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Abstract. Feature selection is an important combinatorial optimisation problem in the context of supervised
pattern classification. This paper presents four novel continuous feature selection approaches directly minimising
the classifier performance. In particular, we include linear and nonlinear Support Vector Machine classifiers. The
key ideas of our approaches are additional regularisation and embedded nonlinear feature selection. To solve
our optimisation problems, we apply difference of convex functions programming which is a general framework
for non-convex continuous optimisation. Experiments with artificial data and with various real-world problems
including organ classification in computed tomography scans demonstrate that our methods accomplish the desired
feature selection and classification performance simultaneously.
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1. Introduction

1.1. Overview and related work

In the context of supervised pattern classification, feature selection aims at picking out
some of the original input dimensions (features) (i) for performance issues by facilitating
data collection and reducing storage space and classification time, (ii) to perform semantics
analysis helping to understand the problem, and (iii) to improve prediction accuracy by
avoiding the “curse of dimensionality” (cf. Guyon & Elisseeff, 2003).

According to Guyon and Elisseeff (2003), John, Kohavi, and Pfleger (1994), and Bradley
(1998), feature selection approaches divide into filters, wrappers and embedded approaches.
Most known approaches are filters which act as a preprocessing step independently of
the final classifier (Hermes & Buhmann, 2000; Duda, Hart, & Stork, 2000). In contrast,
wrappers take the classifier into account as a black box (John, Kohavi, and Pfleger, 1994;
Weston et al., 2001). An example for a wrapper method for nonlinear SVMs is Weston
et al. (2001), where instead of minimising the classification error, the features are selected
to minimise a generalisation error bound. Finally, embedded approaches simultaneously
determine features and classifier during the training process. The embedded methods in
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Bradley and Mangasarian (1998) are based on a linear classifier. As for the wrapper methods,
there exist only few embedded methods addressing feature selection in connection with
nonlinear classifiers up to now. An embedded approach for the quadratic 1-norm SVM was
suggested in Zhu et al. (2004). The authors penalise the features by the �1-norm and apply
the nonlinear mapping explicitly. This makes the approach feasible only for low dimensional
feature maps such as the quadratic one. In particular, original features are not suppressed so
that no performance improvements or semantics analysis are possible. Finally, in Jebara and
Jaakkola (2000) a feature selection method was developed as an extension to the so-called
maximum entropy discrimination, i.e., from a discriminative (probabilistic) perspective.

1.2. Contribution

In this work, we focus on embedded approaches for feature selection. The starting point
for our investigation is the approach of Bradley and Mangasarian (1998) that minimises the
training errors of a linear classifier while penalising the number of features by a concave
penalty approximating the �0-“norm”. In this way, the linear classifier is constructed while
implicitly discarding features. The first objective of our work is to extend this feature
selection approach with the aim to improve the generalisation performance of the classifiers.
Taking into account that the Support Vector Machine (SVM) provides good generalisation
ability by its �2 regulariser, we propose new methods by introducing additional regularisation
terms.

In the second part of our work, we construct direct objective minimising feature selection
methods for nonlinear SVM classifiers. First, we generalise the approach for the quadratic
SVM of Zhu et al. (2004) in two directions. We apply the approximate �0 penalty considered
superior to the �1-norm in Bradley and Mangasarian (1998) and we focus on feature selection
in the original feature space to further improve the performance and enable semantics
analysis. Next we incorporate “kernel-target alignment” (Cristianini et al., 2002) within
this framework which performs appropriate feature selection if, e.g., the Gaussian kernel
SVM is used as classifier. This approach is essentially different from multiple kernel learning
techniques addressed, e.g., in Bach, Lanckriet, and Jordan (2004).

Some of our new approaches require the solution of non-convex optimisation problems.
To solve these problems, we apply a general difference of convex functions (d.c.) optimisa-
tion algorithm in an appropriate way. Moreover, we show that the Successive Linearization
Algorithm (SLA) proposed in Bradley and Mangasarian (1998) for concave minimisation
is in effect a special case of our general optimisation approach. A short summary of our
algorithms has been announced in Neumann, Schnörr, and Steidl (2004).

Feature selection is especially profitable for high-dimensional problems. To illustrate this,
we investigate as part of our in-depth method evaluation the problem of selecting a suitable
subset from 650 image features in order to classify organs in computed tomography (CT).

1.3. Organisation

After reviewing the linear embedded approaches proposed in Bradley and Mangasarian
(1998), we introduce our enhanced approaches both for linear and nonlinear classification
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in Section 3. The d.c. optimisation approach and its application to our feature selection
problems is described in Section 4. Numerical results illustrating and evaluating various
approaches, including the CT organ classification, are given in Section 5.

1.4. Notation

We denote vectors and matrices by bold small and capital letters, respectively. The matrix
I denotes the identity matrix in appropriate dimensions. The vector 0 signifies a vector
of zeros and e a vector of ones. All vectors will be column vectors unless transposed
by the superior symbol T . If x ∈ R

n denotes a vector, in general, we will indicate its
components by xi (i = 1, . . . , n). We set |w| := (|w1|, |w2|, . . .)T and assume vector
inequalities to hold componentwise. Furthermore, [−v, v] for v ∈ R

d signifies the cuboid
{w ∈ R

d : −v ≤ w ≤ v}. We use the function x+ := max(x, 0) and the indicator function
χC of a feasible convex set C which is defined by χC (x) = 0 if x ∈ C , and χC (x) = ∞
otherwise.

2. Classifier regularisation and feature penalties

Given a training set {(xi , yi ) ∈ X × {−1, 1} : i = 1, . . . , n} with X ⊂ R
d , the first

goal is to find a classifier F : X → { −1, 1}. We will introduce in Section 2.1 the linear
classifier on which the presented embedded feature selection approaches are based, and then
add penalties for feature suppression and for improving the generalisation performance in
Section 2.2.

2.1. Robust linear programming

Our starting point are linear classification approaches for constructing two parallel bounding
hyperplanes in R

d such that the differently labelled sets are maximally located in the
two opposite half spaces determined by these hyperplanes. More precisely, one solves the
minimisation problem

fRLP(w, b) :=
n∑

i=1

(1 − yi (wT xi + b))+ → min
w∈Rd,b∈R

. (1)

If (w, b) is the solution of (1), then the classifier is F(x) = sgn(wT x+b). The linear method
(1) was proposed as Robust Linear Programming (RLP) by Bennett and Mangasarian (1992).
Note that these authors weighted the training errors by 1/n±1, where n±1 = |{i : yi = ±1}|.

2.2. Regularisation and feature penalties

In general, optimisation approaches to statistical classification include an additional penalty
term ρ besides a “goodness of fit” term as fRLP in (1) whose competition is controlled by
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a weight parameter λ ∈ [0, 1):

min
w∈Rd ,b∈R

(1 − λ) fRLP(w, b) + λρ(w). (2)

In the following, we consider different penalties.

2.2.1. SVM. In order to maximise the margin between the two parallel hyperplanes, the
original SVM penalises the �2-norm of w. Then (2) yields

min
w∈Rd ,b∈R

(1 − λ)
n∑

i=1

(1 − yi (wT xi + b))+ + λ

2
wT w (3)

which can be solved by a convex Quadratic Program (QP). The Support Vectors (SVs) are
those patterns xi for which the dual solution is positive, which implies yi (wT xi + b) ≤ 1.

2.2.2. �1-SVM. In order to suppress features, i.e. components of the vector w, �p-norms
of w with p < 2 are used as feature penalties. In Bradley and Mangasarian (1998), the �1-
norm (lasso penalty) ρ(w) = ‖w‖1 led to good feature selection and classification results.
Accordingly, (2) reads

min
w∈Rd ,b∈R

(1 − λ)
n∑

i=1

(1 − yi (wT xi + b))+ + λeT |w| (4)

which can be solved by a linear program. This penalty term was originally introduced in
the statistical context of linear regression in the ‘lasso’ (’Least Absolute Shrinkage and
Selection Operator’) in Tibshirani (1996), and also applied in Zhu et al. (2004).

2.2.3. Feature selection concave (FSV). Feature selection can be further improved by
using the so-called �0-“norm” ‖w‖0

0 = |{i : wi �= 0}| (Bradley & Mangasarian, 1998;
Weston et al., 2003). Note that ‖·‖0 is no norm because, unlike �p-norms (p ≥ 1), the
triangle inequality does not hold. Since the �0-“norm” is non-smooth, it was approximated
in Bradley and Mangasarian (1998) by the concave functional

ρ(w) = eT
(
e − e−α|w|) ≈ ‖w‖0

0 (5)

with approximation parameter α ∈ R+. Problem (2) with penalty term (5) yields with
suitable constraints the mathematical program:

min
w∈Rd ,b∈R,ξ∈Rn ,v∈Rd

(1 − λ)eT ξ + λeT (e − e−αv)

subject to yi (wT xi + b) ≥ 1 − ξi , i = 1, . . . , n, (6)

ξ ≥ 0 ,

− v ≤ w ≤ v
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which is known as Feature Selection concaVe (FSV). Note that this problem is non-convex,
and high quality solutions can be obtained by, e.g., the Successive Linearization Algorithm
(SLA) presented in Section 4.2.1.

3. New feature selection approaches

3.1. Combined �p penalties

FSV performs well for feature selection. However, its classification accuracy can be im-
proved by applying a standard SVM on the selected features only, as shown in Jakubik
(2003) and also indicated in Weston et al. (2003). Therefore, since the �2 penalty term is
responsible for the very good SVM classification results while the �1 and �0 penalty terms
focus on feature selection, we suggest combinations of these terms. Consequently, we need
two weight parameters µ, ν ∈ R+.

3.1.1. �2-�1-SVM. For the �2-�1-SVM, we are interested in solving the constrained convex
QP

min
w∈Rd ,b∈R,ξ∈Rn ,v∈Rd

µ

n
eT ξ + 1

2
wT w + νeT v

subject to yi (wT xi + b) ≥ 1 − ξi , i = 1, . . . , n,
(7)

ξ ≥ 0,

− v ≤ w ≤ v.

It is advisable here to solve the dual problem because it involves fewer variables and has a
simpler structure, similar to the SVM case.

3.1.2. �2-�0-SVM. For the �2-�0-SVM with approximate �0-“norm”, we minimise

f (w, b, v) : = µ

n

n∑
i=1

(1 − yi (wT xi + b))+ + 1

2
wT w + νeT (e − e−αv) + χ[−v,v](w).

(8)

An appropriate approach to optimise (8) is developed in Section 4.

3.2. Nonlinear classification

For problems which are not linearly separable a so-called feature map φ is commonly
used which maps the set X ⊂ R

d into a higher dimensional space φ(X ) ⊂ R
d ′

(d ′ ≥ d).
Then a linear classification approach (1) or (3) can be applied in the new feature space
φ(X ). This results in a nonlinear classification in the original space R

d , i.e., in nonlinear
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separating surfaces. Below, we consider two popular feature maps in connection with feature
selection.

3.2.1. Quadratic FSV. We start with the simple quadratic feature map

φ : X → R
d ′
, x �→ (

xα : α ∈ N
d
0 , 0 < ‖α‖1 ≤ 2

)
= (

xα1
1 xα2

2 . . . xαd
d : α ∈ N

d
0 , 0 < ‖α‖1 ≤ 2

)
,

where d ′ = d(d+3)
2 . Straightforward application of the �0 penalty in R

d ′
by FSV leads to the

minimisation problem

(1 − λ)
n∑

i=1

(1 − yi (wTφ(xi ) + b))+ + λeT (e − e−αv) +
d ′∑

i=1

χ[−vi ,vi ](wi )

for w ∈ R
d ′
, b ∈ R and v ∈ R

d ′
. This approach, as well as a similar one for the �1 penalty in

Zhu et al. (2004), achieve feature selection only in the transformed feature space R
d ′

. Our
goal, however, is to select features in the original space R

d in order to get insight into our
original problem, too, and to reduce the number of primary features. To this end, instead of
penalising vi for v ∈ R

d ′
, we examine for each wi (i = 1, . . . , d ′) which original features

are included in computing φi . If e j ∈ R
d denotes the j th unit vector and φi (e j ) �= 0, we

penalise the corresponding v j for v ∈ R
d :

f (w, b, v) : = (1 − λ)
n∑

i=1

(1 − yi (wTφ(xi ) + b))+ + λeT (e − e−αv)

+
d ′∑

i=1

∑
φi (e j )�=0

χ[−v j ,v j ](wi ) → min
w∈Rd′

,b∈R,v∈Rd
. (9)

In the following, we refer to (9) as quadratic FSV. In principle, the approach can be extended
to other explicit feature maps φ, especially by choosing other polynomial degrees.

In the same manner as done for FSV here, it is possible to generalise the �2-�p-SVMs
for p = 0, 1 by explicitly applying, e.g., the quadratic feature map. This leads to solving a
sequence of convex QPs instead of LPs as will be seen in the next section.

3.2.2. Kernel-target alignment approach. Compared with linear SVMs, further improve-
ments of classification accuracy in our context may be achieved by using Gaussian kernel
SVMs, as has been confirmed by experiments in Jakubik (2003). Therefore, we also con-
sider SVMs with the feature map φ : X → �2 induced by K (x, z) = 〈φ(x),φ(z)〉 for the
Gaussian kernel

K (x, z) = Kθ(x, z) = e−‖x−z‖2
2,θ/2σ 2

(10)

with weighted �2-norm ‖x‖2
2,θ = ∑d

k=1 θk |xk |2, for all x, z ∈ X . As the feature space has
infinite dimension, feature selection as done for the quadratic feature map is no longer
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Figure 1. Quadratic classification problems with y = sgn(x2
1 + x2

2 − 1). Top: Training points and decision
boundaries (white lines) computed by (9) for λ = 0.1, left: in R

2, right: projection of R
4 onto selected features.

Bottom: Features determined by (9).

applicable. We apply the common SVM classifier without bias term b. For further informa-
tion on nonlinear SVMs see, e.g., Schölkopf and Smola (2002). We obtain the commonly
used kernel and classifier for θ = e. Direct feature selection, i.e., the setting of as many θk to
zero as possible while retaining or improving the classification ability, is a difficult problem.
One possible approach is to use a wrapper as in Weston et al. (2001). Instead, we aim at
directly maximising the alignment Â(K, yyT ) = yT Ky/(n‖K‖F ) proposed in Cristianini
et al. (2002) as a measure of conformance of a kernel represented by K = (K (xi , x j ))n

i, j=1
with a learning task. To simplify this optimisation task, we drop the denominator which
is justified in view of the boundedness of the kernel elements (10). To cope with unequal
sample partitioning as, e.g., in Fig. 1 left, we replace y by yn = (yi/nyi )

n
i=1. This leads

to

yT
n Kyn =

∥∥∥∥∥
1

n+1

∑
{i :yi =+1}

φ(xi ) − 1

n−1

∑
{i :yi =−1}

φ(xi )

∥∥∥∥∥
2

(11)

which is the class–centre distance in the feature space. A different view on the alignment
criterion is obtained by considering the classifier F with w = ∑n

i=1 yniφ(xi ), b = 0 in
feature space. Then maximising the correct class responses

∑n
i=1 yni F(xi ) also leads to the
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expression above. Relaxing the binary θ ∈ {0, 1}d to θ ∈ [0, 1]d and adding penalty (5),
we define as our kernel-target alignment approach to feature selection

f (θ) := −(1 − λ)
1

2
yT

n Kθyn + λ
1

d
eT (e − e−αθ) + χ[0,e](θ) → min

θ∈Rd
. (12)

The scaling factors 1
2 , 1

d ensure that both objective terms take values in [0, 1]. The minimi-
sation problem (12) is subjected to bound constraints only, but the variable θ is included in
the exponential norm expressions in the first term as well as in the concave second term. As
a result, the problem is likely to have many local minima and will be difficult to optimise.
Considering the boundary values, it follows for θ = 0 that Kθ = (1)n×n and yT

n Kθyn = 0.
For θ → ∞, we have Kθ → I and yT

n Kθyn → 1
n+1

+ 1
n−1

.

4. D.C. decomposition and optimisation

Whereas RLP (1), SVM (3) and �1-SVM (4) are still convex QPs, adding the concave
penalty term (5) makes problems FSV (6), the �2-�0-SVM (8), quadratic FSV (9) and, par-
ticularly, the kernel-target alignment approach (12) difficult to optimise due to possible local
minima.

A robust algorithm for minimising non-convex problems is the Difference of Con-
vex functions Algorithm (DCA) proposed in Pham and Hoai (1998) in a different con-
text. It can be used to minimise a non-convex function f : R

d → R ∪ {∞} which
reads

f (x) = g(x) − h(x) → min
x∈Rd

, (13)

where g, h : R
d → R ∪ {∞} are lower semi-continuous, proper convex functions cf.

(Rockafellar, 1970). A property of this approach, particularly convenient for applications,
is that f may be non-smooth. For example, constraints sets C � x may be taken into account
by adding a corresponding indicator function χC to the objective function f . In the next
subsections, we first sketch the DCA and then apply it to our non-convex feature selection
problems where the precise algorithm is determined by the appropriate decomposition of
f in each case.

4.1. D.C. programming

According to Rockafellar (1970) and Pham and Hoai (1998), for a lower semi-continuous,
proper convex function f : R

d → R ∪ {∞} we use the standard notation

dom f := {x ∈ R
d : f (x) < ∞}, (domain)

f ∗(x̃) := sup
x∈Rd

{〈x, x̃〉 − f (x)}, (conjugate function)

∂ f (z) := {x̃ ∈ R
d : f (x) ≥ f (z) + 〈x − z, x̃〉 ∀ x ∈ R

d} (subdifferential)
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for z, x̃ ∈ R
d . For differentiable functions we have ∂ f (z) = {∇ f (z)}. According to

Rockafellar (1970) [Theorem 23.5], it holds

∂ f (x) = arg max
x̃∈Rd

{xT x̃ − f ∗(x̃)}, ∂ f ∗(x̃) = arg max
x∈Rd

{x̃T x − f (x)}. (14)

In the remainder of this section, we will apply the following general algorithm:

Algorithm 4.1. D.C. minimisation Algorithm (DCA) (g, h, tol)

choose x0 ∈ dom g arbitrarily
for k ∈ N0

do




select x̃k ∈ ∂h(xk) arbitrarily
select xk+1 ∈ ∂g∗(x̃k) arbitrarily

if min
(∣∣xk+1

i − xk
i

∣∣, ∣∣ xk+1
i −xk

i

xk
i

∣∣) ≤ tol ∀ i = 1, . . . , d

then return (xk+1)

The following theorem was proven in Pham and Hoai (1998) [Lemma 3.6, Theorem 3.7]:

Theorem 1 (DCA convergence). If g, h : R
d → R ∪ {∞} are lower semi-continuous,

proper convex functions so that dom g ⊂ dom h and dom h∗ ⊂ dom g∗, then it holds for
the DCA Algorithm 4.1:

(i) The sequences (xk)k∈N0 , (x̃k)k∈N0 are well defined.
(ii) ( f (xk) = g(xk) − h(xk))k∈N0 is monotonously decreasing.

(iii) Every limit point of (xk)k∈N0 is a critical point of f = g−h. In particular, if f (xk+1) =
f (xk), then xk is a critical point of f in (13).

Hence the algorithm converges to a local minimum that is controlled by the start value
x0 and of course by the d.c. decomposition (13) of the objective. In case of non-global
solutions, one may restart the DCA with a new initial point x0. However, Pham and Hoai
(1998) state that the DCAs often converge to a global solution.

We point out that a similar optimisation approach has been proposed by Yuille and
Rangarajan (2003), obviously unaware of previous related work in the mathematical litera-
ture (Pham Dinh, and Elbernoussi, 1988; Pham and Hoai, 1998) (Pham Dinh & Elbernoussi,
1988; Pham & Hoai, 1998). Whereas the approach by Yuille and Rangarajan (2003) assumes
differentiable objective functions, our approach—adopted from (Pham & Hoai, 1998)—is
applicable to a significantly larger class of non-smooth optimisation problems. This allows
to include constraint sets in a natural way, for example.

4.2. Application to direct objective minimising feature selection

The crucial point in applying the DCA is to define a suitable d.c. decomposition (13) of
the objective function. The aim of this section is to propose such decompositions for the
different approaches under consideration.
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4.2.1. FSV. Consider general problems of the form

min
x∈X

f (x) (15)

where f : R
d → R is concave but not necessarily differentiable, and X ⊂ R

d is a polyhedral
set. According to Mangasarian (1997) f always takes its minimum value at a vertex of the
polyhedral feasible set X , and ‘arg min’ may be written as ‘arg vertex min’. The symbol
∂ f now denotes the superdifferential of f which, for concave f , is the analogue of the
subdifferential for (not necessarily differentiable) convex functions. For such problems,
and especially for the concave problem FSV (6), the following iterative algorithm was
proposed in Bradley and Mangasarian (1998):

Algorithm 4.2. Successive Linearization Algorithm (SLA) ( f, X )

choose x0 ∈ R
n arbitrarily

for k ∈ N0

do




select z ∈ ∂ f (xk) arbitrarily

select xk+1 ∈ arg vertex minx∈X zT (x − xk) arbitrarily

if zT (xk+1 − xk) = 0

then return (xk)
The algorithm produces a sequence of linear programs and terminates after a finite number
of iterations (Mangasarian, 1997).

Now let us solve the general non-convex problems in the d.c. optimisation framework. It
turns out that our new feature selection approaches not only generalise the FSV approach,
but also that the SLA is a special case of the DCA: We show that the DCA applied to a
particular d.c. decomposition (13) of (15) coincides with the SLA.

Corollary 2 (SLA equivalence). Let f : R
d → R be concave and X ⊂ R

d be a polyhedral
set. Then for solving the concave minimisation problem (15) the SLA with x0 ∈ X and DCA
with tol = 0 are equivalent.

Proof: Modelling problem (15) as a d.c. problem reads

min
x∈Rd

χX (x) − (− f (x)),

where the first term is defined as function g in (13), and the second one as h. Then we have
in the DCA Algorithm 4.1

• x0 ∈ dom g ⇔ x0 ∈ X , and for k ∈ N0:
• x̃k ∈ ∂h(xk) ⇔ x̃k ∈ −∂ f (xk),

• xk+1 ∈ ∂g∗(x̃k)
(14)⇔ xk+1 ∈ arg minx∈X −(x̃k)T (x − xk).



COMBINED SVM-BASED FEATURE SELECTION AND CLASSIFICATION

The problem given in the theorem has exactly the form for which the SLA Algorithm 4.2
is defined. Algorithm 4.2 and the above DCA are almost identical with z = −x̃k . If we use
tol = 0 in the DCA, choose our start value x0 ∈ X in the SLA and apply, e.g., the simplex
algorithm to obtain only vertex solutions, the algorithms are identical.

4.2.2. �2-�0-SVM. A viable d.c. decomposition (13) for (8) reads

g(w, b, v) = µ

n

n∑
i=1

(1 − yi (wT xi + b))+ + 1

2
wT w + χ[−v,v](w),

h(v) = −νeT (e − e−αv).

Here and for the following problems, h is differentiable, so in the first step of DCA iteration
k ∈ N0 we have x̃k = ∇h(xk). Combining the two DCA steps for each k by (14) leads
to xk+1 ∈ ∂g∗(∇h(xk)) = arg maxx{∇h(xk)T x − g(x)} so that we arrive at the constrained
convex QP

min
w∈Rd ,b∈R,ξ∈Rn ,v∈Rd

µ

n
eT ξ + 1

2
wT w + ναvT e−αvk

subject to yi (wT xi + b) ≥ 1 − ξi , i = 1, . . . , n,

ξ ≥ 0,

− v ≤ w ≤ v.

Note that the sequence of solutions to these QPs converges, due to Theorem 1, as f is
bounded from below.

4.2.3. Quadratic FSV. To solve (9), we use the d.c. decomposition

g(w, b, v) = (1 − λ)
n∑

i=1

(1 − yi (wTφ(xi ) + b))+ +
d ′∑

i=1

∑
φi (e j )�=0

χ[−v j ,v j ](wi ),

h(v) = −λeT (e − e−αv),

which, analogously to the previous approach, in each DCA step k ∈ N0 leads to a linear
problem

min
w∈Rd′

,b∈R,ξ∈Rn ,v∈Rd
(1 − λ)eT ξ + λαvT e−αvk

subject to yi (wTφ(xi ) + b) ≥ 1 − ξi , i = 1, . . . , n,

ξ ≥ 0,

−v j ≤ wi ≤ v j , i = 1, . . . , d ′; φi (e j ) �= 0.
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4.2.4. Kernel-target alignment approach. For the function defined in (12), as the kernel
(10) is convex in θ, we split f as

g(θ) = 1 − λ

2n+1n−1

n∑
i, j = 1
yi �= y j

e−‖xi −x j ‖2
2,θ/2σ 2 + χ[0,e](θ),

h(θ) = 1 − λ

2

n∑
i, j = 1
yi = y j

1

n2
yi

e−‖xi −x j ‖2
2,θ/2σ 2 − λ

d
eT (e − e−αθ).

Again h is differentiable, so by applying the DCA we find the solution in the first step of
iteration k as

θ̃k = ∇h(θk) = −1 − λ

4σ 2

n∑
i, j = 1
yi = y j

1

n2
yi

e−‖xi −x j ‖2
2,θk /2σ 2

((xil − x jl)
2)d

l=1 − λ

d
αe−αθk

.

In the second step, looking for θk+1 ∈ ∂g∗(θ̃k)
(14)= arg maxθ{θT θ̃k − g(θ)} leads to solving

the convex non-quadratic problem

min
θ∈Rd

1 − λ

2n+1n−1

n∑
i, j = 1
yi �= y j

e−‖xi −x j ‖2
2,θ/2σ 2 − θT θ̃k subject to 0 ≤ θ ≤ e (16)

with a valid initial point 0 ≤ θ0 ≤ e. We solve the problems (16) efficiently by a trust
region method using the function fmincon in MATLAB’s optimisation toolbox (Math-
Works, 2002). Alternatively, a penalty/barrier multiplier method with logarithmic-quadratic
penalty function as proposed in Ben-Tal and Zibulevsky (1997) also reliably solves the
problems.

5. Evaluation

To study the performance of our new methods in detail, we first present computer generated
ground truth experiments illustrating the general behaviour and robustness of the nonlinear
classification methods in Section 5.1. To evaluate the performance of the suggested ap-
proaches at large, we study various real-world problems in Section 5.2 and finally examine
the high-dimensional research problem of organ classification in CT scans in Section 5.3.

5.1. Ground truth experiments

In this section, we consider artificial training sets in R
2 and R

4 where y is a function of
the first two features x1 and x2. We examine specially designed points (x1, x2) ∈ R

2 on
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Figure 2. Chess board classification problems with y+1
2 = (� x1

2 � mod 2) ⊕ (� x2
2 � mod 2). Top: Training points

and Gaussian SVM decision boundaries (white lines) for σ = 1, λ = 0.1, left: in R
2, right: zoomed projection of

R
4 onto selected features. Bottom: Features determined by (12).

the left of the figures and n = 64 randomly distributed points (x1, x2, x3, x4) ∈ R
4 on the

right.
The examples in Figure 1 show that our quadratic FSV approach indeed performs fea-

ture selection and finds classification rules for quadratic, not linearly separable problems.
Ranking methods for feature selection as well as linear classification approaches do not
appreciate the feature relevance for these problems.

For the non-quadratic chess board classification problems in Figure 2, our kernel-target
alignment approach performs very well, in contrast to all other feature selection approaches
presented. Again, the features by themselves do not contain relevant information and all
linear methods are doomed to fail. In both test examples, only relevant feature sets are
selected by our methods as can be seen in the bottom plots. Particularly the correct feature
set {1, 2} is selected for most values of λ. This clearly shows the favourable properties of
embedded feature selection also in connection with nonlinear classification.

Figure 2 shows on the right a remarkable property: The alignment approach discards the
two noise features even for λ = 0 which indicates that the alignment functional (11) incorpo-
rates implicit feature selection. This is due to the isotropic properties of the Gaussian kernel
where the feature space distances are bounded by ‖φ(x)‖2 = 〈φ(x),φ(x)〉 = K (x, x) = 1.
As argued in Section 3.2.2, maximising the alignment term yT

n Kθ yn amounts to maximising
the class–centre distance of the feature vectors which lie on the unit sphere in �2. Adding
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random features disturbs the original distances ‖xi − x j‖ and so distributes the feature
vectors φ(xi ) more uniformly on the sphere potentially moving the class means closer to
each other. More precisely, adding features

x �→
(

x

x̃

)

leads for θ = e to kernel matrix elements

e(−‖x−z‖2
2−‖x̃−z̃‖2

2)/2σ 2 = K (x, z) · e−‖x̃−z̃‖2
2/2σ 2

for x, z ∈ X . If the new features are random, roughly all off-diagonal elements are damped
by the same factor α. Splitting the diagonal from the off-diagonal terms, the original align-
ment yT

n Kyn =: ( 1
n+1

+ 1
n−1

) + c is reduced if c > 0 or yT
n Kyn > 1

n+1
+ 1

n−1
. For large

ni , the value of the alignment term is reduced to ( 1
n+1

+ 1
n−1

) + αc by almost the factor
α too. The implicit feature selection of the alignment functional does not apply for arbi-
trary kernels: The linear kernel, e.g., leads to a (nonnegative) alignment summand for each
feature.

5.2. Real-world data

We compare our approaches with RLP (1) and FSV (6) favoured over the �1-SVM in Bradley
and Mangasarian (1998) and standard linear and Gaussian kernel SVMs as well as with the
fast SVM–based filter method for feature selection Heiler, Cremers, and Schnörr (2001)
ranking the features according to the linear SVM decision function.

5.2.1. Data sets and preprocessing. To test all our methods on real-world data, we use
several data sets from the UCI repository Blake and Merz (1998) as well as the high-
dimensional Colon Cancer data set from Weston et al. (2003). The problems mostly treat
medical diagnoses based on genuine patient data and are resumed in Table 1 where we
use distinct short names for the databases. (See also Bradley & Mangasarian, 1998) for a
brief review of most of the data sets used.) It is essential that the features are normalised,
especially for the kernel-target alignment approach as their variances influence its sensible
objective with initially equal weights. In experiments, it shows that otherwise features with
large variances are preferred. So we rescale the features linearly to zero mean and unit
variance.

5.2.2. Choice of parameters. As to the parameters, we set α = 5 in (5) as proposed in
Bradley and Mangasarian (1998) and σ =

√
d

2 in (10) which maximises the alignment of
the problems. We start the DCA with v0 = e for the �2-�0-SVM, FSV and quadratic FSV
and with θ0 = e/2 for the kernel-target alignment approach, respectively. We stop on v
with tol = 10−5 resp. tol = 10−3 for θ. To determine the weight parameters, we discretise
their range of values and perform a parameter selection step minimising the error on an
independent validation set before actually applying the feature selection algorithm. The
validation set is chosen randomly as one half of each run’s (cross-validation) training set
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Table 1. Statistics for data sets used.

No. of features No. of samples Class distribution
Data set d n n+1/n−1

wpbc60 32 110 41/ 69

wpbc24 32 155 28/127

liver 6 345 145/200

cleveland 13 297 160/137

ionosphere 34 351 225/126

pima 8 768 500/268

bcw (breast- 9 683 444/239
cancer-wisconsin)

sonar 60 208 111/97

musk 166 476 207/269

microarray 2000 62 22/40

to select ln µ ∈ {0, . . . , 10}, ln ν ∈ {−5, . . . , 5} or λ ∈ {0.05, 0.1, 0.2, . . . , 0.9, 0.95} for
(quadratic) FSV or λ ∈ {0, 0.1, . . . , 0.9} for the kernel-target alignment approach. In case
of equal validation error, we choose the larger values for (ν, µ) resp. λ. In the same manner,
the SVM weight parameter λ is chosen according to the smallest 1−λ

λ
∈ {e−5, e−4, . . . , e5}

independently of the selected features. For the filter method, we successively include features
until the validation error does not drop 0.1 per cent below the current value five times. The
final classifier is then built from the training and validation sets. To solve the elementary
optimisation problems, we use the CPLEX solver library (Ilog, 2001), MATLAB’s QP
solver quadprog for the common SVMs as well as its constrained optimisation method
fmincon documented in MathWorks (2002).

5.2.3. Results. We first partition the data equally into a training, a validation and a test
set. The validated parameters and test results for the linear classifiers are summarised in
Table 2 where the number of features is determined as |{ j = 1, . . . , d : |w j | > 10−8}|.
As a result of the validation, the optimal combination for (µ, ν) mostly falls within the
range of discretised values. Further, the methods are often stable for large regions of val-
ues for ν or for the ratio µ/ν. Our linear methods achieve feature selection and are often
able to improve the classification performance compared with the baseline RLP classi-
fier. Especially for the very high dimensional ’microarray’ data, both our linear feature
selection methods �2-�1-SVM and �2-�0-SVM are more accurate than even the linear
SVM.

For more thorough cross-validation experiments, the aggregate results are summarised
in Table 3 for linear and Table 4 for nonlinear classifiers. The number of features is again
determined as |{ j = 1, . . . , d : |w j | > 10−8}| again resp. |{ j = 1, . . . , d : |θ j | > 10−2}|.
The results for the quadratic FSV on data set ’musk’ are not given due to the high problem
dimension. It is clear that all proposed approaches perform feature selection: linear FSV
discards most features followed by the kernel-target alignment approach, the SVM ranking
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Table 2. Feature selection and linear classification performance (number of features, test error [%]) and weight
parameters that minimise classification error on validation set.

Linear
RLP (1) SVM (3) Ranking FSV (6) �2-�1-SVM (7) �2-�0-SVM (8)

Data set dim err dim err dim err dim err λ∗ dim err (ln µ∗, ln ν∗) dim err (ln µ∗, ln ν∗)

wpbc60 32 44 32 31 2 31 0 31 0.95 27 33 (1, −4) 27 33 ( 1, −5)

wpbc24 32 25 32 22 1 22 0 22 0.95 19 20 (10, 5) 13 22 (8, 5)

liver 6 28 6 30 6 30 2 33 0.3 6 30 (9, 5) 6 31 (5, 1)

cleveland 13 17 13 16 6 18 4 23 0.05 9 17 (8, 5) 7 17 (2, −2)

ionosphere 33 12 34 11 9 14 2 14 0.2 19 11 (9, 5) 3 15 (6, 3)

pima 8 26 8 27 6 27 1 29 0.05 7 27 (6, −1) 8 27 (5, −3)

bcw 9 4 9 4 8 4 1 9 0.2 9 4 (3, −2) 8 4 (5, −3)

sonar 48 34 60 32 15 35 20 31 0.05 30 35 (6, 2) 58 26 (10, −4)

musk 113 27 166 18 3 39 17 22 0.05 163 18 (10, −3) 160 18 (10, −4)

microarray 41 40 2000 10 4 30 1 15 0.3 21 5 ( 1, 0) 18 5 ( 0, −3)

Table 3. Feature selection and linear classification tenfold cross-validation performance (average number of
features, average test error [%], error variance [%]), bold numbers indicate lowest errors of feature selection
methods including Table 4.

RLP Linear SVM Ranking FSV �2-�1-SVM �2-�0-SVM

Data set dim err var dim err var dim err var dim err var dim err var dim err var

wpbc60 32.0 40.9 2.7 32.0 33.6 1.5 4.9 36.4 2.1 0.4 36.4 1.7 12.4 35.5 1.2 13.4 37.3 1.4

wpbc24 32.0 27.7 1.1 32.0 18.1 1.0 1.8 18.1 1.0 0.0 18.1 1.0 12.6 17.4 0.9 2.9 18.1 1.0

liver 6.0 31.9 0.7 6.0 32.5 0.7 4.5 33.3 0.7 2.1 36.2 1.0 6.0 35.1 1.0 5.0 34.2 1.6

cleveland 13.0 16.2 0.6 13.0 15.8 0.5 6.9 16.2 0.4 1.8 23.6 1.0 9.9 16.5 0.5 8.2 16.5 0.4

ionosphere 33.0 13.4 0.1 34.0 13.4 0.1 10.0 14.0 0.2 2.3 21.7 1.0 24.8 13.4 0.3 14.0 15.7 0.6

pima 8.0 22.5 0.3 8.0 23.2 0.2 5.5 24.0 0.1 0.6 30.1 0.4 6.6 25.1 0.2 6.1 24.7 0.2

bcw 9.0 3.4 0.0 9.0 2.9 0.0 8.7 3.1 0.0 2.4 4.8 0.0 8.7 3.2 0.0 7.9 3.1 0.0

sonar 51.6 27.9 0.7 60.0 26.0 0.3 10.0 27.9 0.6 4.6 27.4 0.4 50.4 22.6 0.1 40.3 23.6 0.2

musk 116.0 20.6 0.2 166.0 15.3 0.1 12.6 29.2 0.4 4.0 28.2 0.2 125.1 18.3 0.3 105.2 16.8 0.2

method and then the �2-�0-SVM, then the �2-�1-SVM. In addition, for all approaches the
test error is often smaller than for RLP. The quadratic FSV performs well mainly for special
problems (e.g., ‘liver’ and ‘ionosphere’), but the classification is good in general for all
other approaches. For the kernel-target alignment approach, apart from the apparent feature
reduction, also the number of SVs is generally reduced which can be seen in Table 4. This
allows again faster classification and may also lead to a higher generalisation ability. The
average number of DC iterations given in Table 4 for a run with ten validation calls and the
final evaluation is still moderate.
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Table 4. Feature selection and nonlinear classification tenfold cross-validation average performance (number of
features, test error [%], error variance [%], number of DCA iterations, number of Support Vectors), bold numbers
indicate lowest errors of feature selection methods including Table 3.

Gaussian SVM Quad. FSV Kernel-target alignment

Data set dim err var SVs dim err var dim err var DCA iter SVs

wpbc60 32.0 32.7 2.3 94.3 3.2 37.3 1.7 4.4 35.5 3.0 248.1 92.0

wpbc24 32.0 16.8 0.9 123.8 0.0 18.1 1.0 1.9 18.1 1.0 215.2 131.5

liver 6.0 33.3 0.8 233.1 3.2 32.5 0.8 2.5 35.4 1.5 242.6 262.3

cleveland 13.0 15.8 0.5 241.0 9.2 32.3 1.4 3.2 23.6 0.3 139.6 224.4

ionosphere 34.0 7.1 0.2 159.7 32.9 10.5 0.4 6.6 7.7 0.3 192.2 109.6

pima 8.0 23.4 0.2 481.1 4.7 29.9 0.4 1.4 27.0 0.2 202.2 444.2

bcw 9.0 2.9 0.0 229.0 5.9 9.4 0.1 2.8 4.2 0.0 74.9 160.5

sonar 60.0 12.5 0.8 159.1 60.0 24.0 0.7 9.6 27.4 0.6 268.2 110.7

musk 166.0 5.5 0.1 311.7 – – – 41.0 15.5 0.2 676.5 218.9

Table 5. Feature selection and classification time relative to fastest method.

Gauss. quad. Kernel-target
Data set RLP Lin. SVM Ranking FSV �2-�1-SVM �2-�0-SVM SVM FSV align.

wpbc60 5 67 105 5 1 9 38 454 263

Average runtimes for the final feature selection and classifier training during cross-
validation are given in Table 5. Taking into account that RLP is FSV for λ = 0 and
that the common SVMs are determined by the MATLAB solver, the runtimes reflect the
problem types. Also the kernel-target alignment approach is tractable. Besides, one should
be aware that the final classification is fast for all approaches.

We already pointed out in Section 5.1 that the alignment approach performs feature
selection implicitly which means without feature penalty (λ = 0). To illustrate this, the
respective results are given in Table 6. Of course the number of selected features is larger
than with feature penalty as in Table 4, but many features are discarded inherently along
with a sound classification performance. Note that this gives a reliable feature selection
approach without any necessity for parameter selection.

5.3. Organ classification in CT scans

The results on the ‘microarray’ data set in the previous section already indicate that feature
selection methods are more important in higher dimensions. The evaluation of medical data
is a prominent area where this occurs. Due to the unknown relevant factors and problem
nature, at first often large feature sets are collected.

Here, we study the classification of specific organs in CT scans where no satisfactory
algorithms exist up to now. However this automatic detection is essential for the treatment of,
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Table 6. SVM tenfold cross-validation performance (average number of features, average test error [%]) with
features chosen by (12) for λ = 0.

Kernel-target alignment

Data set dim err

wpbc60 9.0 38.2

wpbc24 6.5 17.4

liver 4.0 29.6

cleveland 4.2 19.9

ionosphere 8.9 7.1

pima 2.0 25.9

bcw 3.0 4.0

sonar 13.6 24.5

musk 48.4 14.3

Figure 3. Sample CT slice from data set ‘organs22’ with contours of both organs.

e.g., cancer patients. The data originates from three-dimensional CT scans of the masculine
hip region. An exemplary two-dimensional image slice is depicted in Figure 3. To label the
images, the adjacent organs bladder and prostate have been masked manually by experts.
The contours of both organs are shown in Figure 3 where the organs are very difficult to
distinguish visually.

As described in Schmidt (2004), the images are filtered by a three-dimensional steerable
pyramid filter bank with 16 angular orientations and four decomposition levels. Then local
histograms are built for the filter responses with ten bins per channel. Including the original
grey values, this results in 650 features per image voxel. The task is to label each voxel
with the correct organ. Here, the high-dimensional feature space is induced by the filtering
which requires many directions due to the already three input image dimensions. In total,
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Table 7. Feature selection and linear classification performance for CT data (number of features, test error [%])
with weight parameters chosen to minimise classification error on validation set.

RLP Lin. SVM FSV �2-�1-SVM �2-�0-SVM

Data set dim err dim err dim err dim err dim err

organs4 225 13.2 650 1.1 4 2.3 61 0.9 18 0.7

organs20 242 15.2 650 1.4 6 3.6 79 1.5 43 2.7

organs22 231 11.7 650 1.3 3 11.4 106 2.2 66 2.2

for problem ‘organs22’, the data for the region where bladder or prostate are contained
amount to 117 × 80 × 31 feature vectors ∈ R

650.
In our experiments, we consider three different patients or data sets. For each of those,

we select 500 feature vectors from each class. From those, we use 334 arbitrary samples
for training and test, respectively, during the parameter validation and then train our final
classifier on all 1000 training vectors. Note that, by choosing an equal number of training
samples from both classes different from the entire test set where n+1

n−1
∈ [ 1

12 , 1
4 ], we put

more weight on the errors of the smaller class ‘prostate’.
As done in Schmidt (2004), we also apply an SVM classifier with χ2 kernel

Kθ(x, z) = e−ρ
∑d

k=1 θk
(xk −zk )2

xk +zk

for x, z ∈ R
d with ρ = 2−11 on unmodified features. According to Haasdonk and Bahlmann

(2004), the kernel is positive definite. Nevertheless, we include a bias term b as in the linear
case. This kernel achieved a performance significantly superior to the Gaussian kernel for
histogram features in Chapelle, Haffner, and Vapnik (1999). In order to apply the kernel-
target alignment approach for feature selection, one has to replace the Gaussian kernel by
the new kernel which is still convex in θ in Section 4.2.4.

In our experiments, we include the filter method (Heiler, Cremers, & Schnörr, 2001) for
the χ2 SVM now determining the ranking and number of features by cross-validation on
the final training set. For the other approaches, we use the same parameter settings as in the
previous section. Then the results for the three patients are given in Table 7 for linear and
in Table 8 for nonlinear classification methods.

Table 8. Feature selection and nonlinear classification performance for CT data (number of features, test error
[%]) with weight parameters chosen to minimise classification error on validation set.

Gaussian SVM χ2 SVM χ2 SVM ranking Kernel-target align.

Data set dim err dim err dim err dim err

organs4 650 1.5 650 0.8 25 1.2 16 1.6

organs20 650 2.3 650 1.1 32 1.8 29 1.9

organs22 650 2.2 650 1.9 22 2.7 35 3.9
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Figure 4. Sample results for �2-�0-SVM on classification problem ‘organs4’; classes are marked black and white.

The data sets seem to be well linearly separable which also results in much lower classi-
fication and training times. Even more, the Gaussian SVM yields astonishingly bad results
compared with its linear and χ2 variants although reasonable values for the weight λ are
selected and our chosen kernel width σ produces an alignment of around 12 per cent on
the training set which is maximised for a near kernel width ∈ [σ/2, σ ]. This slight over-
estimation of σ is due to the sparsity of the histogram features. The error of the Gaussian
SVM always increased compared with its validation error of 0.3–2.1 per cent whereas it
decreased for the other SVMs. But the scant superiority of Gaussian SVMs over linear ones
is also consistent with Chapelle, Haffner, and Vapnik (1999).

Both our linear methods perform very well: They sometimes reduce the classification
error compared with RLP and linear SVM on the whole feature set and reliably reduce the
number of features. The alignment approach and the filter method select very few features
only, in particular only few features corresponding to each filter subband. So the alignment
approach well copes with the redundancy of the histogram features. The classification
results for the �2-�0-SVM on the data set ‘organs4’ may be visually compared with the
mask considered as ground truth in Figure 4. The organs are classified with a high accuracy
although the classes are again difficult to distinguish visually. The dimension reduction also
leads to a reduced classification time for all feature selection approaches which is essential
in real-time medical applications.

6. Summary and conclusions

We proposed several novel methods that extend existing linear embedded feature selection
approaches towards better generalisation ability by improved regularisation, and constructed
feature selection methods in connection with nonlinear classifiers. In order to apply the DCA,
we found appropriate splittings of our non-convex objective functions.

Our results show that embedded nonlinear methods, which have been rarely examined
up to now, are indispensable for feature selection. In the experiments with real data, effec-
tive feature selection was always carried out by our methods in conjunction with a small
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classification error. So direct objective minimising feature selection is profitable and viable
for different types of classifiers. In higher dimensions, the curse of dimensionality affects
the classification error even more such that our methods are also more important here.

For multi-class classification problems solved by a sequence of binary classifiers, one
could select features for every binary classifier or apply one of the embedded approaches
for all classifiers simultaneously. This is left for future research.

The approaches may also be extended to incorporate other feature maps in the same man-
ner as quadratic FSV. For the kernel-target alignment approach, an application to kernels
other than the Gaussian is possible as we have shown in the experiments with histogram
features.
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