PERGAMON

Pattern Recognition 35 (2002) 2771-2782

PATTERN
RECOGNITION

THE JOURNAL OF THE PATTERN RECOGNITION SOCIETY

www.elsevier.com/locate/patcog

An efficient prototype merging strategy for the condensed
1-NN rule through class-conditional hierarchical clustering ™

R.A. Mollineda?, F.J. Ferri®*, E. Vidal?

aUniv. Politécnica de Valéncia, Instituto Tecnologico de Informatica, Camino de Vera s/n, 46071 Valéncia, Spain
YDept. d’Informatica, Universitat de Valéncia, Dr Moliner 50, 46100 Burjassot, Spain

Received 3 November 2000; accepted 19 October 2001

Abstract

A generalized prototype-based classification scheme founded on hierarchical clustering is proposed. The basic idea is to
obtain a condensed 1-NN classification rule by merging the two same-class nearest clusters, provided that the set of cluster
representatives correctly classifies all the original points. Apart from the quality of the obtained sets and its flexibility which
comes from the fact that different intercluster measures and criteria can be used, the proposed scheme includes a very efficient
four-stage procedure which conveniently exploits geometric cluster properties to decide about each possible merge. Empirical
results demonstrate the merits of the proposed algorithm taking into account the size of the condensed sets of prototypes,
the accuracy of the corresponding condensed 1-NN classification rule and the computing time. © 2002 Pattern Recognition

Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Nearest neighbor; Prototype merging; Class-conditional hierarchical clustering; Cluster-based condensing

1. Introduction

Given a training set of previously labeled samples and an
unknown sample x, the k-nearest neighbor (k-NN) rule as-
signs the most frequently represented class-label among the
k closest prototypes to x. Over the last 40 years, this simple
classification rule has been intensively used in a broad range
of pattern recognition applications. In contrast to its concep-
tual simplicity, the rule has a good behavior when applied to
non-trivial problems. In fact, the k-NN rule is asymptotically
optimal in the Bayes sense [1]. In other words, the £-NN
rule performs as well as any other possible classifier, pro-
vided there is an arbitrarily large number of (representative)

* This work has been partially supported by Spanish projects
TIC98-677-C02-02, 1FD97-279, TIC2000-1703-C03-03 and a
grant from the Agencia Espafola de Cooperacion Internacional.

* Corresponding author. Tel.: +34-96-3160-414; fax: +34-96-
3160-418.

E-mail addresses: rmollin@iti.upv.es (R.A. Mollineda),
ferri@uv.es (F.J. Ferri).

prototypes available and the volume of the k-neighborhood
of x is arbitrarily close to zero for all x.

From the point of view of its implementation, the £-NN
rule consists of a search of prototypes given a particular
distance definition. A trivial consequence of the large size
of the sets of prototypes (to guarantee representativity and
approach optimality) is the computational burden this
searching problem implies. This constitutes one of the main
drawbacks of the NN rules. Another very important draw-
back comes from the fact that the prototypes which are
available may contain erroneously labeled or noisy proto-
types which may lead to arbitrarily large deviations from
the asymptotically optimal results that could be expected.

Among many other approaches for solving either the com-
putational problem and/or the performance problem,
Prototype Selection aims at modifying an initially given
set of prototypes in order to reduce its size as well as to
improve classification performance.

From the point of view of their goal, prototype selection
methods can be divided into two different kinds of
techniques which are usually referred to as editing and

0031-3203/02/$22.00 © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

PII: S0031-3203(01)00208-4

2772 R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782

condensing [2]. The first one aims at removing outliers and
prototypes which are placed at the overlap among classes.
Editing does not generally entail substantial reductions
in size, but it usually produces well-clustered groups of
homogeneous prototypes that lead to optimal 1-NN classi-
fication results. On the other hand, condensing algorithms
try to find a significantly reduced set of prototypes whose
1-NN classification results are as close as possible to those
obtained using all original prototypes.

According to the way in which prototypes are obtained
and represented, there is a separation between selection tech-
niques, in which the resulting prototypes are taken from the
original set, and replacement techniques in which resulting
prototypes are built and may be different from any proto-
type in the original set. Prototypes obtained by either of
these methods can be referred to as S- and R-prototypes [3],
respectively.

One of the first prototype selection algorithms was pre-
sented in Ref. [4]. This is in fact a selection condensing al-
gorithm in which S-prototypes are picked from the original
set in order to ensure that the selected prototypes manage
to correctly classify the entire original set. This property
which can be applied to both R- and S-prototypes is usually
referred to as consistency and will be formally defined in
Section 3.

The consistency property is a key issue in many condens-
ing algorithms proposed to date. This is nothing but an easy
way of making the 1-NN decision boundaries induced by
the selected prototypes as close as possible to the ones in-
duced by the original set of prototypes with the same rule.
In this way, the quality of the condensed sets depends on
the quality of the original set, and reducing the size of the
selected set is the main goal of recently proposed condens-
ing algorithms of both types. In fact, obtaining the minimal
consistent set of a given set is considered as a challenging
problem specially in the case of S-prototypes, where it be-
comes a hard combinatorial problem [5,6]. There has been
a considerable interest in similar techniques to exemplar or
instance-based methods in learning [7,8] and several inter-
esting algorithms based on different concepts have recently
been proposed.

Apart from consistency, there are other criteria for proto-
type generation. The LVQ [9] and DSM [10] algorithms are
based on competitive learning update equations to modify
the prototype set. The winning prototype is punished or re-
warded, depending on the 1-nearest prototype classification
result.

A novel approach for obtaining a consistent set of
R-prototypes from an initial set is presented in this work.
A way of considering the representativity of each pro-
totype is proposed. Each R-prototype and the original
samples it correctly classifies form a (labeled) cluster.
Clusters from the same class can be merged to obtain a
new prototype/cluster following a Hierarchical Clustering
scheme. A preliminary version of these ideas has already
been published [11]. In the present work, the geometric

properties of the clusters are used to construct a consistent
set of prototypes efficiently. This scheme constitutes a gen-
eralization of previous approaches presented by Chang [12]
and Bezdek [13], but its flexibility and its ability to obtain
good sets of prototypes goes far beyond them.

Section 2 presents a short description of the most impor-
tant known algorithms, which constitute the groundwork for
the new one presented here. Section 3 proposes the new ge-
ometric prototype-based learning scheme, and analyzes its
computational advantages. In Section 4, some experiments
are described which evaluate the performance of the new
method along with a discussion of the results. Section 5
presents the conclusions and future developments.

2. Prototype replacement algorithms based on merging

Following the basic idea of replacing a group of samples
by a representative, iterative solutions have been proposed
to obtain consistent sets of R-prototypes via pairwise merg-
ing. Chang [12] and Bezdek et al. [13] presented the main
condensing methods based on this strategy. In fact, the latter
constitutes a slight improvement over the Chang algorithm,
named as modified chang algorithm (MCA).

A general prototype-merging algorithm begins with a
training set 7, considering all the samples in 7 as initial
prototypes. It then successively merges any two closest
prototypes (p,q) of the same class (by replacing p and ¢
with a new prototype p*) if the merging does not degrade
the classification of patterns in T (that is, if the resulting
current set of prototypes is consistent). This process is
stopped when no new merge is possible in any class. MCA
introduces an algorithmic change in the way in which
pairs of prototypes are merged, leading to smaller sets of
prototypes than the Chang algorithm. A computational im-
provement is also achieved based on storing cross distances
among prototypes in the same class only. Nevertheless, the
strategy behind the original idea remains unchanged.

Both algorithms have two kinds of drawbacks. First, they
have a restricted strategy for building prototypes based on
pairwise merging and, consequently, they may provide con-
densing results which are far from the optimal ones, both
from the point of view of their size and their representa-
tivity. And second, they employ a considerable amount of
computation to check consistency exhaustively for any pos-
sible merging.

3. A new generalized prototype merging strategy

A further generalization of the idea of merging proto-
types while maintaining consistency is proposed in this
paper. MCA [13] can be viewed as a particular case of
the algorithm template presented in Fig. 1. In fact, if pro-
totypes are merged using the simple arithmetic mean, if
the Euclidean distance is considered and if consistency is

R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782 2773

Output:

Method:
repeat

if P* is consistent then

Input: an initial set 7', a way of merging prototypes, a distance between
prototypes, a consistency-checking procedure

the final set of prototypes P

Initialization: Let P =T (the current consistent set)
Compute L as the set of all candidate pairs from P of the same class.

Let (p,¢) be the pair from L whose distance is minimum and remove it from L.
Let p* be the result of merging p and g and let P* = (P U {p*}) — {p. q}-

Let P = P* and recompute the set of candidate pairs, L, from P
until a complete pass through L has produced no merge

Fig. 1. An algorithmic description for prototype condensing based on merging.

exhaustively checked, the previous scheme is equivalent
to MCA. Also, something very similar (in spirit) to the
original Chang algorithm would be obtained if prototypes
were merged through the weighted average and there was
no recomputation of the list of candidate pairs, L, after
updating the current set of prototypes, P, in the last line
inside the repeat loop of the previous algorithm.

3.1. Using clusters as a more meaningful representation

Apart from trivial generalizations, the algorithmic scheme
just presented allows us to extend the concept of prototype
by attaching a subset of samples from 7" which are close
enough to the prototype. The main idea consists of consid-
ering clusters of original samples and their cluster represen-
tatives as some sort of extended prototypes. In this way,
the merging of prototypes becomes a union of two clusters
(and the recomputation of the new representative), while the
distance between prototypes becomes a cluster distance.
Within this framework, the whole process can be seen as a
particular case of a class-conditional agglomerative hierar-
chical clustering.

Looking at the process from a clustering viewpoint has
several advantages. First, almost every single result from
well-known clustering algorithms [14] is directly applica-
ble. Second, merging prototypes on the basis of distances
between the whole clusters that they represent may lead
to a more meaningful placement of the final prototypes.
It also opens up the possibility of having a final set
of “informed” prototypes which may guarantee higher
representativity apart from consistency. And last but not
least, the use of clusters leads to some computational
shortcuts when checking the consistency of prototypes.

3.2. From prototype consistency to cluster consistency

The underlying idea in the above generalized scheme con-
sists of considering each prototype as a representative of

the samples in its cluster. The consistency of the set of rep-
resentatives with regard to the original sample set will be
achieved by the fact that each representative is responsible
for the correct classification of its cluster. This means that,
for each sample in the cluster, the representative must be
closer than any other representative from a different class. '
This leads to the concept of cluster consistency as a suffi-
cient condition with respect to the (plain) consistency (also
referred to as prototype consistency in this work).

Definition 1 (Prototype-consistency). A given set of la-
beled prototypes, P, is said to be prototype-consistent with
respect to a set of labeled points, 7', if every point in T is
correctly classified by the 1-NN rule using P as reference
set.

Definition 2 (Cluster consistency). A given partition of a
set of labeled prototypes, T, into clusters (with the corres-
ponding set of representatives, P) is said to be cluster-
consistent if every point in T is closer to its representative
than to any other prototype in P with a different class label.

It trivially follows from these definitions that cluster con-
sistency implies prototype consistency. The converse is not
true in general but there is a close relationship between these
two concepts that is formalized in the following proposition.

Proposition 1. Any prototype-consistent set, P, with
regard to a set T, induces a partition of T into clusters
which is cluster-consistent.

Proof. This partition can be obtained by grouping points in
T according to their nearest neighbor in P which will have
the same class label if P is prototype-consistent. []

! The representative of a sample x is not required to be its closest
prototype.

2774 R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782

— —

@ (b)

Fig. 2. An illustrative example with eight samples, two classes
(circles and squares) and three clusters (the representatives are
shown in black). Both partitions lead to the same consistent set of
prototypes, but the partition in (b) is cluster-consistent and the one
in (a) is not.

Cluster consistency can also be incrementally recovered
provided there is a prototype-consistent set of prototypes.
We only need to move points that produce inconsistencies
from their actual cluster to the cluster of their closest repre-
sentative in P. This is illustrated in Fig. 2.

3.3. An efficient consistency verification procedure

Exhaustively checking the consistency of p prototypes
with regard to n original samples requires O(np) time,
which leads to agglomerative algorithms running in O(#*)
time [12,13]. Moreover, the empirically observed hidden
constants in these asymptotic results appear to be quite
large.

As the consistency checking procedure is used to ac-
cept possible merges, the whole algorithm could benefit
from early consistency confirmation by using the concept
of cluster consistency. This, in turn allows us to use the
auxiliary information and the geometric properties of the
clusters involved to obtain some shortcuts in checking
consistency.

All the concepts introduced so far, and consistency in par-
ticular, are independent of the particular metric used. Never-
theless, to simplify the Consistency Verification procedure
and the corresponding formulae, Euclidean distance will be
assumed unless otherwise stated. Comments about how the
proposed methods extend to other distances will be appro-
priately included.

Let us assume that we have a cluster-consistent par-
tition of a set of labeled prototypes, 7, and that a new
cluster-prototype, p* from class k* has been created. In
this situation, checking cluster consistency would require
that for every prototype, s, of a different class, no sample
from the cluster of s is closer to p* and, conversely, no
sample from the new cluster is closer to s. In a more formal
way:

Proposition 2. Given a cluster-consistent partition of T,
and the associated set of representatives P, the partition
resulting from combining two clusters into a new one
which is represented by p* from class k™, will also be

cluster-consistent if and only if

Vs € P whose class is different from k™

{ d(s,x) > d(p”,x),Vx in the cluster of p* 0

d(s,y) <d(p*,y),Vy in the cluster of s.

The proof of this proposition follows trivially from
Definition 2. It is worth noting that checking cluster consis-
tency using Condition (1) does not alleviate the computa-
tional problem mentioned above. Nevertheless, it is possible
to obtain a more efficient procedure by using geometric
information about clusters to perform an early assessment
of possible consistency.

Let 1, be the radius associated to the cluster represented by
prototype p, in such a way that any sample in this cluster is
at a distance from p which is not greater than 7. If the radii
of two clusters are smaller than half the distance between
their representatives, there is no need to go through all the
samples in both clusters to check consistency as stated in
Condition (1). In other words,

Proposition 3. Given a cluster-consistent partition of T,
and the associated set of representatives P, the partition
resulting from combining two clusters into a new one which
is represented by p* from class k*, will satisfy Condition
(1) if

Vs € P: class(s)£k™, d(p*,s) > 2 -max(r«,r;). (2)

A similar equation can be obtained for distances other
than the Euclidean one. Details about this and the proof of
the proposition are given in the appendix.

Corollary 1. Condition (2) is sufficient for cluster consis-
tency.

Fig. 3 shows a simple example where Condition (2) is
used to assess cluster consistency.

Condition (2) can be further generalized by considering
only the closest representatives for each class and the
maximum radius in the corresponding class.

@ (b)

Fig. 3. A geometric representation of Condition (2) which is suf-
ficient to test cluster consistency: (a) the condition is satisfied;
(b) the condition is not satisfied (could exist a sample x which is
represented by p* but which is closer to s).

R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782 2775

Proposition 4. Given a cluster-consistent partition of T,
and the associated set of representatives P, the partition
resulting from combining two clusters into a new one which
is represented by p* from class k*, will satisfy Condition
) if

Vk#K*, d(p*.s") > 2 max(ry-,r"), 3)

where s* and r* denote the prototype of class k that is
closest to p* and the radius of the maximum-radius cluster
in class k, respectively.

Note that the rest of the cluster representatives of each
class k% k* are located farther from p* than s* and their
associated radii are smaller than 7*. A detailed proof is given
in the appendix.

Corollary 2. Condition (3) is sufficient for cluster consis-
tency.

Fig. 4(a) illustrates a situation in which cluster consis-
tency can be assessed using Condition (3). A different one is
shown in Fig. 4(b) in which Condition (3) fails and cluster
consistency can be confirmed by using Condition (2).

Consequently, Condition (3) can be used as the first stage,
Condition (2) as the second stage, and Condition (1) as the
third stage, of an efficient scheme to check cluster consis-
tency, and therefore, prototype consistency (the final goal).
In this way, when prototype consistency cannot be assessed
by using the conditions listed in the given order, it needs to
be directly checked and transformed in cluster consistency,
by moving points that produce cluster inconsistencies from
their current clusters to the clusters of their closest repre-
sentatives. This process will be referred to as fourth stage.

@

The consistency checking strategy is schematically shown
in Fig. 5.

The fourth stage is needed when Condition (3) fails for
some class k, Condition (2) fails for some cluster s member
of class k, and Condition (1) is not satisfied by a sample
x member of the cluster represented by p* or a sample
y member of s. In this context, checking prototype con-
sistency requires looking for the same-class nearest
prototype® to the sample, x or y, which is producing
the cluster inconsistency. The distance between them is
compared with the distance between the sample and the
other-class prototype involved. If the sample is correctly
classified, it must be moved from its current cluster to
the cluster represented by its same-class nearest prototype,
transforming the current prototype consistency into clus-
ter consistency (see Proposition 1). A detailed example is
shown in Fig. 6.

When compared to exhaustively checking consistency, the
computational burden can be reduced even when the merge
is not accepted, because the more intensive fourth stage is
only applied on isolated samples. A more detailed algorith-
mic description of the proposed consistency checking pro-
cedure is presented in Fig. 7.

With regard to the application of the fourth stage, it is
worth noting that as the new set of prototypes is consistent,
cach sample that has produced cluster inconsistency has nec-
essarily been moved from its original cluster to the cluster
of its same-class nearest prototype. From this moment, the
behavior of the algorithm separates from a truly agglomer-
ative hierarchical clustering scheme.

Even though the worst-case complexity of the consistency
checking procedure presented here is certainly in O(np),
the empirically observed behavior of the final algorithm is

(b)

Fig. 4. Tllustrative examples. Let m and m’ be the midpoints between prototypes. In (a) consistency can be guaranteed by Condition (3). No
sample can possibly create an inconsistency because other class B representatives must be farther than s and with smaller or equal radius
than #B. In (b) Condition (2) is needed to guarantee consistency because Condition (3) is not satisfied. All clusters in class B (the ones

represented by sB and s) need to be visited.

2 This prototype does not need to be the sample representative.

2776 R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782

) — cluster-consistent? N

ACCEPT MERGE

Fig. 5. Schematic description of the consistency checking procedure.

Clase B

Fig. 6. Geometric situation in which the three first stages to check
cluster-consistency cannot be applied, therefore the fourth stage
is needed to test prototype-consistency and to transform it in a
cluster-consistent partition. The class A is where the new merge
took place; p* is the new prototype, s is a prototype in class
B which is causing a cluster inconsistency regarding its distance
to some sample x member of the cluster represented by p*. The
fourth stage finds the prototype n, which is the nearest prototype to
x in class A, checks the maintenance of the prototype-consistency
and moves the sample x from the cluster of p* to the cluster
of ny. In this way the prototype-consistency is transformed into
cluster-consistency. The dashed circles represent possible variations
on radii of clusters involved.

significantly better than our MCA implementation. The com-
putational cost of the four stages of the previous algorithm
are O(p), O(p), O(np) and O(n p), respectively. Neverthe-
less, it has been observed that the third and fourth stages
have a reduced influence in the work done to check consis-
tency, specially for moderate-size data sets (see Section 4).

The whole proposed method could still benefit from the
implementation of efficient neighbor search to compute s*
after each merge. Nevertheless, the bottleneck of the method
is the recomputation of candidate pairs and the condition
checking itself and not neighbor finding. Use of alternative
and/or approximate distances is another possibility that is
also currently under investigation.

3.4. The generalized-modified Chang algorithm (GMCA)

MCA can be generalized from the algorithm in Fig. 1.
To do this, the algorithm must be extended to clusters and

any intercluster dissimilarity measure must be considered as
a merging criterion. In addition, the consistency checking
procedure shown in Fig. 7 could also be used. The resulting
method will be named GMCA. In the particular case of the
intercluster distance Median [14], (which implies the sim-
ple mean as the way to agglomerate prototypes), GMCA re-
sults in an improved version of the MCA yielding identical
results, but reducing the computing time by more than half
in most cases. When other intercluster measures were used,
smaller and better sets of prototypes (in the sense of clas-
sification power) were built, reducing the condensing time
even more.

4. Experimental results

A number of experiments were conducted to compare
GMCA (with different intercluster measures) and MCA with
respect to the number of prototypes built, the error rate of
the corresponding condensed 1-NN classification rule and
the computation time. Experiments were also used to show
how GMCA works, in accordance with the percentage of
consistency work carried out by each stage.

Four basic intercluster distances [14] were used: average
link (AV), complete link (CO), median (ME), and the
Ward minimum variance method (WA). Also, the radius of
the next agglomerated cluster was used as an additional dis-
similarity measure (RA). Following the suggestions found
in Ref. [13], the Euclidean distance and the simple mean as
the way to compute new prototypes were always used,
except for Ward’s method where the weighted mean and
the squared Euclidean distance > were considered because of
its original formulation [14]. In this way, a proper compari-
son between GMCA and MCA results can be accomplished.

First, a simple example is presented to illustrate the
condensing capacity of the GMCA merging schemes with
respect to previous approaches (Chang and MCA), in the
sense of building the least number of prototypes to repre-
sent a set and classify it without errors with the 1-NN rule.
For such purposes, a modified version (suggested in Refer-
ence [12]) of the synthetic data set originally proposed by

3 For squared distance, Conditions (2) and (3) need to be
changed by substituting the coefficient 2 by 4. See the appendix
for more details.

R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782 2777

Consistency Checking Procedure

Input: a new prototype p*, its class k¥, and the corresponding radius 7y«

Output: a boolean variable M ERGE.

Initialization: Let s* be the closest prototype to p* in class k
Let P¥ be the subset of prototypes of class &

Let MERGE =TRUE
Method:

forall class &, k # k*, such that d(p*, s*) < 2- max(rp», max,c s (75)) do

forall prototype s € P¥, such that d(p*,s) < 2- max(ry,7,) do

// Cond. (3)

// Cond. (2)

forall sample & member of the cluster of p* such that d(p*, z) > d(s,z) do [/ Cond. (1)

Let n, = arg ming pe {d(t, %) }
if d{ng, 7) < d(s,z) then

Move x from the cluster of p* to the cluster of n,

else MERGE = FALSE; exit
end forall

forall sample y member of the cluster of s such that d(p*,y) < d(s,y) do

Let ny = arg min, p+ {d(t, 9} }
if d(ny,y) < d(p*,y) then

// Cond. (1)

Move y from the cluster of s to the cluster of n,

else MERGE = FALSE; exit
end_forall

end forall

end _forall

Fig. 7. Algorithmic description of the proposed consistency checking procedure.

Hart [14] was considered. This problem has two categories
of two-dimensional non-overlapping regions which are ad-
jacent to each other. Chang reported 17 prototypes built by
his method, which were needed to classify this particular set
without errors.

Both MCA and its equivalent GMCA+ME obtained the
13 prototypes shown in Fig. 8(a) (the radii shown were
computed by the GMCA+ME method). All other GMCA
schemes lead to 10 (CO and RA), 11 (AV) and 12 (WA).
Fig. 8(b) shows the decision boundary induced by the 10
final prototypes built by GMCA+CO and their associated
radii. Note that the optimal number of prototypes to exactly
define the piecewise-linear decision boundary in this prob-
lem is 10.

Three real data sets were used to compare the merging
schemes. These sets are the well-known Anderson Iris data
[15], the DNA data set [16] and the Landsat Satellite Image
data [16], which are publicly available at UCI Repository
Machine Learning [17].

Apart from measuring the final number of prototypes,
and the computational burden (in time and computed dis-
tances), the percentage of work carried out by each stage in
the consistency checking procedure was obtained as a per-
centage of cluster consistencies which were solved at each
stage.

Both schemes (MCA and GMCA) were implemented in
C programming language using the same data structures and
code to make them as similar as possible. The major func-
tional difference was in the checking-consistency procedure.

The experiments were performed on a 400 MHz Intel
Pentium III with 256 Mb of RAM.

Apart from the computational burden of each algorithm
considered, the Percentage of CPU Time spent by MCA
(PTMCA) and the Percentage of computed Distances by
MCA (PDMCA) are included as relative measures. The per-
centage of consistencies solved at each one of the four stages
of the Consistency Verification Procedure is also shown.

4.1. Experiments on the Iris data set

This set has three classes that represent three vari-
eties of iris flowers: Iris Setosa, Iris Versicolor and Iris
Virginica. Fifty samples were obtained from each of the
three classes, thus a total of 150 samples is available. Every
sample is described by four measurements. Using the 150
prototypes available, Chang [12] and Bezdek et al. [13]
reported two consistent sets of 14 and 11 prototypes built
by their schemes, respectively. The results obtained by
GMCA are shown in Table 1. The best result obtained with
GMCA+WA, consisting of only 9 consistent prototypes
are shown in Table 2.

The merging schemes GMCA+WA, GMCA+CO and
GMCA+RA built consistent sets of prototypes which were
smaller than the ones obtained by the MCA and by the Chang
approach. It is worth noting that all GMCA schemes were
about twice as fast as MCA at obtaining solutions which
were equal or better.

2778

20,

R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782

Fig. 8. Illustrative synthetic data condensing results. (a) prototypes and Voronoi diagram obtained by MCA and GMCA+ME (which also
gave the displayed radii). (b) prototypes, associated radii and Voronoi diagram obtained by GMCA+CO.

Table 1
Condensing results on the Iris data set

Merging No. of CPU time PTMCA PDMCA % use % use % use % use

scheme prot. (ms) (%) (%) stage 1 stage 2 stage 3 stage 4

MCA 11 90 100 100 — — — —

GMCA+ME 11 40 44.44 28.53 89.918 6.431 3.210 0.441

GMCA+CO 10 60 66.67 55.43 87.693 8.249 3.716 0.342

GMCA+WA 9 60 66.67 36.34 82.043 10.443 6.863 0.651

GMCA+RA 10 60 66.67 45.56 85.769 10.107 3.829 0.295

GMCA+AV 11 60 66.67 61.92 85.910 7.970 5.451 0.669

Table 2

The 9-prototype consistent set built by GMCA+WA from the Iris data

Iris setosa Iris versicolor Iris virginica

5.01 3.43 1.46 0.25 6.72 3.00 4.68 1.46 6.89 3.10 581 2.12
6.15 327 4.62 1.62 595 277 497 192
570 2.66 4.07 1.25 5.67 243 503 1.53
6.15 2.60 5.00 1.55 635 275 520 1.70

4.2. Experiments on the DNA data set

This data set corresponds to primate gene sequences. The
problem is to recognize boundaries between different parts
of the DNA. There are two sets, one for training composed
by 2000 samples and one for test with 1186 samples, which
are partitioned into three classes. Each sample is described
by 180 binary attributes (Statlog version).

Error rates were estimated on the test set by using the
1-NN rule with the condensed sets of prototypes which

were built from the training set. Table 3 lists the condens-
ing results. Classification error rates on test set by using the
1-NN and the 30-NN (best £-NN classifier) rules with the
original training set were 23.44% and 13.07%, respectively.
All these results are graphically shown in Fig. 9.

GMCA merging schemes yielded smaller sets of proto-
types than MCA, which were surprisingly much better at
classifying the test set. Both 1-NN and best £-NN error rates
were reduced. At the same time, GMCA schemes achieved a
very important reduction in the resources (condensing time

R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782 2779

Table 3
Condensing results on the DNA data set
Merging No. of Error CPU time PTMCA PDMCA % use % use % use % use
scheme prot. rate (min) (%) (%) stage 1 stage 2 stage 3 stage 4
MCA 193 21.33 4500 100 100 — — — —
GMCA-+ME 193 21.33 1337 29.71 29.70 0.24 0.15 93.69 5.92
GMCA+CO 68 12.48 23.4 0.52 0.16 18.04 26.09 54.96 0.91
GMCA+WA 59 10.12 54.9 1.22 0.10 20.48 29.80 49.04 0.68
GMCA+RA 65 11.38 133.7 2.97 0.09 22.47 32.78 44.00 0.75
GMCA-+AV 63 11.89 63.0 1.40 0.49 10.81 14.92 72.49 1.78
25 " " " " " " 200 a value for k to use in the experiments. The value £ = §
g error HE was selected because of the lowest average classification
© prototypes [] error on test partitions, when the 1-NN rule was used with
20 1 1 160 " their edited training partitions.
< § The edited original training set (4018 samples) was con-
© 8 densed with the different merging schemes. The error rates
? 15 ¢ 1120 g were estimated on the test set by using the 1-NN rule with
2 S the condensed sets of prototypes. Table 4 lists the condens-
u S ing results on the edited training set including the estimated
10 180 error rates. As a reference, the classification results on the
{60 test set by using the 1-NN and the 4-NN (best £-NN clas-
sifier) rules with the original training set were 10.55% and
40

1-NN 30-NNMCA CO WA AV RA

Fig. 9. Error rates (%) (on the test set) and number of prototypes for
the DNA experiment, considering 1-NN, 30-NN and the condensed
I-NN classification rule with the MCA prototypes and GMCA
(CO, WA, AV, RA), respectively.

and computed distances) required by MCA. Although in this
case CPU times were quite high, it is worth noting that all
GMCA variants apart from GMCA+ME (which is equiva-
lent to MCA) spent CPU times below 3% of that of MCA.

4.3. Experiments on the Landsat Satellite Image data

The purpose of this experiment was to illustrate the
capabilities of the GMCA merging schemes with respect
to previous approaches by using a real, well-behaved
and “reasonably” large database. This third experiment was
performed on the Landsat Satellite Image data. This
database consists of the multi-spectral values of pixels in
3 x 3 neighborhoods in a satellite image, and the classifica-
tion associated with the central pixel in each neighborhood.
The aim is to identify regions with different soils and crops.
There are two sets, one for training composed by 4435
samples and one for test with 2000 samples, which are
partitioned into six classes of 36-dimensional data.

As consistency does not make sense in the case of over-
lapping among classes, the Wilson editing scheme [18] was
applied on the training set. A five-fold cross validation
experiment was performed on the training set to estimate

9.25%, respectively.

The GMCA strategy generated condensed set of proto-
types notably faster than MCA, proving its better compu-
tational efficiency. Note the trend of achieving higher time
reductions while increasing the percentage of use of stages
1 and 2. The GMCA sets of prototypes were generally bet-
ter than MCA ones, although the differences in their sizes
and the corresponding condensed 1-NN classification results
were not significant. Some GMCA methods built more pro-
totypes than MCA, which generally led to better accuracies.
On the other hand, GMCA+CO built a smaller set than the
MCA one, achieving also a better classification result. This
fact shows the flexibility of GMCA schemes to better fit the
structure of data with respect to MCA. From the point of
view of performance, the best scheme was GMCA+RA.

5. Conclusions and further work

A generalized condensing scheme based on class-
conditional hierarchical clustering (GMCA) is proposed.
The basic idea is to replace a group of prototypes by a
representative while keeping the consistency property. The
algorithm improves and generalizes previous work by ex-
plicitly introducing the concept of cluster and cluster con-
sistency. The use of geometric cluster properties produces
a very efficient merging scheme based on local consistency
verification, guaranteeing the entire system consistency
while minimizing the computation needed.

This procedure of consistency verification constitutes the
kernel of the merging scheme. It is integrated by a family

2780 R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782

Table 4

Condensing results on the Landsat Satellite Image data set

Merging No. of Error CPU time PTMCA PDMCA % use % use % use % use
scheme prot. rate (min) (%) (%) stage 1 stage 2 stage 3 stage 4
MCA 119 11.45 82.8 100 100 — — — —
GMCA+ME 119 11.45 34.8 42.03 34.32 16.866 67.687 14.637 0.810
GMCA+CO 118 10.70 14.0 16.91 10.15 67.746 20.743 10.497 1.014
GMCA+WA 121 11.55 242 29.23 6.80 65.905 20.342 12.454 1.300
GMCA-+RA 124 10.35 22.1 26.69 9.18 68.182 19.212 11.172 1.434
GMCA+AV 126 10.60 245 29.59 21.37 47.008 38.089 13.712 1.191

of four complementary stages, with an increasing order of
complexity. After any new merge the “least effort” is made
to verify only the consistency of the new local structure
introduced by the new prototype (and the new cluster),
guaranteeing the consistency of the entire set of prototypes.
It avoids operating on all points of the original training
set as MCA and Chang’s algorithm do.

MCA was experimentally compared with merging
schemes induced by GMCA taking into account five
different intercluster dissimilarity measures. In the particu-
lar case of the GMCA with the Median intercluster distance
(GMCA+ME), which yields identical sets of prototypes as
MCA, a remarkable reduction in the time and the computed
distances required was achieved in all experiments.

When GMCA was considered with the rest of inter-
cluster dissimilarity measures, the sets of prototypes were
better, in most of cases, than those obtained by MCA.
In general, GMCA was able to better figure out and fit the
internal data structure than MCA, and consequently, to
represent it in a more suitable way through a (usually
more reduced) set of prototypes. The experiments showed
the capacity of these schemes to construct more compact
clusters than GMCA-+ME, leading to higher percentages
of use of the most efficient stages of the consistency checking
procedure. Therefore, and in spite of the greater complexity
required to compute these intercluster dissimilarity measures
with respect to the Median distance, the amount of resources
(time and computed distances) needed by the GMCA with
these measures were, in most cases, smaller than those
required by GMCA+ME, and, consequently, smaller than
the MCA.

A number of technical improvements can still be applied.
For example, intercluster distances could be computed in
constant time by making proper use of the Lance—Williams
combinatorial formula [14]. Nearest neighbors could be ef-
ficiently found using appropriate algorithms [19-21]. The
concepts of consistency, distance definition or even clus-
ter membership could also be relaxed in order to speed up
some specific parts of the algorithm. All these aspects are
currently under investigation.

According to the proofs in the appendix, the proposed
method can be used with any metric satisfying triangle
inequality and symmetry. Other distances as the squared

Euclidean require a slight modification of the equations
and, in general, any distance can be used by appropriately
modifying conditions (2) and (3) by an additive term ac-
cording to the degree of violation of triangle equality and
symmetry. This term can be empirically obtained when no
other information is available.

As the proposed condensing scheme does not involve ex-
plicit coordinate computation (apart from computing p™*)
it can naturally be extended to metric (non-vector) spaces
by appropriately selecting p* from the available prototypes
in the two merged clusters.

Another, particularly interesting future line of work could
involve the information GMCA obtains from the sets in form
of radii. As can be seen in Fig. 8, the set of prototypes and
its associated radii give a good and quite natural description
of the data set. This information is currently used by the
GMCA only, but it could be fed into the corresponding
classifier or used as an initialization stage for other learning
and/or classification algorithms.

Appendix

Proof of Proposition 3. To show that Condition (2) is
sufficient for Condition (1), the following statement must
be proved for all clusters s (members) of a class which is
different from &*:

d(p*,s) > 2 max(ry,rs) =

i. d(s,x) > d(p*,x), Vx in the cluster of p*
ii. d(s,y) <d(p”,y), Vy in the cluster of s

To prove part i., we have Vx in the cluster of p*,

d(p*,s)

d(p".x) < e <max(re,r) < SE

< d(p*,x)2—|— d(x,s)

where the last step is due to the triangle inequality.
Finally, we arrive at d(p*,x) < d(s,x) if the distance
satisfies the symmetry property.
Part ii. can be proved in the same way. [J

R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782 2781

Proof of Proposition 4. To show that Condition (3) is
sufficient for Condition (2), the following statement must
be proved for all classes k£ which are different from £*:

d(p*,s") > 2 - max(rp-,r) = d(p",s)
> 2 -max(ry~,rs), Vs in class k

where s* and r* denote the prototype of class k that is closest
to p* and the radius of the maximum-radius cluster in class
k, respectively.

For all s from a class k different from £* we have

d(p*,s) = d(p*,sk) >2. max(rp*,rk) > 2 - max(ry, ry)

where we have applied the definition of s*, the Condition
(3) and the definition of 7*, respectively. [J

Case of (Euclidean) squared distances
For any distance satisfying d(a,c) < d(a,b) + d(b,c)
(triangle inequality), we have

d*(a,c) < (d(a,b) + d(b,c))
= d*(a,b) + d*(b,c) + 2d(a,b)d(b,c)

from which the following inequality is obtained (given the
fact that 2xy < x* + »? for any two reals):

2 2 2
L. d¥(a,c) < d*(a,b) + d*(b,c).

This equation can be used instead of triangle inequality to
prove the previous propositions. In this case the factor 2
appearing in Egs. (2) and (3) need to be changed to 4.

References

[1] B.V. Dasarathy (Ed.), Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques, IEEE Computer Society
Press, Los Alamitos, CA, 1991.

[2] P. Devijver, J. Kittler, Pattern Recognition: A Statistical
Approach, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[3] Liudmila I. Kuncheva, James C. Bezdek, Nearest prototype
classification: clustering, genetic algorithms, or random
search?, IEEE Trans. Systems Man Cybernet. 28 (1) (1998)
160-164.

[4] P.E. Hart, The condensed nearest neighbor rule, IEEE Trans.
Inform. Theory 14 (1968) 515-516.

[5] B.V. Dasarathy, Minimal consistent set (MCS) identification
for optimal nearest neighbour decision systems design, IEEE
Trans. Systems Man Cybernet. 24 (3) (1994) 511-517.

[6] V. Cerveron, F.J. Ferri, Another move towards the minimum
consistent subset: a tabu search approach to the condensed
nearest neighbor rule, IEEE Trans. Systems Man Cybernet. B
31 (3) (2001) 408-413.

[7] D.B. Skalak, Prototype and feature selection by sampling and
random mutation hill climbing algorithms, Proceedings of the
11th International Conference on Machine Learning, Morgan
Kaufmann, Los Altos, CA, 1994, pp. 293-301.

[8] D.R. Wilson, T.R. Martinez, Reduction techniques for
instance-based learning algorithms, Mach. Learning 38 (3)
(2000) 257.

[9] T. Kohonen, Self-Organizing Maps, Springer, Germany,
1995.

[10] S. Geva, J. Sitte, Adaptive nearest neighbor pattern classifier,
IEEE Trans. Neural Networks 2 (2) (1991) 318-322.

[11] R.A. Mollineda, F.J. Ferri, E. Vidal, A cluster-based
merging strategy for nearest prototype classifiers, Proceedings
of the 15th ICPR. Vol. 2, Barcelona, Spain, 2000,
pp. 759-762.

[12] Chin-Liang Chang, Finding prototypes for nearest neighbor
classifiers, IEEE Trans. Comput. 23 (11) (1974) 1179-1184.

[13] James C. Bezdek, Thomas R. Reichherzer, Gek Sok Lim,
Yianni Attikiouzel, Multiple-prototype classifier design, IEEE
Trans. Systems Man Cybernet. 28 (1) (1998) 67-79.

[14] F. Murtagh, A survey of recent advances in hierarchical
clustering algorithms, Comput. J. 26 (4) (1983) 354-359.

[15] E. Anderson, The IRISes of the gaspe peninsula, Proc. Bull.
Amer. IRIS Soc. 59 (1935) 2-5.

[16] Ross D. King, Statlog databases, Technical Report,
Department of Statistics and Modelling Science, University of
Strathclyde, Glasgow G1 1XH, Scotland, U.K., October 1992.

[17] C.L. Blake, C.J. Merz, UCI repository of machine
learning databases, 1998. http://www.ics.uci.edu/~mlearn/
MLRepository.html.

[18] D.L. Wilson, Asymptotic properties of nearest neighbour rules
using edited data, IEEE Trans. Systems Man Cybernet. 2
(1972) 408-421.

[19] E. Vidal, New formulation and improvements of the
nearest-neighbour approximating and eliminating search
algorithm (AESA), Pattern Recognition Lett. 15 (1) (1994)
1-7.

[20] M.L. Mico, J. Oncina, E. Vidal, A new version of the
nearest-neighbour approximating and eliminating search
algorithm (AESA) with linear preprocessing time and memory
requirements, Pattern Recognition Lett. 15 (1) (1994)
9-17.

[21] V. Ramasubramanian, K. Paliwal, Fast nearest-neighbour
search algorithms based on approximation-elimination search,
Pattern Recognition 33 (2000) 1497-1510.

About the Author—RAMON A. MOLLINEDA received the BS and MS in Computer Science from Central University of Las Villas, Cuba,
in 1995 and 1997, respectively. In 2001, he received the Ph.D. from Politechnical University of Valencia, Spain.

In 1998 he joined the Automatic Speech Recognition group in the Politechnical University of Valencia first with a grant from the
Agencia Espanola de Cooperacion Internacional (AECI) and later and until now as a research fellow at the Informatic Technology Institute
at the same University where he has been involved in several research projects.

His current topics of interest include statistical pattern recognition, hierarchical clustering, non-parametric classifiers and feature selection.

Dr. Mollineda is a member of the Spanish Society for Pattern Recognition and Image Analysis (AERFAI) and the International Association

for Pattern Recognition (IAPR).

http://www.ics.uci.edu/~mlearn/
mailto:MLRepository.html.

2782 R.A. Mollineda et al. | Pattern Recognition 35 (2002) 2771-2782

About the Author—FRANCESC J. FERRI received the Licenciado degree in Physics (Electricity, Electronics and Computer Science) in
1987 and the Ph.D. in Pattern Recognition in 1993 both from the Universitat de Valéncia.

Dr. Ferri has been with the Computer Science and Electronics Department of the Universtitat de Valencia since 1986; first as a research
fellow and as a teacher of Computer Science and Pattern Recognition since 1988. He has been involved in a number of scientific and
technical projects on Computer Vision and Pattern Recognition including a sabbatical with the Vision, Speech and Signal Processing group
in the University of Surrey, UK.

He has authored or coauthored about 90 conference and journal papers on several aspects of Computer Vision and Pattern Recognition.
His current research interests include Feature Selection, Statistical Pattern Recognition Methodology, Non-parametric Classification Methods,
Neural Networks, Inductive Learning, Computational Geometry and Image Analysis.

Dr. Ferri is a member of the Spanish Society for Pattern Recognition and Image Analysis (AERFAI), the International Association for
Pattern Recognition (IAPR) and the Association for Computing Machinery (ACM).

About the Author—ENRIQUE VIDAL received the Licenciado degree in Physics in 1978 and the Doctor en Ciencias Fisicas (Ph.D. in
Physics) degree in 1985, both from the Universitat de Valéncia.

From 1978 to 1986 he was with this University serving in computer system programming and teaching positions. In the same period he
coordinated a research group in the fields of Pattern Recognition and Automatic Speech Recognition. In 1986 he Joined the Departamento de
Sistemas Informaticos y Computacion of the Universidad Politécnica de Valencia (UPV), where he is until now serving as a full professor
of the Facultad de Informatica. In 1995 he joined the Instituto Tecnologico de Informatica, where he has been coordinating several projects
on Pattern Recognition and Machine Translation. He is co-leader of the Pattern Recognition and Human Language Technology group of
the UPV.

His current fields of interest include Statistical and Syntactic Pattern Recognition, and their applications to language, speech and image
processing. In these fields, he has published more than one hundred papers in journals, conference proceedings and books.

Dr. Vidal is a member of the Spanish Society for Pattern Recognition and Image Analysis (AERFAI) and the International Association
for Pattern Recognition (IAPR).

	An efficient prototype merging strategy for the condensed 1-NN rule through class-conditional hierarchical clustering
	Introduction
	Prototype replacement algorithms based on merging
	A new generalized prototype merging strategy
	Using clusters as a more meaningful representation
	From prototype consistency to cluster consistency
	An efficient consistency verification procedure
	The generalized-modified Chang algorithm (GMCA)

	Experimental results
	Experiments on the Iris data set
	Experiments on the DNA data set
	Experiments on the Landsat Satellite Image data

	Conclusions and further work
	Appendix
	References

