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Abstract. A solution to the N-bit parity problem employing a single multiplicative neuron

model, called translated multiplicative neuron (pt-neuron), is proposed. The pt-neuron pre-
sents the following advantages: (a) 8N5 1, only 1 pt-neuron is necessary, with a threshold
activation function and parameters defined within a specific interval; (b) no learning

procedures are required; and (c) the computational cost is the same as the one associated with
a simple McCulloch-Pitts neuron. Therefore, the pt-neuron solution to the N-bit parity
problem has the lowest computational cost among the neural solutions presented to date.
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1. Introduction

The N-bit parity problem is a challenging benchmark for testing neural network

architectures and their learning algorithms. Besides being non-linear, the N-bit parity

problem is difficult to solve, because changing only 1 bit in the input causes the out-

put to change.

The N-bit parity problem can be stated as follows. Let x ¼ ½x1; . . . ; xN�
T be an

N-bit binary vector, i.e., xi 2 f0; 1g ði ¼ 1; . . . ;N Þ. The parity generator function

p: f0; 1gN! f0; 1g is defined by

pðxÞ ¼ 0; if
PN

i¼1 xi is even
1; otherwise.

�
ð1Þ

The objective is to design a neural network capable of realizing the function (1). Note

that, for N ¼ 1, we have simply pðxÞ ¼ x and for N ¼ 2, the parity problem is equiva-

lent to the XOR problem.

Many neural network approaches have been proposed to solve the N-bit parity

problem, e.g., [1, 2, 6–8, 10–12]. Most of these works solve the parity problem

using specialized activation functions or specialized network topologies or both.

All these previous solutions, however, require the use of at least 1 hidden
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neuron to solve the parity problem. Moreover, in some of these approaches, the

number of hidden neurons required to solve the problem increases with N. In

fact, a solution using only 1 neuron has been presented by Arslanov et al. [1],

but they themselves reject this solution, because it uses a complicated activation

function. Finally, all these previous solutions are based on networks composed of

McCulloch-Pitts neurons, which employ additive composition to aggregate their input

signals.

Unlike the previous approaches, we propose a solution based on an extended mul-

tiplicative neuron model, called translated multiplicative neuron, or pt-neuron for
short [5]. We show that only 1 pt-neuron, employing threshold activation function
and parameters defined in certain intervals, solves the N-bit parity problem,

8N5 1. Additionally, no learning procedure is necessary to obtain a solution. Fur-

thermore, the computational complexity of a pt-neuron is the same as the one asso-
ciated to a McCulloch-Pitts neuron, if both employ the same activation function.

Consequently, the proposed approach has the lowest computational complexity

among neural solutions presented so far.

In Section 2, pt-neuron and its properties are presented, and in Section 3, a
solution for the N-bit parity problem using a pt-neuron is proposed.

2. Translated Multiplicative Neuron (pt-neuron)

Multiplicative neuron models are mainly employed in high-order neural networks [3]

and in hybrid neural architectures [4, 13]. Although several multiplicative neurons

have already been proposed [9], we initially consider a particular model, called pro-

duct or multiplicative neuron (p-neuron) [13]. This model is defined by the following
equations

v ¼
Ym
i¼1

wixi; y ¼ f ðv Þ; ð2Þ

where xi 2 R ði ¼ 1; . . . ;mÞ are the neuron’s inputs, wi 2 R ði ¼ 1; . . . ;mÞ are the

adjustable parameters (weights) of the model, v is the level of internal activity,

f: R ! R is the neuron’s activation function, and y is the output of the model.

Even though the model (2) is successfully used in some hybrid neural network

architectures [4, 13], it has disadvantages. First, note that v in (2) can be rewritten as

v ¼
Ym
i¼1

wi

Ym
j¼1

xj ¼ c
Ym
j¼1

xj;

where c ¼
Qm

i¼1 wi, i.e., m parameters are used simply to compose a scaling factor for

v. Because learning algorithms usually try to adjust all the m parameters, precious

computational resources are wasted. Furthermore, the decision surfaces generated

by (2) are always centered in the origin of the neuron’s input space.
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To overcome the drawbacks of the p-neuron, an extended multiplicative

neuron model, called pt-neuron, has been proposed [5]. This model is defined by
the following equations

v ¼ b
Ym
i¼1

ðxi � tiÞ; y ¼ fðv Þ; ð3Þ

where b 2 R and ti 2 R ði ¼ 1; . . . ;mÞ are the adjustable parameters of the neuron.

The adjustable parameters of (3) have a clear meaning, i.e., b is a scaling factor

for v, and ti’s are the coordinates of the center of the decision surfaces generated

by (3). Note that the center of pt-neuron’s decision surfaces can be placed anywhere
in the neuron’s input space.

In the traditional McCulloch-Pitts neuron, the level of internal activity is usually

defined as vmc ¼ w0 þ
Pm

i¼1 wixi, where w0 is the bias term, and the output is given by

ymc ¼ f ðvmcÞ. Comparing the equations that define the McCulloch-Pitts neuron with

(3), we see that pt-neuron has the same number of parameters and performs the same
number of arithmetical operations as the McCulloch-Pitts model. In other words, a

pt-neuron and a McCulloch-Pitts neuron have the same computational complexity,
if both employ the same activation function.

3. Solving the N-bit Parity Problem with a Single pt-neuron

Consider a pt-neuron employing the threshold activation function fth:R!f0; 1g,

defined by

fthðvÞ ¼
1; if v5 0
0; otherwise.

�

We prove in the following that this pt-neuron is capable of solving the N-bit parity
problem, 8N5 1:

LEMMA 1. Let a pt-neuron employing threshold activation function have its para-

meters defined as 0 < ti < 1 ði ¼ 1; . . . ;N Þ and b< 0 if N is even or b> 0 if N is odd.

Then this pt-neuron solves the N-bit parity problem, 8N5 1.

Proof. Let x ¼ ½x1; . . . ; xN�
T be a binary vector and a pt-neuron employing

threshold activation function have its parameters defined as stated in the lemma. We

shall prove that the output of this pt-neuron, when excited by x, is y ¼ pðxÞ,

8x 2 f0; 1gN. Define S0 ¼ fi j xi ¼ 0g and S1 ¼ f j jxj ¼ 1g. Observe that N ¼ jS0jþ

jS1j, where j � j denotes cardinality of a set. The level of internal activity of the pt-
neuron, excited by x, is given by

v ¼ b
YN
i¼1

ðxi � tiÞ ¼ b
Y
i2S0

ðxi � tiÞ
Y
j2S1

ðxj � tjÞ ¼ bK0K1;
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where K0 ¼
Q

i2S0
ðxi � tiÞ and K1 ¼

Q
j2S1

ðxj � tjÞ. We adopt the following conven-

tion: for k 2 f0; 1g, if Sk ¼ ; then
Q

l2Sk
ðxl � tlÞ ¼ 1. The output of the pt-neuron is

y ¼ fthðvÞ:

Note that K1 > 0, because ðxj � tjÞ > 0; 8j 2 S1. Since ðxi � tiÞ < 0; 8i 2 S0, the sign

of K0 and consequently, the sign of K0K1, is determined by jS0j: if jS0j is even then

K0K1 > 0; if jS0j is odd then K0K1 < 0. We consider 2 different cases:

1. N even: in this case, jS0j is even iff jS1j is even. Since b < 0; if jS0j is even then

v < 0; if jS0j is odd then v > 0. Consequently, the pt-neuron’s output is given by

y ¼
0; if jS1j is even
1; otherwise,

�

i.e., for N even, N5 2; y ¼ pðxÞ; 8x 2 f0; 1gN.

2. N odd: here, jS0j is even iff jS1j is odd. Because b > 0; if jS0j is odd then v < 0;

if jS0j is even then v > 0. Then the pt-neuron’s output is given by

y ¼
0; if jS1j is even
1; otherwise,

�

i.e., for N odd, N5 1; y ¼ pðxÞ; 8x 2 f0; 1gN.

Hence, the considered pt-neuron solves the N-bit parity problem, 8N5 1.

Note that the conditions (parameter values) stated in Lemma 1 are sufficient

conditions only. Moreover, there are infinite parameter values that can be used

to solve the N-bit parity problem with a pt-neuron. The choice of appropriate
values for the parameters depends on the restrictions imposed by the particular

implementation architecture used. If some performance measure related to the

implementation architecture must be optimized, the parameter intervals suggested

in Lemma 1 can be used as constraints for the corresponding optimization

problem. See Figure 1 for a solution for the 2-bit parity (XOR) problem,

with b ¼ �1 and t1 ¼ t2 ¼ 0:5.

Table I presents a comparison among neural architectures proposed to solve par-

ity problems. In this table, ½�� stands for truncation to the nearest integer, d�e stands

for rounding toward þ1, and b�c stands for rounding toward �1. Observe that the

solution using pt-neuron has the lowest computational complexity, since it does not
require hidden neurons and, again, the pt-neuron solution has the same computa-
tional complexity as that of a simple McCulloch-Pitts neuron.

As pointed out before, Arslanov et al. [1] have presented a solution (different from

that showed in Table I) that uses only 1 additive neuron with a complicated activa-

tion function. Since Arslanov et al. themselves reject that solution, it is not included

in Table I. Anyway, because the pt-neuron solution employs a simple threshold
activation function, it is still less computationally complex than Arslanov et al.’s

rejected one.
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4. Conclusion

The N-bit parity problem has been widely used to evaluate neural networks, because

it is nonlinear and considered hard to solve. A variety of neural architectures have

been proposed to solve the parity problem, but all of them require the use of at least

one hidden neuron. We propose a solution to the N-bit parity problem based on

an extended multiplicative neuron model, called translated multiplicative neuron

(pt-neuron). The pt-neuron solution does not require learning and, 8N5 1, only

1 pt-neuron with threshold activation function and parameters defined within a spe-
cific interval solves the N-bit parity problem. Furthermore, since 1 pt-neuron has the
same computational complexity as a single McCulloch-Pitts neuron (if both use the

same activation function), the proposed solution has the lowest computational cost

among the neural solutions reported to date.

Table I. Comparison between neural architectures for the N -bit parity problem.

Solution Hidden neurons Activation function

Stork and Allen [11] 2 Specialized

Brown [2] 1 Specialized

Minor [8] [N=2] Sigmoid

Setiono [10] dðNþ 1Þ=2e Sigmoid

Lavretsky [6] N� 1 Sigmoid/Threshold

Liu et al. [7] bN=2c Threshold

Arslanov et al. [1] dlog2ðNþ 1Þe Threshold

Torres-Moreno et al. [12] N Sigmoid

pt-neuron 0 Threshold

Figure 1. Solution obtained by a pt-neuron for the 2-bit parity (XOR) problem: (a) XOR truth table;

(b) decision surface generated by pt-neuron.
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The simplicity of the proposed solution makes it suitable for applications demand-

ing fast computation of parity bits. The pt-neuron solution may also be attractive
for those interested in hardware implementations, because compact analog parity

generator circuits may be developed based on it.

The applicability of pt-neuron is not limited to the N-bit parity problem. Actually,
neural networks composed of hidden pt-neurons and trained by supervised learning
techniques have been applied in function approximation problems, producing

encouraging results [5]. A future research direction is to investigate theoretical prop-

erties and limitations of neural networks using pt-neurons. Another research direc-
tion is to insert pt-neuron in the context of hybrid and automatic generated neural
network architectures [4, 13].
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