
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

E-mail addr
Neurocomputing 71 (2008) 1477–1499

www.elsevier.com/locate/neucom
Third-order generalization: A new approach to categorizing
higher-order generalization

Richard Neville

School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester M13 9PL, UK

Received 9 September 2005; received in revised form 22 March 2007; accepted 14 May 2007

Communicated by M. Magdon-Ismail

Available online 12 June 2007
Abstract

Generalization, in its most basic form, is an artificial neural network’s (ANN’s) ability to automatically classify data that were not seen

during training. This paper presents a framework in which generalization in ANNs is quantified and different types of generalization are

viewed as orders. The ordering of generalization is a means of categorizing different behaviours. These orders enable generalization to be

evaluated in a detailed and systematic way. The approach used is based on existing definitions which are augmented in this paper. The

generalization framework is a hierarchy of categories which directly aligns an ANN’s ability to perform table look-up, interpolation,

extrapolation, and hyper-extrapolation tasks.

The framework is empirically validated. Validation is undertaken with three different types of regression task: (1) a one-to-one (o–o)

task, f(x):xi-yj; (2) the second, in its f(x):{xi,xi+1,y}-yj formulation, maps a many-to-one (m–o) task; and (3) the third f(x):xi-
{yj,yj+1,y} a one-to-many (o–m) task. The first and second are assigned to feedforward nets, while the third, due to its complexity, is

assigned to a recurrent neural net.

Throughout the empirical work, higher-order generalization is validated with reference to the ability of a net to perform symmetrically

related or isomorphic functions generated using symmetric transformations (STs) of a net’s weights. The transformed weights of a base

net (BN) are inherited by a derived net (DN). The inheritance is viewed as the reuse of information. The overall framework is also

considered in the light of alignment to neural models; for example, which order (or level) of generalization can be performed by which

specific type of neuron model.

The complete framework may not be applicable to all neural models; in fact, some orders may be special cases which apply only to

specific neuron models. This is, indeed, shown to be the case. Lower-order generalization is viewed as a general case and is applicable to

all neuron models, whereas higher-order generalization is a particular or special case. This paper focuses on initial results; some of the

aims have been demonstrated and amplified through the experimental work.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Generalization; Information inheritance; Reuse of information; Higher-order; Sigma–pi; Recognition; Classifier; Interpolation; Extrapolation;

Hyper-extrapolation; Symmetric transformations; Weight generation.
1Empirical error is a mean sum squared error calculation that extends

over a discrete set. Empirical error is the normal error utilized during
1. Introduction

The ability to generalize is one of the main reasons why
artificial neural networks (ANNs) are utilized for so many
different tasks. Generalization, in its most basic form, is an
ANN’s ability to automatically classify data that were not
seen during training [31]. This differs from the view taken
e front matter r 2007 Elsevier B.V. All rights reserved.

ucom.2007.05.003

ess: r.neville@co.umist.ac.uk
in statistical learning [73,83] which states that ‘‘in learning
from a set of examples, the key property of a learning
algorithm is generalization: the empirical1 error must
converge to the expected2 error when the number of
supervised training, such as the backpropagation training regime [102].
2Expected error is an integration of the square error over the true

function that extends over a set of continuous intervals.

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.05.003
mailto:r.neville@co.umist.ac.uk

ARTICLE IN PRESS

Nomenclature

s(�) termed the sigmoidal, logistic, or squashing
function, s(�) defined by y ¼ s(a) ¼ 1/(1+e�a/

r), where p is a positive valued parameter that
determines the shape or ‘softness’ of the curve.

W ¼ [w1,y,wn] termed a weight array or matrix, it is a
row matrix representing an array of weights
indexed from 1 to n.

Pm ¼ Pfm1;m2;m3g where P is defined as a probability, then
Pm is the probability given input address m.

m termed ‘‘Mu,’’ m will be written mi, so that m is
the string m1,m2,y, mn. In this article, m is an
address.

w termed a weight, it applies a weighting,
normally multiplicative, to another variable,
i.e. xw multiplies x by w.

P ¼

P1

�

�

�

Pn

2
6666664

3
7777775

a probability array or matrix, it is a column

matrix. An array of probabilities indexed from
1 to n.

W�P where ‘‘�’’ denotes the inner product, W�P , or
the dot product. The ‘‘�’’ is also known as the
scalar product since its result is a number,
rather than a vector.

S termed sum or summation of a series, e.g.
P

m
implies summation over all values of m andPi¼n

i¼1 implies summation over index i from
i ¼ 1 to i ¼ n.

P termed product of a series, e. g
Qi¼n

i¼1 implies
multplications of a number of terms over index
i from i ¼ 1 to i ¼ n.

A means ‘‘belongs to’’, i.e. x A A means ‘‘x
belongs to the set A’’ or ‘‘x is a member of the
set A.’’

@ the set of natural numbers 1, 2, 3,y
: Used in set notation and set theory The

notation {yi: i ¼ 1,y, n} (or sometimes {yi

|i ¼ 1,y, n}) is used to denote the set, {yi},
containing all objects, given that {yi} is indexed
over a set of natural numbers {1,2,3,y, n}.

- means ‘‘maps to’’ between variables, functions,
or sets, i.e. f:x-x2 or {x1, x2}-{xa, xb}

E means approximately equal to.
6¼ means not equal to.
8 means ‘‘for all.’’
o means less than.
|| || means modulus, implies squared then square

root, i.e.

ffiffiffiffiffiffi
ð Þ

2
q

:

qE/qW means the derivative of the function E at a
point where the slope of the tangent is at
(W,E(W)).

y* superscript star, implies approximation, such as
an approximate or estimate of a function,
y* ¼ f(xt).

f/(x) means reflection in a horizontal line or reflec-
tion in a line perpendicular to the y-axis.

fm(x) means reflection in a vertical line or reflection in
a line perpendicular to the x-axis.

f/(fm(x)) means combination or sequence of reflec-
tions. First reflection in a horizontal line or
reflection in a line perpendicular to the y-axis,
then reflection in a vertical line or reflection in a
line perpendicular to the x-axis.

fz means scale or multiply a function in the y

direction
f y� means rotate a f unction by y degrees and can

be augmented to f y� , implies rotation of a set of
functions.

Ry means rotation matrix
cos y � sin y

sin y cos y

� �
when

applied to a point, {x, y}, the rotated coordi-
nates are x(y) ¼ x� cos y+y� sin y, and
y(y) ¼ �x� siny+y� cosy.

R. Neville / Neurocomputing 71 (2008) 1477–14991478
samples n3 increases4’’. This implies that an algorithm
which guarantees good generalization for a given n will
predict5 well, if the empirical error on the training set is
small. In the context of artificial intelligence, learning from
observation may be cast as a process of searching for a
good hypothesis: in this context, generalization is the
extension of a hypothesis to correctly categorize and
3n is the number of examples in the training set.
4In their paper, Mukherjee et al. [73] state that: ‘‘the precise notion of

generalization defined here roughly agrees with the informal use of the

term in learning theory’’.
5Predict—‘‘the basic goal of supervised learning is to use the training set

to learn a function that evaluates [previously unseen] new inputs, x, and

predicts the associated output, y [73,83].
include new examples [88]. When learning is aligned to
machine learning, generalization can be viewed as ‘perfor-
mance evaluation’, achieving a higher degree of predictive
accuracy when tested on unseen data [60]. In a frame-
based6 expert system interpretation, generalization is
characterized by ‘a-kind-of’ or ‘is-a’ relationship between
objects [74]. Clearly, there are numerous interpretations of
generalization within different research fields. This paper
develops a framework within which generalization specifi-
cally relating to ANNs is quantified.
6A frame is a data structure which captures knowledge that represents a

particular object or concept.

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1479
Research into generalization in ANNs has focused on
network generalization performance [20,48,94,99]. Other
researchers have investigated the actual structures (or
topology) of ANN and their effect on generalization
[2,5,66]. This work has, as you would expect, evolved
towards adaptive (or self-evolving) network topologies
[29,51,86]. Naturally, methodologies for improving gener-
alization are under investigation [59,76,104]. However,
apart from [31] no real framework or descriptive metho-
dology has been put forward to categorize different types
of generalization.

This paper presents a framework for categorizing general-
ization that is both detailed and systematic. It proposes a
framework within which different types of generalization can
be evaluated. Previous research divided generalization into
three categories [31]. However, these categories were fuzzy
and imprecise. This paper further refines existing definitions
by assigning to each category a logical predicate that it must
fulfill in order to achieve a specific type (or order) of
generalization. Then, it breaks the orders down into four
different categories. The more sophisticated types of general-
ization are termed higher-order.

Higher-order generalization utilizes information inheri-
tance. Information inheritance enables a trained base (or
parent) net’s weights to be symmetrically transformed and
inherited by a DN that then maps a related but different
isomorphic function. Information inheritance is achieved
utilizing matrix transformations [75] (in this paper, they have
been reformulated as STs [7]) which enable other DNs to
have their weights prescribed (or generated). The framework
generates the weights of an ANN using three steps.

Step I—a base net’s (BN’s) weights are generated by
training the BN to perform a regression task, e.g. a base
function.

Step II—a DN’s weights are generated by ST of the BN’s
weights. The DN then maps a symmetrically related
function.

Step III—finally, to attain the inverse of a symmetrically
related function, a derived-trained net’s (DTN’s) weights
are generated utilizing the DN. The DN generates an
inverse set of previously unseen training vectors. The
generated training vectors are then used to train the DTN.
The DTN performs a regression task that then maps a
symmetrically related inverse of the function mapped by
the DN.

Note that the DN’s and DTN’s weights enable the so-called
derived nets (DNs) to perform higher-order generalization by
mapping a symmetrically related (or isomorphic) function.
Here, inversion (or inverse) implies the transformation of
points {x,y} to a corresponding set of points {y,x} known as
their inverse points. It is also aligned to permutation inversion;
a pair of elements {y,x} is called a permutation inversion if the
order of the elements was previously {x,y}. The DN could be
cast as intuitive as this implies immediate perception or having
knowledge without prior training.

A framework is then developed which enables higher-
order generalization in ANNs to be categorized. The
process was undertaken in six phases. These are listed
below:
Phase I—development of a higher-order generalization

framework.
Phase II—derivation of the distance function used to

compare base and derived functions in order to validate
that they are symmetrically related. Thus, we can validate
that the DNs perform higher-order generalization.
Phase III—development of an ST theory based on

matrix transformations. The third phase develops the
necessary ST to generate the weights of DNs that perform
higher-order generalization.
Phase IV—training of the BN.
Phase V—utilization of information inheritance (in the

form of ST transformations of weights in phase III) to
instantiate the DN’s weights. If necessary, train the DTN
with the inverse vectors generated by the DN.
Phase VI—validate that the BN, DN, and DTN perform

01, 11, 21 or 31, generalization (utilizing the distance function
derived in phase II), in an empirical (or experimental) phase.
During this experimental phase, a set of basic and complex

polynomial functions were used to evaluate the regression or
function mapping ability of ANNs which are claimed to have
higher-order generalization capabilities. These were utilized in
order to provide a more general case through which to
evaluate this research. A hypothesis could then be formulated
to test whether the general case is true for one-to-one (o–o),
many-to-one (m–o) (single-valued functions), and one-to-
many (o–m) (multi-valued functions). A detailed description
of the different types of function is given in Section 4.1.2. The
m–o and o–m regression tasks are undertaken in order to
show that the higher-order framework and the associated
transformations are not only applicable to simple regression
tasks, e.g. o–o. By evaluating these types of regression tasks,
we are able to quantify the claims and state explicitly which
type of function (o–o, m–o and o–m) validate the framework.
In order to validate the framework and to make the
associated procedures more generally applicable to connec-
tionists, a set of four geometric transformation procedures
was devised in Section 3.2.14.
The paper associates an ST and a mathematical

(symbolic) notation relating to a transformation of a
function, T(), in a particular manner. For example, an
inverse transformation, yS�1, is symbolically associated
with a transformation of a function f(x) to f /(x) and is
denoted ‘‘CCS�1 (i.e. T()) f /(x))’’, where ‘‘) ‘‘implies
‘equivalent to’ a function, f/(x), this notation is utilized in
3.2.14. Note that f /(x) implies reflection in a line
perpendicular to the y-axis, while f1 implies reflection in a
line perpendicular to the x-axis.
In previous research, [31] investigated issues relating to

three levels of generalization. One issue that Gurney did
not develop further, and hence was the motivation for this
study, was a more precise definition of the levels of
generalization. These issues are addressed in this paper by
the presentation of a set of logical predicates that have to
be met in order to achieve each level of generalization. In

ARTICLE IN PRESS

Table 1

Tabulation of description of higher-order generalization

Order Level Symbol Equivalence Description Generic type

0 – 01 – The network’s weights are generated utilizing a set of stimuli and its

prerequisite is that it must correctly map its stimuli

Look-up table

1 1 1�1 – The network’s weights are generated utilizing a set of stimuli and its

prerequisite is that it must correctly map unseen data through

interpolation

Interpolation

1 2 1�2 – The network’s weights are generated utilizing a set of stimuli and its

prerequisite is that it must correctly map unseen data through

extrapolation

Extrapolation

2 – 21 01 The network’s weights are generated and its prerequisite is that it must

correctly map unseen symmetrically related (or isomorphic) data (e.g.

reflected (or rotated) and/or scaled functions)

Hyper (or

transformed) look-

up table

3 1 3�1 1�1 The network’s weights are generated and its prerequisite is that it must

correctly map unseen data that map symmetrically related data

utilizing interpolation

Hyper-interpolation

3 2 3�2 1�2 The network’s weights are generated and its prerequisite is that it must

correctly map unseen data that map symmetrically related data

utilizing extrapolation

Hyper-extrapolation

R. Neville / Neurocomputing 71 (2008) 1477–14991480
addition, the orders of generalization are more strictly
differentiated.

This paper begins by relating this research to other
connectionist studies. It then introduces a systematic frame-
work for categorizing higher-order generalization. Table 1
provides textual definitions to describe higher-order general-
ization. Table 2 then gives a set of visual depictions of the
different orders. After this, the neural model utilized in the
regression mapping networks in this study is introduced. The
following paragraphs outline the underlying theory for
isomorphic functions, the derivation of the distance function,
symmetric transformations (STs), and geometric transforma-
tions. The experimental work then validates our claims, using
a number of regression or function estimation tasks. Finally,
conclusions are drawn. A nomenclature (or taxonomy) of the
entire mathematical notation included in this paper is
provided to help the reader comprehend the notation used.

2. Related research

2.1. Research into generalization

Research into generalization in artificial networks covers a
number of subdomains, from investigation into a network’s
generalization performance to studies into generalization
performance aligned with different network structures or
topologies. Investigations have also been carried out into
methods of improving or optimizing generalization. Several
researchers have presented methods for estimating or
predicting generalization error. A few have even put forward
theories of generalization themselves. An overview of all these
subdomains is briefly given below.

2.1.1. Generalization performance of networks

The most basic research into generalization initially
focussed on the ability of neural networks to interpolate
and extrapolate [20]. This was followed by research, which
concluded that large training sets do not guarantee better
generalization and that training sets with subsets of border
patterns may be no better than any others [99]. Some
connectionist researchers have investigated the general-
ization capabilities of backpropagation and recirculation
networks [48], while others have investigated the general-
ization of feedforward networks [94]. Bayesian criteria
have been applied to neural networks [8,68,69] and have
been shown to generalize better than early stopping when
learning nonlinear functions [90]. Holden and Rayner
studied the generalization of single-layer radial basis
function networks [44]. Lawrence et al. [63] presented an
investigation into local minima and generalization. The
effects of initial conditions on generalization performance
in large networks has been studied by Atiya and Chuanyi
[3]. Two papers by Chen and Mills [13,14] looked at
methodologies for analysing neural network generalization
in control systems. Fault tolerance and generalization have
been studied by Hyeoncheol and LiMin [49]. Other
researchers have also investigated the generalization ability
of fault-tolerant feedforward neural networks [22]. Phanak
[82] studied inter-related fault tolerance, generalization and
the Vapnik–Chervonenkis (VC) dimension.
Ji [53] speculated why generalization occurs with respect

to sample size and capacity of the neural network. His
analysis presented an explanation as to why the number of
samples needed for generalization may be fewer than the
bounds given by the VC dimension. Other researchers have
inferred that it is possible to determine the level of
generalization by monitoring learning behaviour [106].

2.1.2. Neural net structure in relation to generalization

performance

It is important to note that the Kolmogorov theorem [58]
underpins this area as it implies that any continuous

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1481
function can be implemented by a three-layer feedforward
neural network (3LFNN) [41,43], utilizing different non-
linear activation–output (a–o) transfer functions [19].
Other researchers in the field [42,43] have also stated that
an ANN of at least three layers or more is required to
approximate a function f. Note, another body of research
has stated that only one internal hidden layer (or a two-
layer) ANN is necessary if sigmoidal a–o functions are
employed [19,45,46].

Research has also been carried out into the size of a
network and its effect on generalization [5]; further
work in this area investigated the number of hidden
units in a network [2]. Studies [66] have been carried out
into particular types of cascade network architectures
(CNN). Adaptive network topologies have also been
investigated [29,51,86]. An interesting study into one- and
two-hidden layer feedforward networks was carried out
by Redondo and Espinosa [85]. They concluded that
one hidden layer was better than two and that two
hidden layers were more prone to fall into bad local
minima. In the same year, Zhong and Cherkassky [110]
investigated the factors which control the generaliza-
tion ability of multi-layer perceptron (MLP) networks.
Sparse architectures have also been studied by Chakra-
borty [11]. Several researchers have conducted research
using regularization. One paper [92] studied adaptive
regularization and compared two different types, whilst
another [79] compared a three-layer recurrent neural
network (3LRNN) with a 3LFNN. Regularization with
respect to additive noise was investigated and a regu-
larizing term was derived based on a general noise
model [12]. Also, weight elimination [101] has been
used to help prevent overfitting, which should promote
generalization.

2.1.3. Methodologies for improving generalization

The next step in this area of research was to investigate
methods of enhancing the generalization performance of
neural networks [76]. Kruschke [59] looked at methods for
improving generalization in backpropagation networks
with distributed bottlenecks. Whitley and Karunanithi
[104] presented two methods for improving generalization.
One method selected the training ensemble while the other
partitioned the learning strategy. Williams [105] developed
a regularization or penalty term to improve generalization.
In 1994, Watanabe and Shimizu [100] introduced a new
learning algorithm for improving generalization. Sarkar
[89] developed a measure of randomness in generalization
ability. Many researchers have also utilized genetic
algorithms (GAs) or evolutionary computing methodolo-
gies to improve generalization. Bebis and Georgiopoulos
[6] were among them; their paper utilized a GA to build
nets that had good generalization performance and which
were relatively small, and hence decreased the number of
free parameters. Another method of building hierarchical
networks was developed using what are termed ‘stacked
generalizers’ [27]. Szabo and Horvath [47,93] investigated
methods of improving the generalization capabilities of
cerebellar model articulation controller (CMAC) neural
networks. Researchers have also utilized modular ANNs
[25] to develop a method of selecting training examples, as
opposed to the random selection of examples, thus showing
that their algorithm improves generalization. Another
approach [54,55] utilized teacher-directed learning to
improve generalization. In this work, they surmised that
information which relates to training or target patterns
should be maximized. A survey of methods of improving
ANN generalization [107] segmented them into five
categories that work through: modifying the training set
(i.e. modifying the objective function with a regularization
component); adjusting the fitting ability of an ANN (e.g.
adjusting the size of the net, growing, and pruning); ending
network training time (i.e. early stopping); integrating
ANNs (e.g. ensemble of ANNs); and giving a view on
different types of training samples (e.g. consequence of
added noise at different levels).
The above research investigated methods for improving

generalization performance; whereas Ogawa and Oja [80]
researched optimally generalizing neural networks
(OGNNs). Lin and Meador’s [64] study presented a metric
(i.e. a measurement) which enabled trained ANNs to
optimize classification accuracy of unseen patterns.

2.1.4. Estimating/predicting generalization error

Research in this domain has been undertaken by Wada
and Kawato [95]. They presented an information criterion
for predicting the generalization capability of MLPs.
Another metric (or measurement), termed generalized
prediction error (GPE), was based on the number of
effective parameters [71]. Larsen [61] went on to develop
another estimate of generalization error (GEN). Other
researchers [81] have minimized an estimated general-
ization error in order to prevent overfitting. Larsen and
Hansen [62] developed a new average generalization error
(FPER), and compared it with previous work (i.e. FPE and
GPE).
Before concluding this short summary, a notable paper

that evaluated neural networks and the bias/variance
dilemma [26] must be mentioned. It contrasted ANN to
nearest neighbour regression, and Parzen-window regres-
sion, and presented the limitations of neural modelling.
Finally, directly associated research by Christiansen [15]

is complementary to the research presented in this
paper. Christiansen put forward the conjecture that
improved learning and generalization can be facilitated
through the acquisition [learning] of multiple related
functions. In fact, he stated that, ‘‘forcing neural net-
works to learn several related functions together results in
both improved learning and better generalization.’’ Our
dual conjecture is that, ‘‘weights derived from a net which
learns one function can be utilized to prescribe the weights
for other nets which perform related isomorphic func-
tions.’’ In this paper, the newly prescribed networks are
termed DNs.

ARTICLE IN PRESS

Table 2

Visualization of nth-order generalization

Order Level Symbol Visualizations

0 – 01

1 1 1�1

1 2 1�2

2 – 21

3 1 3�1

3 2 3�2

R. Neville / Neurocomputing 71 (2008) 1477–14991482
3. Methods

3.1. Systematic framework for categorizing higher-order

generalization

In this paper, different types of generalization are viewed
as orders. This naming convention is elaborated in the three
tables below.

Table 1 first tabulates zero-order (01), first-order (11),
second-order (21) and third-order (31) generalization in
column one. It then splits a number of these into two
different levels (subtypes). This is followed by the symbolic
notation—where the number denotes the cardinality of the
order, the superscript ‘1’ specifies that it is an order (e.g.
zero-order), the subscripts ‘1’ or ‘2’ specify its level (i.e.
level 1 or 2), e.g. 1�1 implies first-order (11) level 1 (i.e. level
11 denoted by the subscript). After this, the equivalence is
given, e.g. 21 is equivalent [analogue] to 01 in that they both
correctly map the training data in some way. Then, a
textual description is aligned to each order (level). Finally,
the generic type of generalization is specified in the final
column, and type is aligned to work in the field of data
abstraction and hierarchy [65], in particular types and type
hierarchy. In recent years, types and type hierarchy
concepts have been researched under the guise of software
patterns [17] and symmetry [108,109]. In the context of
conventional generalization, machine learning extrapola-
tion may be viewed as out-of-sample performance, whereas
interpolation is cast as in-sample performance.

Each of the above orders of generalization is validated
by the fact that the regression tasks are ‘‘statistically
similar.’’ The statistical similarity is accessed via a
Euclidian distance metric 3.2.6. Note the use of the term
‘generated’ in the textual description of 01 and 11 general-
ization. In this paper, they are generated by training. But
they could also be calculated using any other methodology
that developed a valid set of weights—e.g. a method such
as evolutionary computing could be employed to develop
the weights. It is important to note that Table 1 implicitly
implies that the mappings that each order performs are all
related to a base function. The BNs that perform 01
generalization are trained with a set of input–output
stimuli; this is the only set of training vectors utilized
throughout the whole process. Note that map is viewed as
synonymous with approximate, or estimate, y* ¼ f*(x).
The above framework is supported in Table 2 with a set of
visual depictions of the different orders.

Table 2 visually depicts generalization with respect to a
function mapping task, where yt

¼ f(xt). The diagrammatic
notation used is:

‘K’ (filled-in circles) training data,
‘J’ (empty circles) test stimuli or unseen validation

data,
‘&’ (squares) used in third-order depiction to denote

interpolation (3�1) or extrapolation (3�2).
Next, it is important to note that the dotted lines in

second- and third-order cases denote the line or plane
about which the points (function) are reflected. They also
denote a symmetry axis, or a line of symmetry for a graph.

3.1.1. 01 visualization

To attain 01 generalization the neural network’s task is
to approximate or estimate the function, y* ¼ f(xt).
Training data is depicted as filled-in circles ‘K’; these
map input stimuli xi to output target response yt

i . An ANN
is trained with an input vector X t 2 fxt

1; . . . ;x
t
ng given nA@.

It is trained to map this input vector to an associated target
output vector Y t 2 fyt

1; :::; y
t
ng given nA@, where @ is the set

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1483
of natural numbers 1,2,3,y The graph depicted in Table 2,
order 0, level-(01) shows the input vectors {x1,x2} and the
actual output vectors {y1,y2} derived from a trained neural
net that is said to be performing zero-order generalization.
In fact the output vectors {y1,y2} of this net are equivalent
to the target training vectors fyt

1; y
t
2g that were used when a

supervised training regime was utilized to train the net.
Hence, all the network has done is to correctly classify or
map a set of input vectors to a set of output vectors, i.e.
fx1;x2g ! fy1; y2g � fy

t
1; y

t
2g. Note that - means ‘maps to’

and reads {x1,x2} maps to fyt
1; y

t
2g.

3.1.2. 11 visualization

The graph at order 1, level 1 (1�1) depicts interpolated
first-order generalization. The unseen test stimuli, xa, are
presented to the trained net and they elicit the response ya.

xa are test stimuli ‘J’ that are positioned in between two
input stimuli utilized for training, {x1,x2}. By using the
training data ‘K’ the net is able to utilize the knowledge
encapsulated in it during training to output a response that
is in line with the regression task it was trained to map.
Hence, it has performed interpolated first-order general-
ization. There is a caveat to this statement, in that if the
data points surrounding the test stimuli are not sufficiently
close—for example, in a Euclidian distance [40] sense—the
net may not be able to model the function sufficiently and
it may not generalize well.

The graph at order 1, level 2 (1�2) visualizes extrapolated
first-order generalization. The unseen test stimuli, xb, are
presented to the trained net and they elicit the response yb.

xb is outside the cluster of two input stimuli utilized for
training {x1,x2}. If xb is close enough to the cluster of
training points (i.e. the Euclidian distance is small), the
elicited output yb will be in line with the regression task
that the net was trained to map and will be performing
extrapolated first-order generalization. Note that this is
again predicated on the Euclidian distance between the
unseen test stimuli, xb, and the nearest training input
stimuli x2. If the distance is too large, the net may not
generalize well.

3.1.3. 21 visualization

The graph at order 2, level-(21) shows two different
reflections of the original base function. The left-hand side
(LHS) diagram depicts a net performing second-order
generalization after the learnt data points ‘K’ that
represent a base function have been reflected in a line
perpendicular to the x-axis (dotted line halfway along the
x-axis). The right-hand side (RHS) depicts a net perform-
ing second-order generalization after the learnt data points
have been reflected in a line perpendicular to the y-axis
(dotted line halfway up the y-axis). The transformed data
points ‘J’ are represented as input vectors {xc,xd}, {xe,xf}
and the actual output vectors {yc,yd}, {yc,yd} are derived by
transforming the trained base neural net’s weights. These
transformed weights are prescribed to the DNs; it is the
DNs that perform second-order generalization. Hence, all
that the DNs have done is to correctly classify or map a set
of transformed input vectors to a set of transformed output
vectors, i.e. {x1,x2}-{xc,xd}, {xe,xf} and fy1; y2g � fy

t
1; y

t
2g

! fyc; ydg; fye; yf g. This could be cast as hyper-extrapola-
tion (or to be more precise a hyper, or transformed, look-
up table), as none of the base function’s data points
‘covers’ the space that the reflected points cover. Note that
- means ‘maps to’ and reads xfyt

1; y
t
2g maps to fyc; ydg.
3.1.4. 31 visualization

The graph at order 3, level 1 ð3�1Þ depicts interpolated
third-order generalization. The unseen test stimuli, xg and
xi, are presented to the transformed prescribed DNs and
they elicit the responses yg and yi. xg and xi are in between
two transformed input stimuli, {xd,xc} and {xe,xf}. These
unseen test stimuli are depicted as boxes ‘&’. The
transformed points are depicted as circles ‘J’. The
transformed points can only be elicited once the BN’s
weights have been transformed and allocated to the
prescribed DN. By using the transformed weights, the nets
are able to utilize the knowledge encapsulated in them
during the prescription phase to output responses that are
in line with the transformed functions they were assigned to
map. Hence, they have performed interpolated third-order
generalization. There is a caveat to this statement in that if
the data points ‘J’ surrounding the test stimuli ‘&’ are not
sufficiently close—i.e. in a Euclidian distance [40] sense—
the nets may not be able to model the transformed
functions sufficiently and they may not generalize well.
The second diagram at order 3, level 2 (31), visualizes

extrapolated third-order generalization. The unseen test
stimuli, xh and xj, are presented to the DNs and they elicit
the responses yh and yj. xh and xj are outside the cluster of
two transformed input stimuli, {xd,xc} and {xe,xf}. If xh

and xj are close enough to the cluster of transformed points
(i.e. the Euclidian distance is small), the elicited outputs yh

and yj will be in line with the functions that the nets were
derived to map and will be performing extrapolated third-
order generalization. Note that this is again predicated on
the Euclidian distance between the unseen test stimuli, xh

and xj, and the nearest training input stimuli xd and xf. If
the distance is too large, the net will not generalize well.
3.1.5. Logical predicates for higher-order generalization

Table 3 depicts the logical predicates that have to be met
for each order to be attained. The table depicts the order,
then the required logical predicate, and lastly the meta-data
that helps to explain the predicate. Note that when target
vectors are references, a superscript ‘t’ is assigned to the
input xt

i or output yt
i , fx

t
i ; y

t
i : i ¼ 1; . . . ; ng. Where they are

assigned a superscript ‘v’, this refers to the validation
[unseen] vectors, fxv

j ; y
v
j : j ¼ 1; . . . ; ng.

Constraint C1: fx
v
j axt

i8x
v
j g;

Constraint C2: dijodmax given that: dij ¼ ||xi�xj||.
Note 1: The approximate equal sign, E, is used since a

supervised training regime cannot guarantee that the

ARTICLE IN PRESS

Fig. 1. Depiction of the three (symmetrically) related isomorphic

functions.

Fig. 2. Abstract depiction of the ANN model used to perform regression

(or function estimation) tasks.

Table 3

Logical predicates required to attain nth-order generalization

Order Logical predicates Note

0 If and only if y�i � yt
i8x

t
i 1

1 If and only if y�j � f ðxv
j Þ8x

v
j given C1 and C2 2

2 If and only if y�i � Tðyt
i Þ8ðx

t
i Þ 3

3 If and only if y�j � T f ðxv
j Þ

� �
8T f ðxv

j Þ

� �
given C2 and C2

4

R. Neville / Neurocomputing 71 (2008) 1477–14991484
gradient r or the derivative with respect to the weights qE/
qW at the end of training is qE/qW ¼ 0.

Note 2: dij is the distance between the unseen stimuli,
xjA{xa,xb}, and the nearest input training stimuli
xiA{x1,x2}, x1 in the case of xa and x2 in the case of xb.

dij is the Euclidian distance between the test stimuli xa (or
xb) and the input training stimuli x1 (or x2).

This implies that in order to perform 11 generalization
the unseen stimuli must elicit output response y* to
estimate (approximate) the function f(xt) that the net was
trained to map. Here, the approximation is bounded in that
the Euclidian distance between the unseen test stimuli, xb,
and the nearest training stimuli, x2 (or xa and x1), must be
less than a maximum value dmax; this could be viewed as a
constraint. However, the maximum Euclidian distance,
dmax, is not a value that can be easily calculated. Suffice to
say that, as this Euclidean distance increases, the general-
ization ability of the net drops off. Note that the
approximate equal sign, E, is used in this case to imply
that one function, y*, is approximately equal to another
function, f(.).

Note 3: T defines a transformation of the output
regression task (function mapping task y* ¼ T(f(y))) but
in actuality transforms the BN’s weights, W, to a set of
transformed weights, T(W), that are then utilized by the
DN.

Note 4: This implies that in order to perform 31
generalization, the unseen stimuli must conform to the
following requirement. In order for the estimated output
response y* to be in line with the function T(f(xt)), the net
derived to map it must meet the constraints defined for 11
generalization.

Section 3.2 explains the theory behind the paper’s
validation procedures for higher-order (21 and 31) general-
ization.

3.1.6. 21 and 31 generalization validation

In order to validate that an ANN performed 21 and 31
generalization, each function (trained or derived) is
validated utilizing the mean ranked distance metric, Drd ,
in Section 3.2.6. To be specific, the three other symme-
trically related functions are validated by comparing the
original base function, f b

¼ f(x) with a set of related
functions f rA{f r1,f r2,f r3}. The related functions are
transformed functions rotated by 901 f r1

¼ f 901(x), by
1801 f r2

¼ f 1801(x), and by 2701 f r3
¼ f 2701(x).
In order to map the set of isomorphic functions, the
interval of the input spans was constrained to xA[0,1]
(domain) and the output to yA[0,1] (range); hence the
function state space was constrained to f(x)A[0,1] (range),
see Fig. 1. They then met the requirements of the minimum
and maximum bounds of the net’s input and output.

3.2. The ANN model used to perform regression or function

estimation tasks

The classical approach to performing regression (or
function estimation [43]) tasks with ANNs is presented
below. For an abstract depiction of the ANN model used
to perform regression (or function estimation) tasks, see
Fig. 2.
The topology of the ANN used to perform regression

or function estimation tasks is explained in detail in
Section 3.2.1.

3.2.1. Regression or function mapping networks

To perform higher-order generalization (21 and above) a
procedure for generating DNs and a DTN which map
symmetrically related functions is required. The method
used to generate the weights is the inheritance of weights
from the BN, as shown in Fig. 3.
The DNs inherit a set of transformed [75] weights from a

BN. The DTN then utilizes the DN to generate an inverse
set of training stimuli which are then used to train the
DTNs. The base’s network is trained, in the normal way,
with a set of input stimuli, {x1,y, xn}, and target output
vectors, fyt

1; . . . ; y
t
ng, pairs fx1; yt

1; . . . ; xn; yt
ng. The BNs are

essential during the prescription phase of the other
DNs and DTNs, because only the BN has an associated
set of input–output vectors and, as such, can be trained.

ARTICLE IN PRESS

Fig. 3. Low-level depiction of the regression or function mapping

networks.

7Note that the derived function is obtained utilizing one of the

symmetry transformations STx.
8A successor function is defined for each vector (n-tuple). Note: this is

allowed because the tuples are either finite or countably infinite.

R. Neville / Neurocomputing 71 (2008) 1477–1499 1485
The prescribed DNs have no target output vectors. Hence,
the only way to generate the weights is to utilize the BNs by
inheriting their weights then utilizing ST to transform the
weights and instantiate the DN’s weights. The algorithmics
utilized to train the nets are specified below. First the
neural model used for the experimental work is presented.

3.2.2. Introduction to the sigma–pi neuron model

The neural model utilized for this work is termed a
sigma–pi neuron model [77,78]. The sigma–pi neuron’s
functionality viewed as a matrix equation [78] is

Y ¼ sðWm � PmÞ, (1)

where, for a single unit, W is a row matrix of the weights
Wm ¼ [w1,y,wn], and P is a column matrix of the proba-
bilities of the weights being addressed Pm ¼ [P1,y,Pn]

T

where mA{1,y, n} is the index and s a sigmoid function
Y ¼ sðUÞ ¼ 1=1þ eU=r, given that r defines the shape of
the sigmoid. They are termed sigma–pi units as their
functionality has previously been defined by Gurney [31].
The real-valued activation can be defined as

aðtÞ ¼
1

wm2
n

X
m

wm

Yi¼n

i¼1

ð1þ mjziÞ, (2)

where zi, the input probability distribution, defines the
probability of the input xi. Recently a subset of sigma–pi
neurons, a multi-cube unit (MCU), has been used to study
information processing in dendrites [35,36]. Previous
papers showed how the MCUs stopped combinatorial
explosion which could affect RAM-based neural models
[31,32,34,37]. Sigma–pi units can be configured as multi-
cube sigma–pi networks. A review of the sigma–pi neuron
model and associated models is given in Appendix A.
Ferguson [23,24] describes in great detail the backpropaga-
tion training algorithms utilized in this research.

3.2.3. Algorithmics for weight generation of the ANNs used

to perform regression (or function estimation) tasks

The algorithmics for generating the weights of the ANNs
used to perform regression or function estimation tasks are
discussed below. First the BN is trained. Then the BN is
utilized to generate the weights for the other DNs and
DTNs.
The family of networks are composed of a set of ANNs,
each with the same (internal) topology, see Fig. 3.
However, the weights of the nets are generated using four
different procedures, see Section 3.2.14.

3.2.4. Theory

The theory behind isomorphic functions is outlined in
Section 3.2.5. This is followed by the theory of derivation
of the distance function in Section 3.2.6, STs in Section
3.2.8, and, finally, geometric transformation procedures in
Section 3.2.14.

3.2.5. Isomorphic functions: symmetric functions

The STs (utilized for higher-order generalization in
Section 3.2.8) are isomorphic, i.e. ‘‘A is isomorphic to B’’
is denoted AffiB [38]. Isomorphic transforms denote
geometric congruence, and are related to isometry.
Isometry is a bijective map between two metric spaces that
preserves distances, i.e. d(f(x),f(y)) ¼ d(x,y) where f is the
map and d(x,y) is the distance function. Isometries are
sometimes also called congruence transformations. Two
figures that can be transformed into each other by an
isometry are said to be congruent [18]. The most significant
point about these isomorphic transforms is that the
intermediate distance, i.e. relationship between the data
points (xi,yi), is retained after the transformation. This
implies that if T defines a transformation then f(d(xi,yi))ffi
T(f(d(xi,yi))) denotes an isomorphic relationship, iff (im-
plies if and only if) the distances between the data points
d(xi,yi)8xi,yi are equivalent, before and after the transfor-
mation. The distance metric used to validate that the base
and DNs map isomorphic (symmetric) functions is
presented in Section 3.2.6.

3.2.6. Derivation of the distance function

A Euclidian distance function (see Fig. 4), is used to
compare the different functions (which are the resultant of
the symmetry transformations).
The specific steps taken to derive the final mean ranked

distance function are:
1.
 Given two graphs, b, which represents the base function
f b, and d, which represents the derived function f d,7 the
two graphs form a set GA{b,d} that represents two sets

of point pairs b 2 xb
i ; y

b
i

� �
; xb

iþ1; y
b
iþ1

� �	

and

d 2 xd
i ; y

d
i

� �
; xd

iþ1; y
d
iþ1

� �	

, given iA(1,y,n–1),8 Fig. 4.
2.
 Calculate the Euclidian distance, edi, between all point
pairs in each graph, (x1,y1) and (x2,y2):

edi ¼

ffi
ðxi � xiþ1Þ

2
þ ðyi � yiþ1Þ

2
q

for i ¼ 1; . . . ; n� 1.

(3)

ARTICLE IN PRESS

Fig. 4. Euclidian distances edi, between all pairs of points, (xi,yi) and

(xi+1,yi+1).

R. Neville / Neurocomputing 71 (2008) 1477–14991486
where n–1 is the number of edi calculations, also n–1 is
the number of point pairs in each graph (given n

points). The vector of Euclidian distances, EDA[e-

di,y,edn–1] given iA{1,y,n–1} is then formulated.

3.
 Calculate a vector, R, of ranked Euclidian distances for

all subsequent point pairs in the graphs:

R ¼ ½RankmðEDÞ
 8 m ¼ 1; . . . ; n� 1f g, (4)

m is defined as the rank index, and R is a vector of
ranked Euclidian distances of all subsequent point pairs
in the graphs. R is a vector of n�1 components. The
rank of a value is simply the order in which it would
appear if the pairs of points were sorted.
4.
 Calculate the difference between Rb and Rd for all the
associated point pairs in the two graphs. The difference
metric for each associated point pair is

Diffm ¼ Rb
m � Rd

m

�� �� 8 m ¼ 1; . . . ; n� 1f g, (5)

where 99 defines the abs() absolute value. The absolute
value is required as the difference Rb

m � Rd
m may be

negative, and the final mean ranked Euclidian distance
is a non-negative number.
5.
 Finally, the mean ranked distance is

Drd ¼
1

n�1

Xi¼n�1

i¼1

Diff i, (6)

where n�1 represents the cardinality of ranked list/s.

6.
 If the mean ranked distance is less than or equal to 0.01:

Drdp0:01, (7)
then the two function graphs are treated as symmetric
and the two functions are called symmetry functions or
related functions f r.

In previous research [77] 1% error (i.e. 99% precision)
was utilized as an error metric, e.g. 1% is equal to 0.01. If
this is cast as a root mean square error, erms, it implies a
value of 0.01, which is equivalent to a mean squared error
(MSE) of 0.0001 or 1� 10�4.

3.2.7. Geometric inheritance of information

We present a theory for performing a selection of
geometric (symmetric) transformations in order to enable
ANNs to perform higher-order generalization. The follow-
ing sections present a set of STs used to build a family of
ANNs, depicted visually in Fig. 5.

3.2.8. Symmetric transformations (STs)

The theoretical hierarchy of networks is shown in Fig. 5.
In this hierarchy we have three major components:
1.
 The BN is trained to map a base function, f b.

2.
 The weights of the DNs are generated by the transfor-

mation of the BN’s weights.

3.
 The DTNs utilize the first two components in order to:

3(i). generate the weights of a DN, which is hierarchi-
cally below the DTN.

3(ii). generate the inverse training vectors for the DTN
using a DN.

3(iii). train the DTN with the inverse or exchanged
DN’s x and y vectors, i.e. x2y.
Again, note that due to the complexity of the o–m
function, a 3LRNN DTN is utilized, while a 3LFNN DTN
is used for the o–o and m–o functions.
The DNs (in Fig. 5) are not trained to map the related

functions, ff r1 ; . . . ; f rng; their weights are generated by
multiplying the weight matrices of the BN by one of two
STs. The size of the symmetric matrices below is dependent on
the size of the weight vector. All the symmetric matrices below
have been sized to match a two-weight vector node. Hence,
the size of the weight vector is 2, i.e. W ¼ [w1,w2]. If the weight
vector (or matrix) is a two-element row matrix then the
symmetric matrices below K, and M, will be a 2� 2 square
matrix. If the weight matrix is made up of q elements then the
square matrix K, and M, will be a q� q square matrix.

3.2.9. Inverse transformation: inversion of polarity of

internal weights

The symmetry transformation, S�1, that performs
reflection of the weights’ polarity can be obtained by
performing a weight transformation on the trained net-
work’s internal weight matrix, W. The S�1 is

S�1 ¼W � K . (8)

K is a symmetric matrix where k ¼ �1 transforms
the polarity of the weights in the weight matrix so

ARTICLE IN PRESS

Fig. 5. Depiction of the set of STs used to build a family of ANNs.

R. Neville / Neurocomputing 71 (2008) 1477–1499 1487
that they now utilize the inverse or opposite weights and K

is defined as

K ¼
�1 0

0 �1

� �
. (9)

For example, if W ¼ [w1,w2], then S�1 ¼ ½w1;w2
�

�1 0

0 �1

� �
¼ ½�w1;�w2
.

The transformed weights are assigned to a particular
layer of the DN, while all other (non-transformed) layer
weights are copied, C, to the DN and reused.

3.2.10. Symmetry transformation–permutation of the

internal weights order

The symmetry transform, s, required to perform a
reordering or permutation of the internal weights is

S ¼W �M, (10)

where M is

M ¼
0 1

1 0

� �
. (11)

For example, if W ¼ [w1,w2], then S ¼ ½w1;w2
�

0 1

1 0

� �
¼ ½w2;w1
.

Note that the s transformation is applied to a particular
layer in order to calculate the weights for the DN. All other
layer weights in the DN are copied, C, directly from the
trained net.

3.2.11. Dilation transformation-scaling of the internal

weights

The dilation transform, D, required to perform a scaling
or dilation of the internal weights order is

D ¼W � V , (12)

where M is

V ¼
0 v

v 0

� �
. (13)

For example, if W ¼ [w1,w2], then D ¼ ½w1;w2
�

v 0

0 v

� �
¼ ½v� w2; v� w1
,

where V is a symmetry transformation matrix. n scales or
dilates the weights in the weight matrix, W, so that they are
scaled in the Y-direction or vertical direction.
Note that the D transformation is applied to a particular

layer in order to calculate the weights for the DN. All other
layer weights in the DN are copied, C, directly from the
trained net.

3.2.12. Sequences of transformations

In order to perform a sequence of transformations (or
composite transformations), the above transforhmations

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–14991488
are performed one after another. For example, an S trans-
formation can be followed by a second transformation, S�1.

3.2.13. Mapping the ST to a 3-layer sigma–pi ANN

The above STs are applied to a 3LFNN utilizing the
sigma–pi neuron model. The coding for this mapping is
detailed below.

Firstly, in this paper the transforms are only applied to
the first hidden layer, H1, and the output layer, O. The
second hidden layer’s weights, H2, are just copied, C, from
the BN. The coding is portrayed as a tuple (or triple)
relating to the three layers, H1 H2O. Hence, the coding
SCC implies the transformation of the first layer’s weights
H1 by S, while the second and output layers’ weights, H2

and O, are generated by copying the BN’s weights. When
two transforms are applied sequentially, they are coded
SCC, CCS. When associating specific STs to particular
layers in an ANN, the notation utilized for the resultant
transformed functions, f/0 and f?H, implies that the STs
were applied to the output layer, super case o or the first
hidden layer, super case H.

3.2.14. Geometric transformation procedures

In order to derive all the necessary symmetrically related
functions referred to in Section 3.1.6, four procedures were
developed. Procedures I–IV enable different symmetrically
related functions to be derived. These are explained below.

Procedure I

Procedure I trains the BN with a training set with the
backpropagation training regime. The procedure builds on
the theoretical foundations described in Section 3.2.8 and
uses the following step.
I.1
 Define and train a BN to perform a base function
mapping task. This BN is called a generator because it
is used to generate DNs.
Procedure II

Procedure II uses a symmetric transform (CCS�1) to
transform the BN’s weights to derive an auxiliary DN. The
auxiliary DN is then utilized in its vector generating mode
to generate the inverse training vectors for a DTN. It does
this by exchanging the input–output vector (generated by
the DN) and then uses backpropagation to train the DTN.
This enables the DTN to perform the f901(x)-related
function. The procedure builds on the theoretical founda-
tions described in Sections 3.2.6 and 3.2.8 and uses the
following steps.
II.1.
 Define one untrained DN and then transform the
weights of the BN into this net using the CCS�1

weight transformations. The result is an auxiliary
DN.
II.2.
 Validate that the DN’s transformed weights
T(CCS�1)) f/0 map the correct derived function,
and determine if it is symmetrically related to the base
function using the validation method described in
Section 3.2.6 to compare the f(x) and the f/0

regression tasks. If the mean ranked distance is less
than or equal to 0.01 the DN is symmetrically related
to the BN.
II.3.
 Generate a set of inverse input–output vectors
fx

x2y
i ; yx2y

i g utilizing the T(CCS)�1 transformed
DN. The vectors are termed the derived-generated
(DG) vector set DGðx

x2y
i ; yx2y

i Þ; see Procedure Note
1 below for more information.
II.4.
 Train a DTN with the DG vector set,
DGðx

x2y
i ; yx2y

i Þ; see Procedure Note 2 below for
type of DTN trained.
II.5.
 Validate that the DTN maps the correct derived
function by determining if it is symmetrically related
to the base function using the validation method
described in Section 3.2.6 to compare the f(x) and the
f 901(x) regression tasks.
II.6.
 If the mean ranked distance is less than or equal to
0.01 the DTN is symmetrically related to the BN and
may be termed a related net.
Procedure III

Procedure III uses a symmetric transform (SCS�1) to
transform the BN’s weights to generate the DN’s weights in
order to enable it to perform the f1801(x) related function.
The procedure builds on the theoretical foundations
described in Sections 3.2.6 and 3.2.8 and uses the following
steps.
III.1.
 Define one untrained DN and then transform the
weights of the BN into this net using the SCS�1

weight transformations. The result is a DN.

III.2.
 Validate that the DN’s transformed weights

T(SCS�1)) f /0(f ?H) map the correct derived
function by determining if it is symmetrically related
to the base function using the validation method
described in Section 3.2.6 in order to compare the
f(x) and the f 1801(x) regression tasks.
III.3.
 If the mean ranked distance is less than or equal to
0.01 the DN is symmetrically related to the BN and is
termed a related net.
Procedure IV:

Procedure IV uses a symmetric transform (SCC) to
transform the BN’s weights to derive an auxiliary DN. The
auxiliary DN is utilized in its vector generating mode to
generate the inverse training vectors for a DTN by
exchanging the input–output vector. It then uses back-
propagation to train the auxiliary DTN. This enables the
DTN to perform the f 2701(x) related function. The
procedure builds on the theoretical foundations described
in Sections 3.2.6 and 3.2.8 and uses the following steps:
IV.1.
 Define one untrained DN and then transform the
weights of the BN into this net using the SCC

weight transformations. The result is an auxiliary
DN.

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1489
IV.2.
 Validate that the transformed weights T(SCC))
f ?H map the correct derived function. Determine if it
is symmetrically related to the base function using
the validation method described in Section 3.2.6
which compares the f(x) and the f ?H regression
tasks. If the mean ranked distance is less than or equal
to 0.01 the DN is symmetrically related to the BN.
IV.3.
 Generate a set of inverse input–output vectors
fx

x2y
i ; yx2y

i g utilizing the transformed net
T(CCS�1). These are termed the derived-generated
(DG) vector set DGðx

x2y
i ; yx2y

i Þ; see Procedure Note
1 below for more information.
IV.4.
 Train a DTN with the derived-generated vector set,
DGðx

x2y
i ; yx2y

i Þ; see Procedure Note 2 for the type
of DTN trained.
IV.5.
 Validate that the derived-generated net maps the
correct derived function by determining if it is
symmetrically related to the base function using the
validation method described in Section 3.2.6. This
compares the f(x) and the f2701(x) regression tasks.
IV.6.
 If the mean ranked distance is less than or equal to
0.01 the derived-generated net is symmetrically
related to the BN and may be termed a related net.
The BN, DNs and DTN form a family.
Procedure Note 1: The two sets of vectors were obtained

by exchanging the input–output vector set to provide an
augmented training vector set. The inverse vector set
exchanged the x and y vectors, i.e. x2y. Now, the input
vector set is xx2y

¼ {y1,y, y10} and the output target
vector set is yx2y

¼ {x1,y, x10}, e.g. fx
x2y
i ; yx2y

i g.
Procedure Note 2: Two types of DTN are required. In

the case of the inverse o–o or o–m a FNN is utilized, while
for the o–m function an RNN is required.

4. Empirical results

4.1. Experimental work: validating 01, 11, 21, and 31,

generalization conjecture

4.1.1. Aims of experimental work

The major goal of the experimental work was to train
and validate the nets. Validation involved testing that the
3LFNN
BN
o-o

3LFNN
BN
o-o

X

Y

X

Y

A B C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

0

0

0

0

0

0

0

0

0

Fig. 6. 01 (A, C) and 11 (B, D) gen
nets performed 01, 11, 21, and 31 generalization. Before
delineating the experimental work, the types of regression
task undertaken are discussed.
4.1.2. Types of regression tasks performed by ANNS

There are many different types of regression task that
ANNs can be trained to estimate. The normal regression
tasks undertaken by ANNs are the approximation of
continuous functions f:ACRn-f:BCRm, where {A,B} are
compact sets. The function f is normally defined as o–o and
onto. These are typified by functions of the form
f ¼ f(x) ¼ x2:{xAR+ and xA [0,1]}. However, other
typical functions are m–o (i.e. f(x) ¼ Sin(x)). Both of these
are single-valued functions. Typically, both o–o and m–o
functions can be learnt by multi-layer feedforward ANNs.
More complex functions are termed multi-valued, and
could be viewed as o–m functions. These functions are
typified by the inverse sine which is the multi-valued
function [57] Sin�1(x) [111], also denoted arcsin(x)
[1,39,52], that is the inverse function of the sine. An
example of a multi-valued function is depicted in Fig. 6C
and D. In the experimental work below, a number of
regression tasks were undertaken. One task was an o–o
mapping task. The other was a complex polynomial
m–o, mapped by the DN. A set of auxiliary DNs that
initially mapped o–m functions was used to gene-
rate the inverse vectors for the f�1(x) o–m regression task.
The o–m f �1(x) task was mapped by the DTN’s net in
Section 3.2.14.
The mathematical examples given in this research utilize:
(1)
Y
1

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

0

eraliz
a simple polynomial function:

f ðxÞ ¼ x2 : fx 2 <þ and x 2 ½0; 1
g (14)

as the o–o regression task (see Fig. 6A and B); and

(2)
 a complex polynomial function

f ðxÞ ¼ � 91x6 þ 329x5 � 409x4 þ 209x3 � 37x2

� 0:8xþ 1 : fx 2 <þ and x 2 ½0; 1
g ð15Þ

as the m–o (see Fig. 6C and D). In its inverse
formulation, an o–m (e.g. f�1(x)) task after transfor-
mation is presented in Figs. 7, 9C and D.
3LFNN
BN
m-o

3LFNN
BN
m-o

X X

Y

D

0.5 1

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1

ation test of the BN, f ðxÞ.

ARTICLE IN PRESS

3LFNN
DTN
o-o

3LFNN
DTN
o-o

3LRNN
DTN
o-m

3LRNN
DTN
o-m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 0 0.5 1 0 0.5 1

X

Y

X

Y

X

Y

X

Y

A B C D

Fig. 7. 21 (A, C) and 31 (B, D) generalization test of the f901 (x) generated by a DTN utilizing DGðx
x2y
i ; yx2y

i Þ vectors, derived using transformation

T(CCS�1)) f/0.

R. Neville / Neurocomputing 71 (2008) 1477–14991490
Two 3LFNN BNs mapped the o–o and the m–o base
regression task, a set of 3LFNN DNs mapped the related
o–o and o–m tasks, and a set of 3LFNNs and 3LRNNs
mapped the inverse m–o tasks. The assignments were made
in order to attain the three symmetrically related functions
of each base function, see Fig. 1.

4.1.3. Rationale: experimental delimitations

The Kolmogorov theorem [58] states that any contin-
uous function can be implemented by a 3LFNN [41,43],
utilizing different nonlinear a–o transfer functions [19].
Other researchers in the field [42,43] have also stated that
an ANN of at least three-layers is required to approximate
a function f. Due to this constraint, 3LFNNs are utilized.
Note, another body of research has stated that only one
internal hidden layer (or a two-layer) ANN is necessary if
sigmoidal a–o functions are employed [19,45,46]. However,
our work also enables us to validate the methodology on
more than one internal hidden layer. The following
paragraphs discuss the ANN topologies, training set, and
methods and parameters used to train the different
networks. The error metric used and the results visualiza-
tion methodology are then presented.

4.1.4. Topology of base and DNs

The two distinct regression tasks (single- and multi-
valued) required different types of network topology. The
o–o and m–o regression tasks were mapped to 3LFNNs.
The inverse multi-valued regression task was mapped to a
3LRNN, similar to Elman’s [21] except the output units
were used as the context units (i.e. to attain the delayed
previous state). The 3LRNN was termed an output–input

3LRNN by Mori and Ogasawara [72] when they examined
‘four recurrent neural networks.’ The reason for utilizing
the output–input 3LRNN was related to the ease of
reconfiguring a 3LFNN into a 3LRNN. The output–input
RNN only requires a context layer between the output and
inputs. Hence, for a 1NN1 (3LRNN) net it would require
only one context unit, whereas an Elman’s 3LRNN would
require nH context units if the number of units in the
hidden layer was nH. The output–input 3LRNN was utilized
for the multi-valued task, as feedforward and time delayed
nets could not accurately map the inverse multi-valued
regression tasks, f �1(x).
The topology of a 3LFNN had a single input which was

connected to eight 1-input sigmoidal hidden units, which
were in turn connected to eight 8-input sigmoidal hidden
units, which were then connected to one 8-input linear
visible unit, i.e. a 1–8–8–1 network. The 3LRNN was
assigned the same basic topology m–8–8–1, with m inputs.
In order to try to attain a 1% error (i.e. 99% accuracy) the
3LRNN augmented m inputs were composed of two
sequential inputs (one delayed input) and a delayed output
vector xiA{xn, xn�1, yn�1}. However, these nets achieved
only a 1.5% accuracy (precision). To achieve the required
1% accuracy, a methodology termed an ‘‘expansion of
internal state-space’’ [78] was utilized. Refer to Appendix B
for more details. This methodology was used because even
nets with nine, ten, or more hidden units (with 1-cubes in
the first hidden layer) could not achieve the required
accuracy.

4.1.5. Size of the BN training set

The BN 3LFNN 1–8–8–1 net was trained with a set of
eleven (n ¼ 11 e.g. the size of the training set) input–output,
{x;y}, pattern pairs, fxi; yt

ig, distributed evenly across the
input space, whereas the DTN 3LRNN 3–8–8–1 net was
trained with a set of twenty (n ¼ 20 e.g. the size of the

training set) input–output pattern tuples, fxn; xn�1; yn�1; y
t
ng,

distributed evenly across the input space.

4.1.6. Training method and parameters of nets

Both the BN and DTN 3LFNN and the DTN 3LRNN
were trained for 50,000 epochs with the following back-
propagation rule learning rate and momentum
settings:a ¼ 0.6 for the BN and DTN 3LFNN (and
a ¼ 1.0 for the DTN 3LRNN), l ¼ 0.99; their outputs
were linear a–o functions. Their hidden units used
sigmoidal a–o functions with a r ¼ 0.1 (i.e. defines the
slope of the sigmoid).
The training patterns for the BN and DTN 3LFNN

networks were presented sequentially to the network, and
each pattern was selected at random from the set of
training vectors, where xi is a set of inputs which map to a
set of outputs, yt

i . The DTN 3LRNN was trained using

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1491
truncated backpropagation [21]. Truncated implied that
the yn�1 was regarded as an extra input [9]. The 3LRNN
stored the previous input/output states {xn�1,yn�1}, and
added storage delays (Z�1), which affected the feedforward
phase. The backpropagation phase (inside the net) was
performed without delays. The training patterns for the
DTN 3LRNN networks were presented sequentially to the
network, and each pattern was selected sequentially from
the set of training vectors, where xiA{xn, xn�1, yn�1} was a
set of inputs which map to a set of outputs, yt

n. The three
inputs connected to eight hidden units were initially 3-cube
units, m ¼ 3. In order to achieve a 1% error the number of
input lines to the first layer of hidden units,H1, was
expanded to three inputs per xi, which effectively expanded
the 3-cube to 9-cube units. This meant the input probability
distribution, zi, oversampled the input probability, xi, to
attain higher mapping accuracy. Refer to Appendix B for a
more detailed description.

4.1.7. A methodology for distance measurement and results

visualization

To compare the symmetrically related functions, f r, that
the BN, DNs and DTNs map, a mean ranked Euclidian
distance metric, Drd , is used, see Section 3.2.6. This elevates
the problem of comparing error metrics with respect to a
training set and a validation set, which is a norm when
evaluating the generalization ability of an ANN [34]. It also
aligns with our original premise that only one set of
training vectors is required to train the BN; this was a
prerequisite for our methodology and framework. The
following experimental research considers a set of possible
symmetrical transformations. The transformations are
performed singly (CCS�1) or as composites (SCS�1). The
aims are to:
(i)
 show that the functions the transformed DN and DTN
map are isomorphic (symmetric) to the base function
f b
¼ f(x).
(ii)
 analyse the nets and the regression tasks they map and
state which conform to specific generalization theory
axioms (i.e. orders).
3LFNN
DN
o-o

3LFNN
DN
o-o

X

Y

X

Y

A B C

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0

0

0

0

0

0

0

0

0 0.5 1 0 0.5 1

Fig. 8. 21 (A, C) and 31 (B, D) generalization test of the f1801 (x) gen
(iii)
Y

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

0

erate
categorize the types of generalization order each ANN
performs.
Note that only those with a Drdp0:01 are considered
isomorphic, or statistically similar, and hence can even be
considered for certain orders of generalization.
To validate that the trained BN mapped the base

functions, a root MSE erms was calculated:

erms ¼ 1=n
Xp¼n

p¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyt

i � yiÞ
2

q
¼ 1=Np

Xp¼Np

p¼1

yt
i � yi

�� ��, (16)

where n is the number of training or Np test (or validation)
vectors, yt

i the target output and yi the actual output, and
(�)2 is the squared difference term. The error was summed
over n ¼ 11 3LFNN and n ¼ 20 3LRNN examples or
target vectors utilized for the BN. The test results depict the
01 and 21 points as circles, and the 11 and 31 points as
squares, see Figs. 6–9. The graph plots the node’s output,
y, on the vertical axis against the node’s input, x, on the
horizontal axis, see Fig. 10.

4.1.8. Experimental work: validating that BN performs 01

and 11 generalization

Validation of the BN took place after training. This
validated that the BN performed 01 generalization. The
networks were trained on a set of stimuli and a prerequisite
was that they must correctly map their training data.
Fig. 6A and C depicts the results of the 01 generalization
test of the BN; the resultant accuracies are depicted in
Table 4.
After it had been trained, the BN was then tested with a

set of validation vectors [34], to check that it performed 11
generalization, Fig. 6B and D. The validation set was a set
of unseen vectors. To validate that the BN performed 11
generalization, each function (o–o or m–o) utilized a set of
validation input vectors xv

i and a set of output validation
vectors yv

i . The validation set was derived from the train-
ing set. The validation data points were deduced by
dividing the input interval between the training set points
in half. Hence, if the input training vector’s interval was
3LFNN
DN
m-o

3LFNN

DN

m-o

X X

Y

D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 0 0.5 1

d by a DN utilizing transformation T(CCS�1)) f/0(f?H).

ARTICLE IN PRESS

Y Output

Input

x

Fig. 10. Axis information for graphs displayed in the experimental work.

3LFNN
DTN
o-o

3LFNN
DTN
o-o

3LRNN
DTN
o-m

3LRNN
DTN
o-m

X

Y

X

Y

X

Y

X

Y

A B C D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 9. 21 (A, C) and 31 (B, D) generalization test of the f2701(x) generated by a DTN utilizing DGðx
x2y
i ; yx2y

i Þ vectors, derived using transformation

T(SCC)) .

Table 4

Accuracy of the BN’s function mapping regression task

Regression task 3LFNN 3LFNN

erms erms

01G 11G

f ðxÞ ¼ x2 : fx 2 <þ and x 2 ½0; 1
g 0.000519 0.001395

f ðxÞ ¼ �91x6 þ 329x5 � 409x4þ

209x3 � 37x2 � 0:8xþ 1 :
fx 2 <þ and x 2 ½0; 1
g

0.004096 0.006158

R. Neville / Neurocomputing 71 (2008) 1477–14991492
fxt
1;x

t
2g ¼ f0:14; 0:22g then the validation test point would

have been fxv
1g ¼ f0:18g. These points tested that the net

was performing interpolation. The final validation point
was outside the input vector interval, and as such tested the
net’s extrapolation capability, i.e. fxt

9;x
t
10g ¼ f0:78; 0:86g

then fxv
10g ¼ f0:9g. These tests validated that the BN

performed 01 and 11 generalization as they are both less
than our required 1% accuracy (ermso0.01, re. Section 4.1.4).

4.1.9. Experimental work: validating that DNs perform 21

and 31 generalization

This took the form of three separate validation tests.
Validation Test I

The initial test validated that the first DTNs mapped the
f 901(x) function generated by a DTN utilizing
DGðx

x2y
i ; yx2y

i Þ vectors derived using transformation
T(CCS�1)) f /0 and thus performed 21 and 31 general-
ization. Fig. 7A and C depicts the 21 generalization results
and Fig. 7B and D the 31 generalization results. Both
conform to our requirement of Drdp0:01 which implies
that they are statistically similar and hence are related via
symmetry.
Validation Test II

The next test validates that the second DNs mapped the
f 1801(H) function generated by a DN utilizing transforma-
tion T(SCS�1)) f /0(f ?H) and thus performed 21 and 31
generalization. See Fig. 8A and C and Fig. 8B and D.
Validation Test III:

The final test validated that the third DN mapped
the f 2701(x) function generated by a DTN utilizing
DGðx

x2y
i ; yx2y

i Þ vectors, derived using transformation
T(SCC)) (f ?H) and performed 21 and 31 generalization.,
see Fig. 9A and C and Fig. 9B and D.

5. Discussion and conclusions

This section will focus on the two different (single- and
multi-valued) regression tasks undertaken by the 3LFNN
and the 3LRNN. In particular, it will look at the accuracy
attained by these two types of nets, that is to say how
accurately they performed the function estimation regres-
sion tasks. In order to evaluate the methodology utilized to
attain higher-order generalization, the accuracy of the
networks (trained and derived) must be of the same order.
Accuracy is aligned with a 1% root MSE accuracy (ermso
0.01, re. Section 4.1.4) in the case of the BN and a mean
ranked distance Drdp0:01 (re. Section 3.2.6) which implies
that the base functions f b and the related functions f r are
statistically similar and hence are related via symmetry.
The discussion first addresses the nets’ mapping accuracy
in Section 5.1.

5.1. Nets’ mapping accuracy

The accuracy of the nets is discussed in relation to the
experimental work which validated BN, DN and DTN
performance. The accuracy of the DNs is depicted in
Table 5. All the DNs and DTNs achieve the required
accuracy and hence perform 21 and 31 generalization.
Table 5 tabulates the following columns:
Column I: particular nets and the regression tasks they

perform.

ARTICLE IN PRESS

Table 5

Accuracy of the derived nets

Compare nets and regression tasks ST o–o function o–o function m–o and o–m

functions

m–o and o–m

functions

Drd Drd Drd Drd

21G 31G 21G 31G

Base net f(x) and derived-trained net f 901 (x) CCS�1 0.002571 0.001279 0.002698 0.009130

Base net f(x) and derived net f 1801 (x) SCS�1 2.081668E�17 1.804112E�17 6.318045E�17 3.725090E�17

Base net f(x) and derived-trained net f 2701 (x) SCC 0.002565 0.001304 0.002959 0.004345

Mean Drd 0.001712 0.000861 0.001885 0.004491

R. Neville / Neurocomputing 71 (2008) 1477–1499 1493
Column II: the symmetry transforms performed on the
BN in order to attain the DNs (and then the DN is utilized
to train the DTN’s) weights.

Column III: the measured mean ranked distance Drd in
relation to 21G of the BN and DN (or DTN) o–o
regression function mapping, given that the BN is
stimulated by a set of training vectors.

Column IV: the measured mean ranked distance Drd in
relation to 31G of the BN and DN (or DTN) o–o
regression function mapping, given that the BN is
stimulated by a set of validation vectors.

Columns V and IV: measure the Drd for the m–o and o–m
regression tasks; the description is the same as for columns
III and IV.

5.1.1. Discussion of distance function measurements

In Section 3.2.6, a methodology was developed to
measure statistical similarity of regression tasks performed
by ANNs. The claim that ANNs can indeed perform
higher-order generalization is validated by the fact that the
regression tasks derived from transformation are ‘‘statisti-
cally similar.’’ One of the ways of showing this alignment is
to compare the original graph, b (mapped by the BN), with
the transformed graph, d (mapped by the DN or DTN).
Then, if the interpoint distance is preserved, the graphs are
‘‘statistically similar.’’

The empirical work validated that the BN’s regression
tasks are statistically similar to those of the DN and DTN.
The empirical work investigated a selection of single and
composite transformations, see Fig. 6 to 9A–D. They all
achieved a mean ranked distance of equal to or less than
1% and hence this confirms that they are all ‘‘statistically
similar’’; see Table 5.

5.2. Relation to other research

The work presented relates to a network’s ability to
interpolate and extrapolate [20]. It supplements this
research by quantifying the terminology used to describe
these two effects (e.g. interpolate and extrapolate). Refer to
Sections 3.1, 3.1.1/4, and 3.1.5. It could also be regarded as
a methodology for improving generalization [59,76,104].
However, it does not improve lower-order generalization
ability. It enables the information encapsulated in the nets
performing the lower-order generalization task to be reused
to instantiate weights of other nets that perform related
tasks, and which perform higher-order generalization. The
higher-order technical description, visualization, and logi-
cal predicates are a natural detailed extension to Gurney’s
[31] initial imprecise classification.

5.2.1. Comparison with existing approaches to the reuse of

information in ANNs

The research presented in this paper relates to several
existing connectionist research areas aligned with the reuse
of information in ANNs and to three in particular. The
closest field is that of reuse of information, typified by the
work of Ghosh and others [10,28,84]. The second field uses
neural networks to perform mathematics [50,67,96–98].
Finally, the third field is that of hybrid systems [103]. It is
also directly linked to a fourth research field for solving
functional equations using an approach which shares and
inverts weights in multi-network systems [56].

5.3. Conclusion

The major contribution of this work is the development
of a detailed systematic framework for higher-order
generalization. In this paper, the theoretical methodology
required to perform a type of 01, 11, 21, and 31 general-
ization has been outlined. This type of generalization is
of a more abstract nature than 01 or 11 generalization.
A set of symmetry transformations (matrix transforma-
tions) was presented; these transformations were then
applied to the weight array of the BN. In this way, the
BN and the DNs were able to provide a process that
enabled a family of ANNs to perform multiple regression
or function estimation tasks. The empirical results support
the claim that all the orders of generalization are
achievable for ANNs that perform o–o, m–o and o–m
regression tasks.
Geman et. al [26] identified a important issue which

should always be considered when investigating issues
related to extrapolation. They stated that, ‘‘y extrapolate,
that is, generalize in a very nontrivial sense,’’ which they
then go onto qualify, ‘‘y since the training data will never
‘cover’ the space of all the points.’’ In fact, by utilizing
weight transformations, higher-order generalization does
indeed ‘cover’ [some] of the space that the initial training
data (points) did not cover.

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–14991494
This paper puts forward the conjecture that, ‘‘related
isomorphic regression tasks can be performed by ANNs
without extra training’’. The system presented has a set of
DNs that uses a type of one-shot learning. It is termed one-
shot because only one of the nets (i.e. the base) in the
system was trained with a set of input–output vectors. The
rest of the DN’s prescribed knowledge is inherited from the
BN and its associated weight set. The regression system is
able to map related isomorphic functions; in this case,
isomorphic implies the same type of isomorphic regression
task but the function is reflected and/or scaled in different
axes. Hence, one of the main contributions of this paper is
the concept of information inheritance derived from the
so-called BN. This leads to the premise that a type of
higher-order generalization can be performed utilizing
information inheritance by transformation of the weights
obtained from the BN: a new neural net, called the DN, is
then able to approximate an isometric function without
any training at all.

The reason why the sigma–pi model is employed in this
research is due to the procedure it uses to address its
internal weights. Appendix A details how the inputs set up
a probability distribution across the weights. This means
that the activation is a weighted product, as each weight is
multiplied by its probability of being addressed. This
distribution samples a linear array of weights. It is the
linear (or sequential) manner in which the internal weights
are addressed that enables these transforms to be
performed and, in fact, why they are implemented in
hardware in RAMs. These transforms cannot be per-
formed with standard semi-linear or classical neural units
[87] as the weights are not addressed in this manner.

Generally speaking, a specific set of STs was investigated
(S and S�1), though these may not be the only
transformations that can be performed on ANN weights.
In fact, extra investigations into complex transformations
were carried out, which investigated rotating the weights
utilizing the standard rotation matrix Ry. However, after a
few degrees rotation, the weights distorted and did not
accurately estimate the rotated function. Hence, the trans-
forms that enable inheritance of information are able to
perform only a subset of all affine transformations. They
can perform reflection (S and S�1), dilation (D), and their
combination (CCS�1, SCS�1, and SCC). However, these
transformations appear to be restricted to isometric (or
congruent) functions.

Finally, the results have been mathematically validated
in this paper using a distance metric, Drd (re. Section 3.2.6),
to authenticate that the regression tasks undertaken by the
BN are indeed symmetrically related to the DNs and
DTNs.

5.4. Future research issues

In the future, the author intends to investigate different
types of 3LRNN and their capabilities with respect to
higher-order generalization. This would be advantageous,
as this paper utilized only a particular type of Elman’s
3LRNN [21] (or an output–input Elman 3LRNN [72]).
Higher-order generalization utilizes symmetrical transfor-
mations which could be viewed as symmetry operations.
The transformations are also related to a branch of
mathematics concerned with equivalence relations. A
relation has been defined as, ‘‘y two objects [are] equal
in relation to some particular feature if both possess this
feature’’ by Shubnikov and Koptsik [91]. Both symmetry
operations and equivalence relations are thought to be an
associated research domain worthy of investigation. In
future papers we will investigate transformations on all
layers and transformations on hierarchies of related nets.

Acknowledgements

I am grateful to Dr. Laurence Dixon for his comments
while developing the mathematics and algorithms in this
article. Dr. Laurence Dixon is an emeritus Professor at the
University of Hertfordshire. I would also like to thank
Mrs. Susan Watts who assisted us during the preparation
of the paper and without whose dedication the final paper
would not achieve its goals. I would also like to acknowl-
edge all the help and advice given by the editor of the
journal and all reviewers whom have helped in the
evolution of this research and paper. Finally, I would
thank Liping Zhao, a Lecturer (and valued colleague) at
the University of Manchester, for her continuing help in
evolving symmetry as a domain.

Appendix A. The sigma–pi neuron model

To understand how to perform transformations, it is
necessary to explain the theory of sigma–pi units. The
initial theory of sigma–pi units was first introduced in 1989
[31]. A reappraisal of sigma–pi networks was presented in
1999, in which the RAM’s site-values [31] were viewed as
weights [75].
The a–o function of a classical neural unit [87] is defined

as y ¼ s(Swixi). The a–o function of a RAM [4,16,30,70]
or sigma–pi neural unit [4,23,24,31–37] is defined as
y ¼ s(SwmPm). Sigma–pi units may be viewed as probabil-
istic neural networks. The two neural models are very
similar. The similarities are that: (i) both utilize a sigmoidal
output function s; (ii) both use a–o functions sSw� f(x);
and (iii) both have a summation activation function
Sw� f(x).
The difference lies in the way the RAM neural unit

addresses and stores its weights. In the case of the classical
neural unit, each input, x, has associated with it a
subscript, e.g. x1, which connects that input to a given
input line, i.e. input line 1. The weights, w, also have a
subscript associating them with a given input line, i.e. w1

connects the weight to input line 1.
RAM or sigma–pi neural units however do not associate

a weight with a given input line. They use the set of input
variables {x1, x2, x3} as an index to a sigma–pi memory

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1495
array. For ease of understanding, the inputs are interpreted
as binary xA{0,1}. If, for example, the input address is {x1,
x2, x3} ¼ {1,0,1} then the weight addressed in the sigma–pi
neuron unit is wm ¼ w101, where the input address, m, is the
weight index to the sigma–pi memory array. This does not
mean that these units cannot be used with real-valued
inputs. We can utilize the analogue or A-model [31], which
enables these units to input and output real-values or
analogue values. Alternatively, the inputs can define the
probability of addressing the weights as in the case of the
stochastic or S-model of [31]. The S-model uses analogue
inputs 0pxip1 to define the probabilities of accessing the
weights. Then the probability that each weight is addressed
is defined by calculating the probability {P000,y,P111}.
Thus, in the case of a three-input sigma–pi unit the
probability of addressing weight index m ¼ {m1,m2,m3} ¼
{0,0,0} is Pm ¼ Pfm1;m2;m3g and P000 ¼ (1�x1)� (1�x2)�
(1�x3). When the inputs are set to m ¼ {m1,m2,m3} ¼ {0,0,1}
the probability is P001 ¼ (1�x1)� (1�x2)� (x3), and when
the inputs are set to m ¼ {m1,m2,m3} ¼ {1,1,1} the prob-
ability is P111 ¼ (x1)� (x2)� (x3). In the case of a one-
input sigma–pi unit, P0, the probability is that the input
line takes on the value zero and P1 is the probability
that the input line takes on the value one. Subscript m
in wm is a pointer (index) to a specific weight in the
weight matrix. The input stimuli or input variables
to a network define the probability of addressing each
weight, Pm.

To illustrate how a real-valued input can define a binary
weight address consider a one-input unit with an input
variable, x ¼ 0.25. The single input addresses 2n weights in
the sigma–pi’s memory array. Given n ¼ 1 the weight array
contains 21 ¼ 2 weights, e.g. wm ¼ 0 and wm ¼ 1. Then, the
probabilities of addressing the two weights are P0 ¼ (1�x)
¼ (1�0.25) ¼ 0.75 and P1 ¼ (x) ¼ (0.25) ¼ 0.25. The
probability matrix uses the real-valued inputs to calculate
the probability of addressing each weight. The probability
matrix may be viewed as a means of sampling the weight
matrix. Each weight then makes a Wm�Pm contribution to
the activation SWm�Pm. The output equation implies that
the probabilities, Pm, may be perceived as a means of
setting up a probability sampling profile across the weights
Wm. The probability sampling profile defines the amount
each weight, Wm, adds to the activation. Only those weights
which were sampled, dependent on the input values, were
then used to define the unit’s activation. When training
these units, the sample profile defines which weights were
adapted by the training regime.

In order to apply matrix transformations to sigma–pi
networks, their functionality must be viewed as a matrix
equation:

Y ¼ sðW � PÞ, (A.1)

where ‘‘ � ’’ denotes the matrix product, sometimes called
inner product W �P, or the dot product. The ‘‘ � ’’ is also
known as the scalar product since its result is a number,
rather than a vector. In the case of a single unit, W is a row
matrix of the weights:

W ¼ ½w1; . . . ;ws
 (A.2)

and P is a column matrix of the probabilities of the weights
being addressed:

P ¼

P1

�

�

�

Pn

2
666664

3
777775
, (A.3)

where mA{1,y, n} is the index and s a sigmoid function:

Y ¼ sðUÞ ¼ 1=ð1þ e�U=rÞ, (A.4)

given r defines the shape of the sigmoid, where as r-0.0
the a–o function approaches a step function, which is
analogous to the threshold logic function or Heaviside
function. r-0.5 would make the function the more normal
semi-linear or squash function. U is equal to the scalar
product, W �P. Given W �P is the matrix scalar dot
product of the units’ weights, wm, dot their associated
probabilities, Pm, of being addressed which is

½w1 . . . wn
 �

P1

�

�

�

Pn

2
666664

3
777775
¼ w1P1 þ � � � þ wnPn (A.5)

and this may be reinterpreted as

w1P1 þ � � � þ wnPn ¼
Xn

m¼1

wmPm. (A.6)

Appendix B. Expansion of internal state-space of sigma–pi

units

In order to relate how the sigma–pi unit’s internal state-
space may be expanded, the dynamics of the unit need to
be understood. The units themselves are considered and the
state variables of each unit are defined as a function of the
weights F wmðtÞ

� �
, then the point in an N-dimensional state-

space where the unit is presently located is a function of the
weights. The size of each unit’s internal state-space is a
function of the number of inputs to that unit. The basic
dynamics of a sigma–pi unit is related first. A single n-cube
(sigma–pi unit) when presented with a binary input
stimulus instantaneously addresses only one weight for
each feedforward pass. Real-valued inputs to the sigma–pi
unit address multiple weights. These are required to
estimate the net’s real-valued output. Hence, the sigma–pi
unit effectively weights each weight in proportion to the
probability of the weight being addressed, wm � Pm. Refer
to Appendix B, reference equations (B1), (B.5), and (B6). If
one considers a 1-cube (a 1-input sigma–pi unit) it has two

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–14991496
possible weights, {w0,w1}. The actual weight address is
selected probabilistically in the case of the sigma–pi unit.

In the following example the weights are viewed as a set
of quantized levels. This is done for analysis only, and can
be generalized to the case where the weights are real-valued
and continuous over a bounded interval. The possible
combinations of weight addresses in a 1-cube are defined as
the combination 2C1 of one possible weight out of two.
Each weight has the possible combination of states of
2wmþ1C1, which is one possible state out of 2wm+1 states.
We interpret the weights as ranging over a set of discrete
levels wmA{�2,y,+2}, where wm is represented in
polarized notation. This means the size of the 1-cube’s
internal state-space is defined as

2C1 �
2wmþ1C1 ¼

2!

1!ð2� 1Þ!
�

ð2wm þ 1Þ!

1!ð2wm þ 1� 1Þ!

¼ 2� ð2wm þ 1Þ. ðB:1Þ

In the case of a 2-cube (2-input sigma–pi unit) the size of
the internal state-space is

22 � ð2wm þ 1Þ. (B.2)

Then for the n-cube (n-input sigma–pi unit) case the size of
the internal state-space is

2n � ð2wm þ 1Þ. (B.3)

One may take advantage of this if a unit is not able to
communicate the required bandwidth of information by
increasing the size of the unit’s internal state-space. For
example if a 1-cube is required to learn a given function to
a given accuracy and it does not meet the accuracy
requirement, then one enlarges the unit’s internal state-
space by increasing the number of inputs to the unit. One
should of course note that all the inputs are connected to
the same input state vector xi. Each input to the unit has
the effect of providing a set of probabilities PðmÞ ¼
1=2nQi¼n

i¼1ð1þ mjziÞ that effectively sample the weights wm.
Hence, if we add one more input to the original unit, it
becomes a 2-cube and the size of its internal state-space has
doubled. If we repeat the process by adding one more input
to the unit it becomes a 3-cube and the size of its internal
state-space has increased by 2(3�1) times that of the
original. This can be viewed as over sampling the weights,
all be it an expanded set of weights.

This means sigma–pi units have the ability to expand
their internal state-space in order to learn functions to a
required level of accuracy. This is shown to be the case in
the experimental work in Section 11 [78] (re. Tasks 7, 8 and
9 which show the effects of expanding the hidden units’
internal state-space). In the example, the final training
accuracies were ermsj1�input ¼ 0:012; ermsj2�input ¼ 0:0068,
and ermsj3�input ¼ 0:006.

The above expansion of internal state-space is not the
same as increasing the number of connection weights to a
semi-linear [87] unit, as the input would then have ‘n’
weights connected to it. This means that ‘n’ weights
are utilized to obtain an instantaneous output of the
semi-linear unit. While in the case of a cubic node, a set of
weights is sampled, i.e. 1-input implies 2n

¼ 21 ¼ 2 weights,
2-input implies 2n

¼ 22 ¼ 4 weights, and n-input implies 2n

weights. Remembering that as n-N the sigma–pi units
(single-cube) would be split into multiple-cube units
(MCUs) to enable each to address a subset of the input
state-space [31,32,34–37].
References

[1] M. Abramowitz, I.A. Stegun, Inverse Circular Functions, in

Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables, ninth printing, (Section 4.4), Dover,

New York, 1972.

[2] W.V. Anshelevich, B.R. Amirikian, A.V. Lukashin, M.D. Frank-

Kamenetskii, On the ability of neural networks to perform

generalization by induction, Biol. Cybern. 61 (1989) 125–128.

[3] A. Atiya, J. Chuanyi, How initial conditions affect generalization

performance in large networks, IEEE Trans. Neural Networks 8

(1997) 1045–1052.

[4] J. Austin, A review of RAM based neural networks, in: The

Presentation at the Fourth International Conference on Microelec-

tronics for Neural Networks and Fuzzy Systems, Turin, Italy, 1994.

[5] E.B. Baum, D. Haussler, What size net gives valid generalization?,

Neural Comput. 1 (1989) 151–160.

[6] G. Bebis, M. Georgiopoulos, Improving generalization by using

genetic algorithms to determine the neural network size, in: The

Presentation of the Conference Record of Southcon/95, Fort

Lauderdale, FL, USA, 1995.

[7] G. Birkhoff, S. Mac Lane, A Survey of Modern Algebra, vol. 12th

printing, The Macmillan Company New York, 1963.

[8] C.M. Bishop, Neural Networks for Pattern Recognition, Oxford

University Press, 1995.

[9] M. Bodén, A guide to recurrent neural networks and back-

propagation, SICS, Kista, Sweden, 2001.

[10] K.D. Bollacker, J. Ghosh, Knowledge reuse in multiple classifier

systems, Pattern Recogn. Lett. 18 (1997) 1385–1390.

[11] B. Chakraborty, Effect of a sparse architecture on generalization

behaviour of connectionist networks: a comparative study, in: The

Presentation of the 1999 IEEE International Conference on

Systems, Man, and Cybernetics, Tokyo, Japan, 1999.

[12] P. Chandra, Y. Singh, Regularization and feedforward artificial

neural network training with noise, in: The Presentation of the IEEE

2003 International Joint Conference on Neural Networks, Double-

tree Hotel-Jantzen Beach, Portland, Oregon, USA, 2003.

[13] P.C.Y. Chen, J.K. Mills, A methodology for analysis of neural

network generalization in control systems, in: The Presentation at

the Proceedings of the 1997 American Control Conference,

Albuquerque, NM, USA, 1997.

[14] P.C.Y. Chen, J.K. Mills, Neural network generalization and system

sensitivity in feedback control systems, in: The Presentation of the

Proceedings of the 1997 IEEE International Symposium on

Intelligent Control, Istanbul, Turkey, 1997.

[15] M.H. Christiansen, Improving learning and generalization in neural

networks through the acquisition of multiple related functions, in:

The Presentation of the Proceedings of the Fourth Neural

Computation and Psychology Workshop, 1998.

[16] T. Clarkson, D. Gorse, J. Taylor, C. Ng, Learning probabilistic

RAM nets using VLSI structures, IEEE Trans. Comput. 6 (1992)

1552–1561.

[17] J. Coplien, L. Zhao, Symmetry breaking in software patterns, in:

Springer Lecture Notes in Computer Science, series no. 2177,

Springer, Berlin, 2001, pp. 37–56.

[18] H.S.M. Coxeter, S.L. Greitzer, Geometry Revisited, Mathematical

Association of America, Washington, DC, 1967.

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1497
[19] G. Cybenko, Approximation by superposition of a sigmoidal

function, Math. Control, Signals, Syst. 2 (1989) 303–314.

[20] J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel,

Large automatic learning, rule extraction, and generalization,

Complex Syst. 6 (1987) 877–922.

[21] J.L. Elman, Finding structure in time, Cogn. Sci. 14 (1990)

179–211.

[22] H. Elsimary, S. Mashali, S. Shaheen, Generalization ability of fault

tolerant feedforward neural nets, in: The Presentation of the IEEE

International Conference on Systems, Man and Cybernetics—

‘Intelligent Systems for the 21st Century’, Vancouver, BC, Canada,

1995.

[23] A. Ferguson, Learning in RAM-Based Artificial Neural Networks,

Department of Engineering, University of Hertfordshire, Hatfield

Campus, College Lane, Hatfield, Herts, UK, 1995.

[24] A. Ferguson, L.C. Dixon, H. Bolouri, Learning algorithms for

RAM-based neural networks, Ann. Math. Artif. Intell. (1996).

[25] L. Franco, S.A. Cannas, Generalization properties of modular

networks: implementing the parity function, IEEE Trans. Neural

Networks 12 (2001) 1306–1313.

[26] S. Geman, E. Bienenstock, R. Doursat, Neural networks and the

bias/variance dilemma, Neural Comput. 4 (1992) 1–58.

[27] A.A. Ghorbani, K. Owrangh, Stacked generalization in neural

networks: Generalization on statistically neutral problems, Pre-

sented at the Proceedings of IJCNN.01 International Joint

Conference on Neural Networks, Washington, DC, USA, 2001.

[28] J. Ghosh, A.C. Nag, Knowledge enhancement and reuse with radial

basis function networks, in: The Presentation at the 2002 IEEE

World Congress on Computational Intelligence, Hilton Hawaiian

Village Hotel, Honolulu, Hawaii, 2002.

[29] G.L. Giles, G.W. Omlin, Pruning recurrent neural networks for

improved generalization performance, IEEE 5 (1994) 848–851.

[30] D. Gorse, J. Taylor, Training strategies for probabilistic RAMs,

Parallel Process. Neural Syst. Comput. (1990) 161–164.

[31] K. Gurney, Learning in nets of structured hypercubes, Ph.D.,

Department of Electrical Engineering, Uxbridge, Brunel, UK, 1989.

[32] K. Gurney, Weighted nodes and RAM-nets: a unified approach,

J. Int. Syst. 2 (1992) 155–185.

[33] K. Gurney, Training nets of stochastic units using system

identification, Neural Networks 6 (1993) 133–145.

[34] K. Gurney, An Introduction to Neural Networks, University

College London Press, UCL, UK, 1997.

[35] K. Gurney, Information processing in dendrites: I. Input pattern

generalisation, Neural Networks 14 (2001) 991–1004.

[36] K. Gurney, Information processing in dendrites: II. Information

theoretic complexity, Neural Networks 14 (2001) 1005–1022.

[37] K.N. Gurney, Training nets of hardware realisable sigma–pi units,

Neural Networks 5 (1992) 289–303.

[38] F. Harary, Graph Theory, Addison Wesley Publishing Company,

Reading, MA, 1994, pp. 161.

[39] J.W. Harris, H. Stocker, Handbook of Mathematics and Computa-

tional Science, Springer, New York, 1998.

[40] S.S. Haykin, Neural Networks: A Comprehensive Foundation,

second ed, Prentice Hall, 1998.

[41] R. Hecht-Nielsen, Kolmogorov’s mapping neural network existence

theorem,’’ in: The Presentation of the Proceedinsg of the IEEE First

International Conference on Neural Networks, San Diego, USA,

1987.

[42] R. Hecht-Nielsen, Theory of backpropagation neural network, in:

The Presentation of the Proceedings of the International Joint

Conference on Neural Networks, New York, USA, 1989.

[43] R. Hecht-Nielsen, Neurocomputing: The Technology of Non-

Algorithmic Information Processing, Addison-Wesley, New York,

1990.

[44] S.B. Holden, P.J.W. Rayner, Generalization and learning in

Volterra and radial basis function networks, in: The Presentation

at the IEEE International Conference on Acoustic, Speech, and

Signal Processing, San Francisco, CA, USA, 1992.
[45] K. Hornik, Some new results on neural network approximation,

Neural Networks 6 (1993) 1069–1072.

[46] K. Hornik, M. Stinchombe, H. White, Universal approximation of

an unknown mapping and its derivatives using multilayer feedfor-

ward networks, Neural Networks 3 (1990) 551–560.

[47] G. Horvath, T. Szabo, CMAC neural network with improved

generalization property for system modeling, in: The Presentation of

the Proceedings of the 19th IEEE Instrumentation and Measure-

ment Technology Conference, 2002.

[48] S.J. Huang, S.N. Koh, H.K. Tang, Image compression and

generalization capabilities of backpropagation and recirculation

networks, in: The Presentation at the IEEE International Sympo-

sium on Circuits and Systems, Singapore, 1991.

[49] K. Hyeoncheol, F. LiMin, Generalization and fault tolerance in

rule-based neural networks,’’ Presented at the 1994 IEEE Interna-

tional Conference on Computational Intelligence, Orlando, FL,

USA, 1994.

[50] J.L.S. Jang, S.-Y. Lee, S. Shin, An optimization network for matrix

inversion, in: The Presentation at the Neural Information Processing

Systems, 1988.

[51] S.A. Janowsky, Pruning versus clipping in neural networks, Phys.

Rev. ‘A’ 39 (1989).

[52] A. Jeffrey, Inverse Trigonometric and Hyperbolic Functions,

Handbook of Mathematical Formulas and Integrals, second ed,

Academic Press, Orlando, FL, 2000.

[53] C. Ji, Is the distribution-free sample bound for generalization tight?

in: The Presentation of the IJCNN’92 International Joint Con-

ference on Neural Networks, Baltimore, MD, USA, 1992.

[54] R. Kamimura, Improving generalization by teacher-directed learn-

ing, in: The Presentation of the IEEE 2003 International Joint

Conference on Neural Networks, Doubletree Hotel-Jantzen Beach,

Portland, Oregon, USA, 2003.

[55] R. Kamimura, Teacher-directed information maximization: super-

vised information-theoretic competitive learning with Gaussian

activation functions, in: The Presentation of the IEEE IJCNN’04,

2004 International Joint Conference on Neural Networks, Budapest,

Hungary, 2004.

[56] L. Kindermann, A. Lewandowski, P. Protzel, A framework for

solving functional equations with neural networks, in: The

Presentation at the Eighth International Conference on Neural

Information Processing, Shanghai, 2001.

[57] K. Knopp, Multiple-Valued Functions (Section II), Theory of

Functions Parts I and II, Two Volumes Bound as One, Dover,

New York, 1996.

[58] A.N. Kolmogorov, On the representation of continuous functions of

several variables by superposition of continuous functions of one

variable and addition, Dokl. Akad. Nauk SSSR 114 (1957) 369–373.

[59] J.K. Kruschke, Improving generalization in backpropagation net-

works with distributed bottlenecks, in: The Presentation at the 1989

IJCNN International Conference on Neural Networks, Washing-

ton, DC, USA, 1989.

[60] I. Kushchu, Learning, evolution and generalisation, in: The

Presentation at The 2003 Congress on Evolutionary Computation,

CEC ‘03, 2003.

[61] J. Larsen, A generalization error estimate for nonlinear systems, in:

The Presentation of the Proceedings of the 1992 IEEE-SPWorkshop

on Neural Networks for Signal Processing, Helsingoer, Denmark,

1992.

[62] J. Larsen, L.K. Hansen, Generalization performance of regularized

neural network models, in: The Presentation of the Proceedings of

the 1994 IEEE Workshop on Neural Networks for Signal

Processing, Ermioni, Greece, 1994.

[63] S. Lawrence, A.C. Tsoi, N.J. Giles, Local minima and general-

ization, in: The Presentation at the IEEE International Conference

on Neural Networks, Washington, DC, USA, 1996.

[64] T.S. Lin, J. Meador, Classification-accuracy monitored backpropa-

gation, in: The Presentation of the ISCAS’92—IEEE International

Symposium on Circuits and Systems, San Diego, CA, USA, 1992.

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–14991498
[65 B. Liskov, Data Abstraction and Hierarchy, in: The Presentation of

the Addendum to the Proceedings of the Conference on Object-

Oriented Programming, Systems, Languages, and Applications

(OOPSLA), Orlando, 1988.

[66] E. Littmann, H. Ritter, Generalization Abilities of Cascade

Network Architectures, Kaufmann, Morgan, 1993.

[67] F.L. Luo, B. Zheng, Neural network approach to computing matrix

inversion, Appl. Math. Comput. 47 (1992) 109–120.

[68] D.J.C. MacKay, A practical Bayesian framework for backpropaga-

tion networks, Neural Comput. 4 (1992) 448–472.

[69] D.J.C. MacKay, Bayesian interpolation, Neural Comput. 4 (1992)

415–447.

[70] D. K. Milligan, Annealing in RAM-based learning networks,

Technical Memorandum CN/R/142, Brunel University, Uxbridge,

West London, Middlesex, UK, 1988.

[71] J.E. Moody, Note on generalization, regularization and architecture

selection in nonlinear learning systems,’’ in: The Presentation of the

Proceedings of the 1991 IEEE Workshop on Neural Networks for

Signal Processing, Princeton, NJ, USA, 1991.

[72] H. Mori, T. Ogasawara, A recurrent neural network approach to

short-term load forecasting in electric power systems, in: The

Presentation at the The World Congress on Neural Networks,

WCNN-93, Portland, Oregon, USA, 1993.

[73] S. Mukherjee, P. Niyogi, T. Poggio, R. Rifkin, Statistical learning:

stability is sufficient for generalization and necessary and sufficient

for consistency of empirical risk minimization, Center for Biological

Computation and Learning, Artificial Intelligence Lab, Brain

Science Department, Massachusetts Institute of Technology, De-

partment of Computer Science and Statistics, January 2004.

[74] M. Negnevitsky, Artificial Intelligence—A Guide to Intelligent

Systems, Addison-Welsley, Edinburgh, 2002.

[75] R.S. Neville, S. Eldridge, Transformations of sigma–pi nets:

obtaining reflected functions by reflecting weight matrices, Neural

Networks 15 (2002) 375–393.

[76] R. Neville, J. Stonham, Generalisation in sigma–pi networks,

Connect. Sci.: J. Neural Comput., Artif. Intell. Cogn. Res. 7

(1995) 29–60.

[77] R.S. Neville, T.J. Stonham, Adaptive critic for sigma–pi networks,

Neural Networks 9 (1996) 603–625.

[78] R.S. Neville, T.J. Stonham, R.J. Glover, Partially pre-calculated

weights for the backpropagation learning regime and high accuracy

function mapping using continuous input RAM-based sigma–pi

nets, Neural Networks 13 (2000) 91–110.

[79] H. Ninomiya, A. Sasaki, A study on generalization ability of 3-layer

recurrent neural networks, in: The Presentation of the IJCNN’02

Proceedings of the 2002 International Joint Conference on Neural

Networks, Honolulu, HI, USA, 2002.

[80] H. Ogawa, E. Oja, Optimally generalizing neural networks, in: The

Presentation of the 1991 IEEE International Joint Conference on

Neural Networks, Singapore, 1991.

[81] D.A. Pados, P. Papantoni-Kazakos, A note on the estimation of the

generalization error and prevention of overfitting, in: The Presenta-

tion of the IEEE World Congress on Computational Intelligence,

1994 IEEE International Conference on Neural Networks, Orlando,

FL, USA, 1994.

[82] D.S. Phanak, Relationship between fault tolerance, genera-

lization and the Vapnik–Chervonenkis (VC) dimension of

feedforward ANNs, in: The Presentation of the JCNN’99 Interna-

tional Conference on Neural Networks, Washington, DC, USA,

1999.

[83] T. Poggio, R. Rifkin, S. Mukherjee, P. Niyogi, General conditions

for predictivity in learning theory, Nature 428 (2004) 419–422.

[84] L.Y. Pratt, Experiments on the transfer of knowledge between

neural networks, in: R. Rivest (Ed.), Computational Learning

Theory and Natural Learning Systems, Constraints and Prospects,

vol. 19, MIT Press, 1994, pp. 523–560.

[85] M.F. Redondo, C.H. Espinosa, Generalization capability of one

and two hidden layers, in: The Presentation of the IJCNN’99
International Conference on Neural Networks, Washington, DC,

USA, 1999.

[86] R. Reed, Pruning algorithms: a survey, IEEE 4 (1993) 740–747.

[87] D.E. Rumelhart, J.L. McClelland, a.t.P.R. Group, Parallel Dis-

tributed Processing, MIT Press, Cambridge, MA, USA, 1986.

[88] S. Russell, P. Norvig, Artificial Intelligence A Modern Approach,

Prentice-Hall Inc., Englewood Cliffs, NJ, 1995.

[89] D. Sarkar, Randomness in generalization ability: a source to

improve it?, in: the Presentation of the 1994 IEEE World Congress

on Computational Intelligence, IEEE International Conference on

Neural Networks, Orlando, FL, USA, 1994.

[90] W.S. Sarle, Stopped training and other remedies for overfitting, in:

The Presentation at the Proceedings of the 27th Symposium on the

Interface of Computing Science and Statistics, Convention Center

and Vista Hotel, Pittsburgh, PA, 1995.

[91] A.V. Shubnikov, V.A. Koptsik, Symmetry in science and art, in:

G.D. Archard (Ed.), Translated from Russian, Plenum Press,

New York, 1974.

[92] S. Sigurdsson, J. Larsen, L.K. Hansen, On comparison of adaptive

regularization methods, in: The Presentation of the Proceedings of

the 2000 IEEE Signal Processing Society Workshop on Neural

Networks, Sydney, NSW, Australia, 2000.

[93] T. Szabo, G. Horvath, Improving the generalization capability of

the binary CMAC, in: The Presentation of the IJCNN 2000

Proceedings of the IEEE–INNS–ENNS International Joint Con-

ference on Neural Networks, Como, Italy, 2000.

[94] M.J. Turmon, Assessing generalization of feedforward neural

networks, Doctoral Thesis, Cornell University, 1995, pp. 88.

[95] Y. Wada, M. Kawato, Estimation of generalization capability by

combination of new information criterion and cross validation, in:

The Presentation of the IJCNN’91 International Joint Conference

on Neural Networks, Seattle, WA, USA, 1991.

[96] J. Wang, A recurrent neural network for real-time matrix inversion,

Appl. Math. Comput. 5 (1993) 89–100.

[97] L. Wang, J.M. Mendel, Structured trainable networks for matrix

algebra, IEEE Int. Joint Conf. Neural Networks 42 (1990) 125–128.

[98] L. Wang, J.M. Mendel, Parallel structured networks for solving a

wide variety of matrix algebra problems, J. Parallel Distrib.

Comput. 14 (1992) 236–247.

[99] M. Wann, T. Hediger, N.N. Greenbaum, The influence of training

sets on generalization in feed-forward neural networks, in: The

Presentation at the IJCNN’90 International Joint Conference on

Neural Networks, San Diego, CA, USA, 1990.

[100] E. Watanabe, H. Shimizu, A learning algorithm for improving

generalization ability of multi-layered neural network for pattern

recognition problem, in: The Presentation of the 1994 IEEE World

Congress on Computational Intelligence, IEEE International Con-

ference on Neural Networks, Orlando, FL, USA, 1994.

[101] Weigend A.S., Rumelhart D.E., Huberman B.A., Generalization by

weight-elimination with application to forecasting, in: The Pre-

sentation of the Proceedings of the 1990 conference on Advances in

neural information processing systems, Denver, Colorado, United

States, 1990.

[102] P.J. Werbos, Beyond Regression: New Tools for Prediction and

Analysis in the Behavioral Sciences, Harvard University, Cam-

bridge, MA, 1974.

[103] S. Wermter, R. Sun, An overview of hybrid neural systems, in:

S. Wermter, R. Sun (Eds.), Hybrid Neural Syst., Springer, 2000,

pp. 1–13.

[104] D. Whitley, N. Karunanithi, Generalization in feedforward neural

networks, in: The Presentation at the IJCNN’91 International Joint

Conference on Neural Networks, Seattle, WA, USA, 1991.

[105] P.M. Williams, Improved generalization and network pruning using

adaptive Laplace regularization, in: The Presentation of the Third

International Conference on Artificial Neural Networks, Brighton,

UK, 1993.

[106] P. Zegers, M. K. Sundareshan, Systematic testing of generalization

level during training in regression-type learning scenarios, in: The

ARTICLE IN PRESS
R. Neville / Neurocomputing 71 (2008) 1477–1499 1499
Presentation of the IEEE IJCNN’04, 2004 International Joint

Conference on Neural Networks, Budapest, Hungary, 2004.

[107] S. Zhang, H.-X. Liu, D.-T. Gao, W. Wang, Surveying the methods

of improving ANN generalization capability, in: The Presentation of

the 2003 International Conference on Machine Learning and

Cybernetics, Sheraton Hotel, Xi’an, China, 2003.

[108] L. Zhao, J.O. Coplien, Symmetry in class and type hierarchy, in:

The Presentation at the 40th International Conference on Technol-

ogy of Objects, Languages and Systems (TOOLS), Sydney,

Australia, 2002.

[109] L. Zhao, J.O. Coplien, Understanding symmetry in object-oriented

languages, J. Object Technol. 2 (2003) 123–134.

[110] S. Zhong, V. Cherkassky, Factors controlling generalization ability of

MLP networks, in: The Presentation of the IJCNN’99 International

Conference on Neural Networks, Washington, DC, USA, 1999.
[111] D. Zwillinger, Inverse Circular Functions (Section 6.3), CRC

Standard Mathematical Tables and Formulae, CRC Press, Boca

Raton, FL, 1995.

Dr. Richard Neville has worked in the area of

Artificial Intelligence for over two decades. His

research interest cover: Artificial Intelligence;

Computational Intelligence; Fuzzy Logic; Neural

Networks; Evolutionary Computing (Genetic

Algorithms); Agents (Soft, Intelligent); Parallel

Processing/Distributed processing; and Data

mining. He has written approximately seventy

scientific papers in the area of neural networks,

Genetic algorithms, Computational Intelligence
and Advanced Devices.

	Third-order generalization: A new approach to categorizing �higher-order generalization
	Introduction
	Related research
	Research into generalization
	Generalization performance of networks
	Neural net structure in relation to generalization performance
	Methodologies for improving generalization
	Estimating/predicting generalization error

	Methods
	Systematic framework for categorizing higher-order generalization
	0deg visualization
	1deg visualization
	2deg visualization
	3deg visualization
	Logical predicates for higher-order generalization
	2deg and 3deg generalization validation

	The ANN model used to perform regression or function estimation tasks
	Regression or function mapping networks
	Introduction to the sigma-pi neuron model
	Algorithmics for weight generation of the ANNs used to perform regression (or function estimation) tasks
	Theory
	Isomorphic functions: symmetric functions
	Derivation of the distance function
	Geometric inheritance of information
	Symmetric transformations (STs)
	Inverse transformation: inversion of polarity of internal weights
	Symmetry transformation-permutation of the internal weights order
	Dilation transformation-scaling of the internal weights
	Sequences of transformations
	Mapping the ST to a 3-layer sigma-pi ANN
	Geometric transformation procedures

	Empirical results
	Experimental work: validating 0deg, 1deg, 2deg, and 3deg, generalization conjecture
	Aims of experimental work
	Types of regression tasks performed by ANNS
	Rationale: experimental delimitations
	Topology of base and DNs
	Size of the BN training set
	Training method and parameters of nets
	A methodology for distance measurement and results visualization
	Experimental work: validating that BN performs 0deg and 1deg generalization
	Experimental work: validating that DNs perform 2deg and 3deg generalization

	Discussion and conclusions
	Nets’ mapping accuracy
	Discussion of distance function measurements

	Relation to other research
	Comparison with existing approaches to the reuse of information in ANNs

	Conclusion
	Future research issues

	Acknowledgements
	The sigma-pi neuron model
	Expansion of internal state-space of sigma-pi units
	References

