3)
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Hence, we can express P′
ep(x; y; d) given in Eq. (42) as

P′
ep(x; y; d) = �c

m−1∑
u=0

l∑
v=0

Pocc(u; v)Pdis(x; y; u; v; d)

+ (1− �c)
n∑

u=m

l∑
v=0

Pocc(u; v)Pdis(x; y; u; v; d)

= �c(Pe(x; y; d)− Pep(x; y; d)) + (1− �c)Pep(x; y; d)

= �cPe(x; y; d) + (1− 2�c)Pep(x; y; d): (A.4)

Since we have clearly P′
e (x; y; d)=Pe(x; y; d) when �r =�i =0, the following equation

holds:

P′
sp(x; y; d; Nl; Ne) = �c + (1− 2�c)Psp(x; y; d; Nl; Ne): (A.5)

Also, for �r =�i =0, we straightforwardly have

P′
num(x; y; d; Nl; Ne) = Pnum(x; y; d; Nl; Ne): (A.6)

From these Eqs. (A.5) and (A.6), when k=1 and �r =�i =0, we can obtain the
following equation:

P′
pos(x; y) = �c + (1− 2�c)Ppos(x; y): (A.7)

Hence, we have the desired equation:

A′ =
l∑

y=0

[
m−1∑
x=0

Pocc(x; y){1− (�c + (1− 2�c)Ppos(x; y))}

+
n∑

x=m
Pocc(x; y)(�c + (1− 2�c)Ppos(x; y))

]

=A+ (1− 2A)�c: (A.8)

Appendix B. Proof of Claim 10

Proof. When �r =�i =0, Eq. (A.3) holds and we can express P′
n′(x; y) given in Eq. (33)

as

P′
n′(x; y) =

{
(1− �c)Pocc(x; y) if 06 x ¡ m;

�cPocc(x; y) if m6 x 6 n:
(B.1)
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Hence, the expected accuracy of k-NN given in Eq. (44) can be rewritten by

A′′ =
l∑

y=0

[
m−1∑
x=0

{(1− �c)Pocc(x; y)(1− Ppos(x; y)) + �cPocc(x; y)Ppos(x; y)}

+
n∑

x=m
{�cPocc(x; y)(1− Ppos(x; y)) + (1− �c)Pocc(x; y)Ppos(x; y)}

]

=A+ (1− 2A)�c: (B.2)

Appendix C. Proof of Claim 11

Proof. When k=1 and �r =�i =0, we have Eqs. (A.3), (B.1), and (A.7). Hence, the
expected accuracy of 1-NN given in Eq. (45) can be rewritten by

A′′′ =
m−1∑
x=0

l∑
y=0

[
(1− �c)Pocc(x; y){1− (�c + (1− 2�c)Ppos(x; y))}

+ �cPocc(x; y)(1− 2�c)Ppos(x; y)

]

+
n∑

x=m

l∑
y=0

[
�cPocc(x; y){1− (�c + (1− 2�c)Ppos(x; y))}

+(1− �c)Pocc(x; y)(1− 2�c)Ppos(x; y)

]

=A+ 2�c(1− �c)(1− 2A): (C.1)
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