
Artificial Intelligence 159 (2004) 49–74

www.elsevier.com/locate/artint

A selective sampling approach to
active feature selection

Huan Liu a,∗, Hiroshi Motoda b, Lei Yu a

a Department of Computer Science & Engineering, Arizona State University, Tempe, AZ 85287-8809, USA
b Institute of Scientific & Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan

Received 3 June 2003; accepted 13 May 2004

Abstract

Feature selection, as a preprocessing step to machine learning, has been very effective in reducing
dimensionality, removing irrelevant data, increasing learning accuracy, and improving result compre-
hensibility. Traditional feature selection methods resort to random sampling in dealing with data sets
with a huge number of instances. In this paper, we introduce the concept of active feature selection,
and investigate a selective sampling approach to active feature selection in a filter model setting. We
present a formalism of selective sampling based on data variance, and apply it to a widely used fea-
ture selection algorithm Relief. Further, we show how it realizes active feature selection and reduces
the required number of training instances to achieve time savings without performance deterioration.
We design objective evaluation measures of performance, conduct extensive experiments using both
synthetic and benchmark data sets, and observe consistent and significant improvement. We suggest
some further work based on our study and experiments.
 2004 Elsevier B.V. All rights reserved.

Keywords: Dimensionality reduction; Feature selection and ranking; Sampling; Learning

* Corresponding author.
E-mail addresses: hliu@asu.edu (H. Liu), motoda@sanken.osaka-u.ac.jp (H. Motoda), leiyu@asu.edu

(L. Yu).

0004-3702/$ – see front matter 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.artint.2004.05.009

50 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

1. Introduction
Inductive learning is one of the major approaches to automatic extraction of useful
patterns (or knowledge) from data. Data becomes increasingly larger in both number of
features and number of instances in many applications such as genome projects, text min-
ing, customer relationship management, and market basket analysis [2,35,43,44,55,57].
This trend poses a severe challenge to inductive learning systems in terms of efficiency
and effectiveness. Feature selection has proven to be an effective means when dealing with
large dimensionality with many irrelevant features [17,42,57]. In particular, feature selec-
tion removes irrelevant features, increases efficiency of learning tasks, improves learning
performance (e.g., predictive accuracy), and enhances comprehensibility of learned re-
sults [34,37]. Although there exist numerous feature selection algorithms [6,12,23], new
challenging research issues arise for feature selection: from handling a huge number of
instances, large dimensionality (e.g., thousands of features), to dealing with data without
class labels. This work is concerned with the number of instances in the context of feature
selection.

When the number of instances is large, how can one use a portion of data to achieve
the original objective without performance deterioration? Sampling is a common approach
to this problem and many sampling methods are available [9,22]. Random sampling is
a method of selecting a sample of n out of N (n � N) units such that every one of the(
N
n

)
distinct samples has an equal chance of being drawn. It has proven to be an effective

approach to dealing with large data sets for many machine learning tasks including clas-
sification, clustering, and association rule mining [7,30,52]. However, random sampling is
blind because it does not exploit any data characteristic. In this work, we explore if sam-
pling can use data characteristics and achieve better performance than random sampling
in the following sense: either maintaining the performance of feature selection with much
fewer instances, or improving the performance of feature selection with the same amount
of instances.

This work is about feature selection on labeled data, i.e., class information is available.
For feature selection on unlabeled data, various work can be found in [13,15,17,18,27,53].
In Section 2, we briefly review the development of feature selection, its models, and active
learning. In Section 3, we describe active feature selection and a formalism of selective
sampling that exploits data variance. In Section 4, we demonstrate active feature selection
using Relief and discuss implementation details. In Section 5, we design objective mea-
sures for performance evaluation including time savings. Section 6 is an empirical study
in which we evaluate the performance improvement obtained with active feature selection
and discuss the implications of the findings. Section 7 presents a conclusion and some work
to be completed in the near future.

2. Related work

Feature selection refers to the study of algorithms selecting an optimal subset of the
input feature set. Optimality is normally dependent on the evaluation criteria or the applica-
tion’s needs [37]. Major aspects of feature selection [34] include feature subset generation,

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 51

search strategies, goodness evaluation, etc. Feature subset generation studies how a subset

is generated following search directions. Search strategies cover exhaustive and complete
search, random search, and heuristic search. A search can start from an empty feature set
and add new features, or begin with a full set and remove irrelevant features. The good-
ness of a feature subset can be evaluated using various measures: consistency, distance,
information, dependency, accuracy, etc. Feature selection algorithms fall into two broad
categories, the filter model or the wrapper model [11,31]. The filter model relies on the
general characteristics of the training data to select some features independently of any
learning algorithm, therefore it does not inherit any bias of a learning algorithm. The wrap-
per model requires one predetermined learning algorithm and uses the performance of the
learning algorithm to evaluate and determine which features are selected. The wrapper
model needs to learn a new hypothesis (or a classifier) [40] for each new feature subset.
It tends to find features better suited to the predetermined learning algorithm resulting in
good learning performance, but it also tends to be more computationally expensive than the
filter model [34]. When the number of instances becomes large, the filter model is usually
chosen due to its computational efficiency. In the context of this work, therefore, we focus
on the filter model for feature selection.

The concept of active feature selection is inspired by the successful use of selected in-
stances (or data points) in active learning [36,49]. Active learning [49,50] is different from
traditional supervised learning: an active learner has the freedom to select which instances
are added to the training set. An active learner may begin with a very small number of la-
beled instances, carefully select a few additional instances for which it requests labels, learn
from the result of that request, and then using its newly-gained knowledge, carefully choose
another few instances to request next. Several methods have been developed for active
learning such as uncertainty sampling, adaptive sampling, and query-by-committee [10,
19,36]. The advantage of active learning is that the data requirements for some problems
decrease drastically when the instances to be labeled are properly selected. In [50], they
reported that when training the support vector machine (SVM) [8,26] on a small subset of
the available data chosen by their heuristic, its performance is frequently better than that of
an SVM trained on all available data. Thus, an active learner provides better generalization
and requires less data than a passive learner trained on the entire data set. Similar results
were observed in [36] with their probabilistic classifiers.

Before we delve into the details of active feature selection, let us briefly describe the dif-
ference and commonality between active learning and active feature selection. The essence
of active learning lies in its control over the choice of instances used in the iterative learn-
ing process [49,54]. Active feature selection shares this essential characteristic with active
learning in that it can influence the instances used for feature selection by exploiting some
characteristics of the data. The selection process to form a representative sample data set
is not iterative. As discussed earlier, we work with a filter model of feature selection and
thus we do not employ a learning algorithm to actively choose instances. Therefore, the
problem of active feature selection boils down to how we can employ selective sampling
to choose representative instances for feature selection.

52 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

3. Active feature selection via selective sampling
Traditional feature selection methods perform dimensionality reduction using whatever
training data is given to them. When the training data set is very large, random sampling
is commonly used to deal with memory and performance issues. Active feature selection
avoids pure random sampling and is realized by selective sampling. The idea of selec-
tive sampling stems from the fact that instances are not uniformly distributed and some
instances are more representative than others [3]. If one can identify and select represen-
tative instances, fewer instances are needed to achieve similar performance. Therefore, the
objective of selective sampling for feature selection is to select only those instances with a
high probability to be informative in determining feature relevance. By adopting the filter
model for feature selection, we have ruled out the possibility to use a learning algorithm
to determine which instances are most relevant [38,49]. In order to select representative
instances for feature selection, we need to explore data characteristics: we first try to par-
tition data according to data dissimilarity and then select representative instances from the
resulting partitions.

There are many data partitioning techniques [21] in the literature on multi-dimensional
indexing. We choose kd-tree [20] in this work because of its simplicity and popularity.
A kd-tree is an index structure often used for fast nearest neighbor search [41]. It is a
generalization of the simple binary tree which uses k dimensions (features) instead of a
single dimension (feature) to split data points (instances) in a multi-dimensional space. In
a kd-tree, the root presents all the instances. Each interior node has an associated splitting
feature Ai and a splitting value Vi (1 � i � k) that divide the instances into two partitions:
those with Ai -values less than Vi and those with Ai -values equal to or greater than Vi .
Splitting features at different levels of the tree are different, with levels rotating among the
features of all dimensions. The splitting is done recursively in each of the successor nodes
until the node contains no more than a predefined number of instances (called bucket size)
or cannot be split further. The order in which features are chosen to split can result in
different kd-trees.

Fig. 1 provides a typical example of kd-tree with four instances (2,5), (3,7), (5,4),
(8,9) in a 2-dimension space: (a) shows how the instances are partitioned in the X,Y

plane, and (b) gives a tree representation of the four instances. The root node, with point
(2,5), splits the plane along the Y -axis into two subspaces. The point (5,4) lies in the
lower subspace (i.e., (x, y) | y < 5), and thus is in the left subtree. The points (3,7) and
(8,9) lie in the upper subspace (i.e., (x, y) | y � 5), and thus are in the right subtree. The
point (3,7) further splits the upper subspace into two parts along the X-axis.

For the purpose of selective sampling, we want to select features that can split instances
into different groups based on their dissimilarity measures as early as possible. Hence,
in our building a kd-tree, a splitting feature is chosen if the data variance is maximized
along the dimension associated with the feature. The variance of a feature Ai is calculated
according to the formula Var(Ai) = 1

N

∑N
j=1(Vj − Vi)

2, where Vi is the median value
of feature Ai , and j is the index of each instance in a data set with N instances. Once
feature Ai is determined, value Vi is then used to split the instances into two partitions.
Fig. 2 shows a modified kd-tree of the example shown in Fig. 1. At the root level, since
Var(X) = 5.5 (with median value 4) and Var(Y) = 3.75 (with median value 6), the space

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 53
(a) (b)

Fig. 1. A typical kd-tree example. (a) The splitting of the X, Y plane; (b) A 2d-tree representation.

(a) (b)

Fig. 2. A modified use of kd-tree. (a) The splitting of the X, Y plane; (b) A 2d-tree representation.

is split along the X-axis (x = 4) into two subspaces. The points (2,5) and (3,7) lie in the
left subspace (i.e., (x, y) | x < 4), and thus are in the left subtree. The points (5,4) and
(8,9) lie in the right subspace (i.e., (x, y) | x � 4), and thus are in the right subtree. Each
of the two subspaces are further split along the y-axis (y = 6, y = 6.5, respectively) into
two parts, producing four leaf nodes in the tree. Since the median value (instead of mean)
of feature Ai is used in the calculation of variance, the resulting kd-tree is theoretically a
balanced tree. The time complexity of building such an optimized kd-tree is O(kN logN).
However, in some cases, a feature selected to split the tree may contain duplicate values,
which may result in an unbalanced tree. The kd-tree can be built once if necessary, or
dynamically when required.

In building a modified kd-tree (as shown in Fig. 2), the leaf nodes (buckets) represent
mutually exclusive small subsets of instances which collectively form a partition of the
whole data set.1 The size of a bucket can be an input parameter and determined a pri-

1 Every node at each level of the tree only records indexes of the instances this node contains.

54 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

ori. Since instances in each bucket are relatively close to each other, we can randomly

select one instance from each bucket to represent the effect of all the instances in its corre-
sponding bucket. Therefore, a subset of the instances chosen by selective sampling is used
to approximate the full sample space. Selective sampling can be summarized by a 3-step
procedure:

1. Determine the size t of a bucket;
2. Build a variance-based kd-tree with m buckets;
3. Randomly select an instance from each bucket.

We provide next details of selective sampling for feature selection.

4. Applying selective sampling to feature selection

Efficiency is critical for feature selection algorithms in the context of large data sets.
To demonstrate selective sampling, we use a well-known and efficient algorithm Relief
that can select statistically relevant features in linear time of the numbers of features and
instances [28,47]. After introducing Relief in Section 4.1, we illustrate how selective sam-
pling can be applied to Relief and present a new algorithm of active feature selection in
Section 4.2. In Section 4.3, we discuss other related work on Relief.

4.1. Relief algorithm

The key idea of Relief (given in Fig. 3) is to estimate the quality of features according
to how well their values distinguish between instances that are near to each other. For this
purpose, given a randomly selected instance X from a data set S with k features, Relief
searches the data set for its two nearest neighbors: one from the same class, called nearest
hit H , and the other from a different class, called nearest miss M . It updates the quality
estimation W [Ai] for all the features Ai based on the values of difference function diff ()

about X,H, and M . The process is repeated m times, where m is a user-defined parame-
ter [28,32]. For instances X1,X2, diff (Ai,X1,X2) calculates the difference between the
values2 (x1i and x2i) of feature Ai :

diff (Ai, x1i , x2i) =
{ |x1i − x2i| if Ai is numeric,

0 if Ai is nominal & x1i = x2i ,

1 if Ai is nominal & x1i �= x2i .

Normalization with m in calculation of W [Ai] (line 6 in Fig. 3) guarantees that all weights
are in the interval of [−1,1].

The time complexity of Relief for a data set with N instances is O(mkN). Efficiency is
one of the major advantages of the Relief family over other algorithms [12]. With m being
a constant, the time complexity becomes O(kN). However, since m is the number of in-

2 Numeric values should be normalized into the range between 0 and 1.

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 55

Given m—desired number of sampled instances, and k—number of features,
1. set all weights W [Ai] := 0.0;
2. for j := 1 to m do begin
3. randomly select an instance X;
4. find nearest hit H and nearest miss M ;
5. for i := 1 to k do begin
6. W [Ai] := W [Ai] − diff (Ai,X,H)/m + diff (Ai,X,M)/m;
7. end;
8. end;

Fig. 3. Original Relief algorithm.

stances used to approximate probabilities, a larger m implies more reliable approximations.
When N is very large, it is often required that m � N .

4.2. Relief with selective sampling

Although random sampling of m instances for Relief reduces the time complexity from
O(kN2) to O(kN), the optimal results of Relief are not guaranteed. When applying selec-
tive sampling to Relief, we aim to obtain results that are better than using random sampling
and similar to the results using all the instances.

In our attempt to selectively sample m instances based on the modified kd-tree intro-
duced in Section 3, we can use either sample size m or bucket size t to control the kd-tree
splitting process. Since only one instance is selected from each bucket, one can easily
establish that t = N/m, where N is the total number of instances. Therefore, if m is prede-
termined, the splitting process stops when it reaches the level where each bucket contains
N/m or fewer instances. For example, in Fig. 2(b), if m = 2, the splitting process stops
after the first split when each bucket contains two instances. On the other hand, given a t ,
we can estimate m based on t . In Fig. 2(b), if we choose t to be 1 (i.e., each bucket contains
only one instance), all the four instances will be selected. For a bucket size t = N , the root
node is not split at all, and only one instance will be selected. As we mentioned earlier, in
practical, the resulting kd-tree may not be a balanced tree due to duplicate feature values.
Therefore, for 1 < t < N , the number of selected instances m will be within (1

t
N , N).

In this work, we use bucket size t to control the number of selected instances m which
is equal to the number of buckets. The algorithm of Relief with selective sampling is de-
tailed in Fig. 4. One important point in buildKDTree(t) is that each feature should be
normalized [56] before the variance calculation in order to choose to split on the feature
with largest variance.

In the empirical study, we use ReliefF [32,56] which is an extension to the original
Relief. It handles multiple classes and searches for several nearest neighbors to be robust
to noise. We compare ReliefF with its counterpart ReliefS which applies selective sampling
for instance selection in the same way as described in Fig. 4. The difference between the
two is illustrated in Fig. 5. The top flow shows ReliefF with random sampling of 4 instances
from the data. The bottom flow shows ReliefS with random sampling of one instance from
each of the four buckets of the kd-tree.

56 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

Given t—bucket size,
1. set all weights W [Ai] := 0.0;
2. buildKDTree(t);
3. m := number of buckets;
4. for j := 1 to m do begin
5. randomly select an instance X from Bucket[j];
6. find nearest hit H and nearest miss M ;
7. for i := 1 to k do begin
8. W [Ai] := W [Ai] − diff (Ai,X,H)/m + diff (Ai,X,M)/m;
9. end;
10. end;

Fig. 4. Relief with selective sampling.

Fig. 5. The difference between ReliefF and ReliefS: the top and bottom flows show how ReliefF and ReliefS
work, respectively.

4.3. Related work on Relief

There has been substantial research on the Relief family of algorithms (Relief, ReliefF,
and RReliefF) [25,28,32,33,45–48]. Relief (introduced in Section 4.1) was designed for
feature subset selection [28,29] and it is considered one of the best algorithms for this
purpose [16]. Relief only deals with binary classes. This limitation was overcome by
ReliefF [32] which handles multiple classes and incomplete and noisy data. ReliefF was
further extended to RReliefF [45] in order to handle continuous classes in regression. The
Relief family of algorithms are general and successful feature estimators and are especially
good in detecting conditional dependencies between features [48]. In inductive learning,
ReliefF was successfully employed in building decision trees for classification. The result-
ing decision trees achieved superior predictive accuracy over Naive Bayesian classifiers

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 57

and k-NN classifiers across various artificial and real-world data sets [33]. It was also

shown in [45] that RReliefF is effective in selecting features in learning regression trees
for regression problems.

Albeit a broad spectrum of successful uses of the Relief family of algorithms, little
work has shown how to determine an optimal sample size.3 Therefore, work regarding
Relief usually circumvents the issue of optimal m by simply choosing m to be the full
size of the data set [32] as the larger m leads to better performance.4 Robnik-Sikonja and
Kononenko showed in [48] that although feature selection results become stable after a
number of iterations for simple data sets, the quality of results keeps improving as the
sample size increases for more complicated data sets. The goal of this work is to show that
for a given sample size m, instances obtained by selective sampling are more effective for
feature selection than those selected by random sampling. Hence, in our work, we observe
how selective sampling differs from random sampling by varying m from 10% to 100% of
N using ReliefF with all N instances as the performance reference.

Recall that Relief relies on the search of a predefined number of nearest neighbors [32],
and the kd-tree data structure is often used for fast nearest neighbor search [41]. In [51],
kd-trees are applied to speed up Relief and its extensions by providing a fast way to locate
nearest neighbors for each class, thus reducing the overall time complexity of the algo-
rithms to O(kN logN). Additional time savings can be achieved by building the kd-tree
once and using it for both bucket generation and the nearest neighbor search. However,
the focus of this work is not to speed up current algorithms in the Relief family, but to
investigate the effectiveness of selective sampling in partitioning data points for feature
selection.

5. Issues of performance evaluation

Before we proceed to define performance measures for selective sampling, let us first
discuss some criteria for a suitable performance measure:

1. It is a function of the features of the data.
2. Its value improves as m increases.
3. Its value reaches the best when m = N .

In ReliefF, since m is the number of instances used to approximate probabilities, a larger m

implies more reliable approximations. Therefore, it is reasonable to assume that the optimal
result ReliefF can achieve is the features ranked according to their weights when m = N .
This ranked list of features is named SN . Given various sizes of m, the results of ReliefF
and ReliefS can be compared in two aspects: (1) subset selection—we compare which
resulting subset is more similar to the optimal subset obtained from SN ; and (2) feature
order—we compare the order of features determined by ReliefF or ReliefS to the order

3 One heuristic suggested in [25] is to choose m = log N in an algorithm similar to Relief.
4 Doing so increases the complexity of the algorithm to O(kN2).

58 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

of features in SN . In Section 5.1, we discuss the reason why it is important to consider

the order of features. In Section 5.2, we present three different measures with different
emphasis on feature order and check if they satisfy the above three criteria. In Sections 5.3
and 5.4, we discuss time savings and accuracy improvement when using active feature
selection.

5.1. Importance of feature order

Based on the output type, feature selection algorithms can be grouped into two cate-
gories, minimum subset algorithms and feature ranking algorithms [37]. Minimum subset
algorithms return a minimum feature subset but do not rank features in the subset [14,24,
53]. Features in the subset are relevant, others are irrelevant. Feature ranking algorithms
assign a weight to each feature of the data set and rank the relevance of features according
to their weights [15,32,58]. Order information is important for these algorithms because it
indicates relative relevance. Order information is also important if one aims to select a fea-
ture subset from the resulting ranked list. Below, we illustrate how order information can
affect the selection of relevant features for ReliefF and other feature ranking algorithms.

We first define some terms. For an optimal list of features SN , a target subset of features
T is defined as an optimal subset of features which contains the top n weighted features
in SN . For a data set with an unknown number of relevant features (n), T contains the
top n features whose weights � γ , where γ is a threshold equal to W [i] (the ith largest
weight in SN) and the gap defined by W [i] and W [i + 1] is sufficiently large (e.g., greater
than the average gap among the k − 1 gaps). Let SReliefF and SReliefS be the two result-
ing lists obtained by ReliefF and ReliefS, respectively. To compare the performance of
both ReliefF and ReliefS with different sizes of m, we can define a performance measure
P(SN ,R) where R can be either SReliefF or SReliefS with varying m. Fig. 6(a) illustrates the
relationships among SN , T , R, and Rn (the subset of the top n features in R). Fig. 6(b)
shows five cases for a set of five features. Column I shows the optimal ranking of the five
features (SN), and each of the remaining four columns (II–V) represents a ranking from
either ReliefF or ReliefS with m instances, assuming m < N .

(a) (b)

Fig. 6. An example for the importance of feature order. (a) Relationships among terms; (b) Results with different
feature orders.

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 59

For a given n (either known a priori or determined by threshold γ), the order of features

in R directly affects the selection of a feature subset Rn. For example, in Fig. 6(b), the
threshold γ is chosen to include the top three features from each resulting list. All the
three relevant features (A1, A2, A3) are selected into Rn in cases II and III, while only
two of them are selected in cases IV and V. However, given the same ordered lists II–V, if
γ is chosen to include the top two features, the selected subset Rn in case III will fail to
include both of the two relevant features A1 and A2, while Rn in case IV will become an
optimal subset. Therefore, it is important to develop performance measures that take order
information into consideration. Below we examine sensible candidates for P().

5.2. Performance measures

5.2.1. Precision
Precision (P) is computed as the number of features that are in both T and Rn, divided

by the number of features in T :

P = |T ∩ Rn|
|T | .

P ranges from 0 to 1, where P is 1 when subsets T and Rn are equal and 0 when none of
the features in T appears in Rn. In Fig. 6(b), P is 1 for cases II and III and 2/3 for cases
IV and V.

5.2.2. Distance
Precision treats all features in T and Rn equally without considering the orders of the

features. In order to account for the order of features in both SN and R, Distance (D) is
defined based on the sum of distances between common features in T and R. The distance
of a feature between two sets is the difference between its positions in the two ranked lists.
Let S′

N be SN in reverse order. The maximum possible ranking distance between two sets
that share the same features is:

Dmax =
∑

∀Ai∈SN

∣∣position(Ai ∈ SN) − position(Ai ∈ S′
N)

∣∣.
D is then defined as the follows:

D =
∑

∀Ai∈T |position(Ai ∈ T) − position(Ai ∈ R)|
Dmax

.

Since the subset Rn may not contain all the features in T , we use the full set R in the
definition of D. Dmax is used to normalize D so that D ranges from 0 to 1, where D is 0
when the two sets T and Rn have identical ranking (as shown in case II), otherwise, D is
larger than 0. In Fig. 6(b), with Dmax = 12, the D values for cases II, III, IV, and V are 0,
4/12, 3/12, and 5/12, respectively.

5.2.3. Raw Distance
Both Precision and Distance require choosing a threshold γ to decide the target set T .

In some cases, it is difficult to determine an optimal threshold. If γ is wrongly estimated,

60 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

meaning that the target set T is not an optimal subset, evaluation using these measures

will be incorrect. For example, in Fig. 6(b), if γ is chosen between features A2 and A3
in SN , the target set will be {A1,A2} instead of {A1,A2,A3}. Thus, Precision for case
III will become 1/2 instead of 1, and Precision for case IV will become 1 instead of 2/3.
A straightforward performance measure is to directly calculate the sum of the differences
of weights for each of the feature pairs (same features) in the optimal list SN and the
resulting list R. We name it Raw Distance (RD):

RD =
k∑

i=1

∣∣WS [Ai] − WR[Ai]
∣∣,

where WS[Ai] and WR[Ai] are associated with SN and R, respectively. RD considers all k

features in the two results. Thus, this measure does not rely on threshold γ . It is designed
to compare the results of ReliefF and ReliefS, but it cannot be used for measuring the
performance of subset selection as it uses all the features.

5.2.4. Comparison of measures
Each measure serves a unique purpose in the evaluation of feature selection results.

Table 1 provides a summary of these four measures. The setting of γ is required in ReliefF
for feature subset selection. Precision is a simple measure of subset selection, but it is not
sufficient due to its insensitivity to the order of features. Both Distance and Raw Distance
are order-sensitive, but Raw Distance does not require the threshold setting.

5.3. Measuring time savings

It is sensible to question whether the use of selective sampling in feature selection would
result in any time savings overall because the initial building of kd-tree incurs certain
costs. This question is best answered by measuring computation time during experiments.
ReliefS and ReliefF require different numbers of instances to achieve the same level of
performance. We can compare the running times required to achieve a given level of perfor-
mance. Let Tkd-tree, TReliefS, and TReliefF be the times for kd-tree building, running ReliefS,
and running ReliefF, respectively, with a given performance. A straightforward approach
is to report Tkd-tree, TReliefS, and TReliefF and compare Tkd-tree + TReliefS with TReliefF. Their
difference can be either the saving or the loss of computation time.

Table 1
Summary of performance measures

Precision Distance Raw distance

Complexity O(n2) O(nk) O(k2)

Upper bound 1 1 None
Lower bound 0 0 0
Ordering No Yes Yes
γ setting Yes Yes No

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 61

5.4. Measuring accuracy improvement
One can indirectly measure the results of feature selection using a learning algorithm to
check its effect on accuracy. Likewise, the effectiveness of selective sampling for feature
selection can be further verified by comparing the learning accuracy on the subsets of
features chosen by ReliefF and ReliefS. For the two resulting lists produced by RelieF and
ReliefS with the same number of sampled instances of a data set, two different feature
subsets of the same cardinality can be chosen from the top of the two lists and then used to
obtain the learning accuracy for a certain leaning algorithm. We expect an accuracy gain
from the subset chosen by ReliefS over the subset chosen by ReliefF.

6. Empirical study

The objective of this section is to empirically evaluate if selective sampling can do better
in selecting m instances than random sampling in the context of ReliefF. We examine
if the results of feature selection are consistently better when using instances sampled
from kd-tree buckets than when using the same number of instances selected by random
sampling. In Section 6.1, we present two groups of data sets (synthetic and benchmark)
and the experimental procedures. In Sections 6.2 and 6.3 we present and discuss results
for synthetic data sets and benchmark data sets. In Section 6.4, we further examine the
effectiveness of selective sampling in terms of learning accuracy.

6.1. Data and experimental procedures

We choose synthetic data sets in our experiments because the relevant features of these
data sets are known beforehand. The use of synthetic data in our experiments serves three
purposes: (1) to verify the effectiveness of ReliefF, (2) to avoid choosing the optimal
threshold γ for subset selection, and (3) to evaluate the effectiveness of active feature
selection. Since we rarely know the relevant features beforehand in practice, we also con-
duct experiments on benchmark data sets to evaluate selective sampling. We describe the
two groups of data sets below.

6.1.1. Synthetic data
We use functions described in [1] to generate synthetic data sets so that we know exactly

which features are relevant. The nine features are described in Table 2. Ten classification
functions of Agrawal et al. [1] were used to generate classification problems with dif-
ferent complexities. Efforts were made to generate data sets as described in the original
functions. Each data set consists of 5000 instances. The values of the features of each
instance were generated randomly according to the distributions given in the table. For
each instance, a class label was determined according to the rules that define the func-
tions.

As an example, we give Function 2 that uses two features and classifies an instance into
Group A if

62 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

Table 2

Features of the test data adapted from Agrawal et al. [1]

Feature Description Value

salary salary uniformly distributed from 20,000 to 150,000
commission commission if salary � 75000 → commission = 0

else uniformly distributed from 10000 to 75000.
age age uniformly distributed from 20 to 80.
elevel education level uniformly distributed from [0,1, . . . ,4].
car make of the car uniformly distributed from [1,2, . . . ,20].
zipcode zip code of the town uniformly chosen from 9 available zipcodes.
hvalue value of the house uniformly distributed from 0.5k10000 to 1.5k1000000

where k ∈ {0 . . . 9} depends on zipcode.
hyears years house owned uniformly distributed from [1,2, . . . ,30].
loan total amount of loan uniformly distributed from 1 to 500000.

(
(age < 40) ∧ (50000 � salary � 100000)

)∨(
(40 � age < 60) ∧ (75000 � salary � 125000)

)∨(
(age � 60) ∧ (25000 � salary � 75000)

)
.

Otherwise, the instance is classified into Group B.

6.1.2. Benchmark data
All together 23 data sets are selected from the UCI Machine Learning Data Reposi-

tory [5] and the UCI KDD Archive [4]. They all have nominal classes with varied numbers
of instances (from 150 to 145000), numbers of features (from 4 to 85), and numbers of
classes (from 2 to 22). A summary of these data sets is presented in Table 3 which is di-
vided into three groups: Group 1 contains only numeric data, Group 2 only nominal data,
and Group 3 mixed data.

6.1.3. Experimental procedures
The experiments are conducted using Weka’s implementation of ReliefF, and ReliefS

is also implemented in the Weka environment [56]. We use different percentages of data
(varying m). The performance of ReliefF with m = N is set as the performance reference
point. The departure from the reference point is a measure of performance deterioration. In
particular, we choose six increasing bucket sizes ti (1 � i � 6) from 1 to 6 corresponding
to six percentage values Pi . For example, t2 corresponds to P2 ≈ 50%. For each data set,
the experiment is conducted as follows:

1. Run ReliefF with bucket size t1 (P1 = 100%), and obtain the optimal ranked list of
features (SN) according to their weights. The parameter for k in the k-nearest neighbor
search is set to 5 (neighbors). This parameter remains the same for all experiments.

2. Run ReliefS with bucket sizes ti (2 � i � 6). At each ti , run ReliefS 30 times with
different seeds and calculate values of Precision, Distance, and Raw Distance for each
iteration to obtain average values of these performance measures to eliminate any idio-
syncrasy in a single run. A curve is plotted for each measure for comparison. Some of
the curves are shown in Figs. 7 and 8.

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 63

Table 3

Summary of benchmark data sets: N—number of instances, Num—numeric features, Nom—
nominal features, #C—number of classes

Title N Num Nom #C

Iris 150 4 0 3
Glass 214 9 0 7
WDBC 569 30 0 2
Balance 625 4 0 3
Pima-Indian 768 8 0 2
Vehicle 846 18 0 4
German 1000 24 0 2
Segment 2310 19 0 7
Abalone 4177 8 0 3
Satimage 4435 36 0 6
Waveform 5000 40 0 3
Page-blocks 5473 10 0 5
CoIL2000 5822 85 0 2
Shuttle 14500 8 0 7

Breast-cancer 286 0 9 2
Primary-tumor 339 0 17 22
KRKPA7 3196 0 36 2
Mushroom 8124 0 22 2

Zoo 101 1 16 7
Autos 205 15 10 7
Colic 368 7 15 2
Vowel 990 10 3 11
Hypothyroid 3772 7 22 4

3. Run ReliefF with each Pi (2 � i � 6) determined by corresponding ti in step 2. For
each Pi , run ReliefF 30 times and calculate Precision, Distance, and Raw Distance
each time, and obtain their average values after 30 runs. A curve is plotted for each
measure for comparison. Some of the curves are shown in Figs. 7 and 8.

6.2. Results on synthetic data

Table 4 reports the set of relevant features used to determine the class labels in the
definition of each function and the optimal ranking list obtained from running ReliefF on
the whole data set of 5000 instances generated by each function. From Table 4, we observe
that given the cardinality of a relevant feature set (n), for each of these 10 functions except
Function 4 and Function 10,5 the set of the top n features in each ranking list matches
exactly with the known relevant feature set. This verifies that ReliefF can indeed find the
relevant features of a data set in most cases. Thus we can use the results obtained from
the first step of the experimental procedures as a reference to evaluate the performance of
ReliefF and ReliefS with varying size m.

5 For these two functions, one relevant feature is just outside the selected set. This could be due to the inability
of ReliefF to differentiate redundant features with strong correlation.

64 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74
Fig. 7. Three illustrative numeric data sets: Average results of 30 runs in three performance measures (P, D, RD).

Table 5 presents a summary of the three performance measures for each synthetic data
set. For a given measure, let Pi be the averaged value (over 30 runs) obtained at percentage
Pi (2 � i � 6). Each value in Table 5 is averaged over five percentage values, i.e.,

valAvg =
(

6∑
i=2

Pi

)/
5.

Recall that Precision varies from 0 (worst) to 1 (best); Distance varies from 0 (best) to 1
(worst); and Raw Distance starts at 0 (best) and increases. The last row (W/L/T) in Table 5
summarizes Win/Loss/Tie in comparing ReliefS with ReliefF for each measure. It is clear
that for the ten synthetic data sets, taking all the three measures into account, ReliefS is as

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 65
Fig. 8. Three illustrative non-numeric data sets: Average results of 30 runs in three performance measures (P, D,
RD).

good as or better than ReliefF. This suggests that m instances selected using kd-trees are
more effective than m instances selected at random.

6.3. Results on benchmark data

We present and discuss separately the results on numeric data and non-numeric data
below.

6.3.1. Results on numeric data
Two sets of results on numeric data sets are reported in Table 6 and Fig. 7, respectively.

Like Table 5, Table 6 shows that ReliefS is better than or as good as ReliefF in determining

66 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

Table 4

Effectiveness of ReliefF on synthetic data. The order of features in a relevant feature set has no significance based
on function definitions

Relevant feature set Result from ReliefF (m = N)

Function 1 {A3} A3, |A5,A6,A8,A4,A7,A9,A2,A1
Function 2 {A1,A3} A1,A3, |A2,A9,A7,A4,A8,A6,A5
Function 3 {A3,A4} A4,A3, |A7,A1,A9,A2,A6,A8,A5
Function 4 {A1,A3,A4} A1,A4,A2, |A3,A7,A6,A5,A9,A8
Function 5 {A1,A3,A9} A9,A3,A1, |A2,A7,A4,A8,A6,A5
Function 6 {A1,A2,A3} A1,A3,A2, |A8,A4,A5,A7,A9,A6
Function 7 {A1,A2,A9} A9,A1,A2, |A8,A5,A7,A6,A3,A4
Function 8 {A1,A2,A4} A1,A4,A2, |A5,A7,A9,A6,A3,A8
Function 9 {A1,A2,A4,A9} A9,A1,A4,A2, |A5,A3,A7,A6,A8
Function 10 {A1,A2,A4,A7,A8,A9} A4,A1,A2,A8,A3,A9, |A7,A6,A5

Table 5
Average values of three different measures using ReliefF and ReliefS on synthetic data

Precision Distance Raw distance

ReliefF ReliefS ReliefF ReliefS ReliefF ReliefS

Function 1 1.0 1.0 0.0 0.0 0.049 0.041
Function 2 0.997 1.0 0.017 0.0 0.047 0.044
Function 3 1.0 1.0 0.0 0.0 0.046 0.044
Function 4 0.930 0.932 0.075 0.061 0.049 0.043
Function 5 0.860 0.886 0.182 0.169 0.045 0.044
Function 6 0.891 0.927 0.280 0.225 0.047 0.026
Function 7 0.852 0.881 0.157 0.137 0.047 0.041
Function 8 1.0 1.0 0.039 0.007 0.053 0.042
Function 9 0.915 0.935 0.135 0.109 0.050 0.040
Function 10 0.900 0.910 0.079 0.072 0.061 0.046

W/L/T 7/0/3 8/0/2 10/0/0

relevant instances for feature selection. Now let us look at the trends of the three perfor-
mance measures when the number of instances increases for both ReliefF and ReliefS.
Fig. 7 shows the results of three illustrative data sets for Precision, Distance, and Raw Dis-
tance. For the Segment data, we notice that both ReliefF and ReliefS perform equally well
in Precision but differently in Distance and Raw Distance. Precision being 1 indicates that
all feature subsets selected are the same as if we use all N instances (recall that the order of
selected features is not considered by Precision). Distance and Raw Distance have values
greater than 0, which suggests that the selected results are not in the same order as those
obtained using all N instances. It can be observed that the more instances used for both
ReliefF and ReliefS, the better the performance of feature selection. A similar trend can be
observed for the Vehicle data and Satimage data as well.

Fig. 7 and Table 6 indicate that active feature selection can significantly improve per-
formance on numeric data over feature selection with random sampling with the same
amount of instances. In other words, the use of kd-trees to partition the data makes the
difference. However, as mentioned earlier, the building of kd-trees incurs certain costs. To

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 67

Table 6

Average values of three different measures using ReliefF and ReliefS on numeric data

Precision Distance Raw distance

ReliefF ReliefS ReliefF ReliefS ReliefF ReliefS

Iris 1.0 1.0 0.020 0.013 0.054 0.019
Glass 0.988 0.992 0.141 0.090 0.069 0.046
WDBC 0.991 0.994 0.139 0.103 0.111 0.068
Balance 0.864 0.940 0.468 0.247 0.037 0.018
Pima-Indian 0.906 0.930 0.248 0.209 0.019 0.016
Vehicle 0.996 1.0 0.206 0.105 0.052 0.026
German 0.898 0.920 0.360 0.309 0.154 0.125
Segment 1.0 1.0 0.074 0.029 0.054 0.020
Abalone 0.947 0.971 0.257 0.176 0.003 0.001
Satimage 0.998 1.0 0.088 0.047 0.065 0.022
Waveform 1.0 1.0 0.080 0.056 0.047 0.036
Page-blocks 1.0 1.0 0.202 0.043 0.006 0.003
CoIL2000 1.0 1.0 0.060 0.041 0.110 0.074
Shuttle 1.0 1.0 0.0 0.0 0.003 0.001

W/L/T 8/0/6 13/0/1 14/0/0

Table 7
Time savings by ReliefS w.r.t. ReliefF for numeric data. mReliefS and mReliefF are numbers of instances used by
ReliefS and ReliefF to achieve the same performance in raw distance

ReliefS ReliefF

Tkd-tree TReliefS mReliefS TReliefF mReliefF
(ms) (ms) (ms)

Iris 20 14 18 60 87
Glass 61 140 62 259 126
WDBC 455 1414 125 3282 313
Balance 136 223 88 743 313
Pima 246 484 77 2684 476
Vehicle 530 2874 195 6790 499
German 697 6274 420 8310 590
Segment 1520 10870 277 53300 1317
Abalone 1359 23879 961 58228 2423
Satimage 4630 63901 577 255716 2572
Waveform 7170 359840 1900 529860 2950
Page 1858 43774 1095 125709 3284
CoIL 14117 612203 1979 983601 3377
Shuttle 6058 187156 1885 802001 8700

actually compare the running time of ReliefS with that of ReliefF, we consider the case of
bucket size 2 for ReliefF (i.e., mReliefF is around 50% of the whole data set) and use the
performance measured by Raw Distance to find corresponding mReliefS for ReliefS.

Table 7 records the running times Tkd-tree, TReliefS and TReliefF as well as mReliefS and
mReliefF. We can observe that:

68 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

Table 8

Average values of three different measures using ReliefF and ReliefS on non-numeric data

Precision Distance Raw distance

ReliefF ReliefS ReliefF ReliefS ReliefF ReliefS

Breast-cancer 0.765 0.821 0.695 0.601 0.203 0.162
Primary-tumor 0.957 0.965 0.259 0.207 0.296 0.246
KRKPA7 0.970 0.977 0.103 0.070 0.152 0.101
Mushroom 1.0 1.0 0.065 0.032 0.141 0.063

Zoo 0.986 0.994 0.136 0.119 0.633 0.539
Autos 0.9 0.928 0.308 0.259 0.380 0.298
Colic 0.854 0.867 0.351 0.316 0.382 0.334
Vowel 1.0 1.0 0.056 0.023 0.043 0.021
Hypothyroid 0.965 0.981 0.110 0.085 0.065 0.050

W/L/T 7/0/2 9/0/0 9/0/0

1. The time savings are consistent with the time complexity analysis of ReliefF: it is
usually O(mkN), or linear in N if m and k are fixed. Now, k and N are fixed, its time
complexity is O(m). That is, the reduction of m results in direct time savings.

2. The larger the data set, the more savings in time.
3. The ratio of Tkd-tree/TReliefS decreases when data size increases. In other words, the

time spent on kd-tree building becomes immaterial when TReliefS increases. This is
consistent with earlier theoretical analysis.

6.3.2. Results on non-numeric data
Based on previous results, it is clear that ReliefS works well on numeric data. We then

experiment if ReliefS can be directly extended to non-numeric data (Groups 2 and 3 in
Table 3). Since variance is calculated on numeric data when building the kd-tree, in our
experiments we apply ReliefS to non-numeric data by associating a distinct number to a
nominal value, e.g., assigning 1, 2 and 3 to nominal values A, B, and C, respectively.

Results for the three performance measures are reported in Table 8 and Fig. 8. From
Table 8, we still notice that for each data set, ReliefS is better than or as good as ReliefF.
This suggests that active feature selection works for non-numeric data as well. However,
by comparing the results in Table 8 with Table 6, we observe that both ReliefF and ReliefS
generally work better on numeric data than on non-numeric data. In addition, the perfor-
mance gains obtained by ReliefS on non-numeric data are not as significant as those on
numeric data, especially for small data sets (this can also be observed in Fig. 8). Through
three illustrative data sets from Groups 2 and 3, Fig. 8 demonstrates similar trends of per-
formance measures as those in Fig. 7 when the number of instances increases for both
ReliefF and ReliefS. Take Autos data for example, ReliefS performs better on all the three
measures than ReliefF, but as we can see that the two curves for each measure are very
close to each other, which suggests that the performance gains obtained by selecting m

instances using kd-trees are not significant.
Table 9 records the running times Tkd-tree, TReliefS and TReliefF as well as mReliefS and

mReliefF for data sets in Groups 2 and 3. From this table, we observe similar results: (1) the
larger the data set, the more savings in time; and (2) the ratio of Tkd-tree/TReliefS decreases

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 69

Table 9

Time savings by ReliefS w.r.t. ReliefF for non-numeric data. mReliefS and mReliefF are numbers of instances
used by ReliefS and ReliefF to achieve the same performance in raw distance

ReliefS ReliefF

Tkd-tree TReliefS mReliefS TReliefF mReliefF
(ms) (ms) (ms)

Breast-cancer 90 234 123 300 166
Primary-tumor 175 546 112 836 176
KRKPA7 4559 84880 1055 145520 1950
Mushroom 7668 248336 1950 491665 4062

Zoo 50 73 40 105 65
Autos 161 417 82 568 123
Colic 303 1047 151 1518 221
Vowel 484 2633 218 6570 574
Hypothyroid 4950 98094 1094 173950 2112

when data size increases. However, five small data sets out of the nine do not show signif-
icant time savings. This observation is consistent with what we saw in Table 8 and Fig. 8.
For these data sets, selective sampling using ReliefS does not significantly reduce the num-
ber of instances required to achieve a given level of performance when compared to random
sampling using ReliefF. Thus the extra time spent on building a kd-tree is not compensated
by the modest time savings obtained from using fewer instances.

6.4. Examining learning accuracy

In this section, we first show how ReliefF using all instances as suggested by [32] affects
the learning accuracy, and then examine how the reduction of training instances affect the
results of feature selection in terms of learning accuracy. The first set of comparisons is
shown in Table 10 and the second set of comparisons is shown in Table 11.

In Section 6.2, we have demonstrated the effectiveness of ReliefF using all instances
on a group of synthetic data sets for which we know the relevant features in advance. We
now examine the effectiveness of ReliefF using all instances on benchmark data through
a learning algorithm. Table 10 records the 10-fold cross validation results of the 5-NN
(nearest neighbor) classifier on the full sets of features and the target sets of features chosen
by ReliefF with all instances (defined in Section 5.1) for the 14 numeric data sets (shown
in Table 3). In order to evaluate the statistical significance of the difference between the
two averaged accuracy values for a given data set, a Student’s paired two-tailed t-Test is
conducted for the two underlying samples of individual accuracy values. The P value in
each row of Table 10 reports the probability that the two underlying samples are different.
The smaller the P value, the more significant the difference of the two average values
is. The last row (W/L/T) summarizes Win/Loss/Tie in comparing the averaged accuracy
values on the target sets with those on the full sets based on a significance threshold 0.1. It
is clear that out of the 14 data sets, seven pairs of results are significantly different. ReliefF
significantly improves the accuracy of the 5-NN classifier for 3 data sets and maintains the
accuracy for 7 data sets with selected subsets of features.

70 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

Table 10

Effectiveness of ReliefF on benchmark data: 10-fold cross validation accuracy
(%) of 5-NN on original features (full sets without feature selection) and target
sets of features chosen by ReliefF (with m = N). P reports the probability
associated with a Student’s paired two-tailed t-Test

Full set Target set P
(m = N)

Iris 96.67 97.33 0.32
Glass 65.80 71.95 0.07
WDBC 96.67 95.43 0.15
Balance 88.00 77.42 0.00
Pima-Indian 74.49 73.84 0.69
Vehicle 69.97 69.27 0.66
German 71.00 72.50 0.19
Segment 95.80 95.76 0.94
Abalone 53.72 52.79 0.17
Satimage 90.73 86.16 0.00
Waveform 79.20 83.74 0.00
Page-blocks 95.87 93.92 0.00
CoIL2000 93.63 93.89 0.07
Shuttle 99.71 99.60 0.01

W/L/T 3/4/7

Table 11
Comparison of ReliefF and ReliefS on benchmark data: 10-fold cross validation accuracy (%) of 5-NN on target
sets of features chosen by ReliefF (with m = N), subsets of features chosen by ReliefF (with m ≈ 1

10 N), and

subsets of features chosen by ReliefS (with m ≈ 1
10 N). P reports the probability associated with a Student’s

paired two-tailed t-Test

A B C

Target set ReliefF ReliefS P

(m = N) (m ≈ 1
10 N) (m ≈ 1

10 N) (A, B) (A, C) (B, C)

Iris 97.33 97.33 97.33 1 1 1
Glass 71.95 65.84 67.23 0.01 0.04 0.40
WDBC 95.43 95.43 96.71 0.99 0.09 0.08
Balance 77.42 76.97 77.42 0.79 1 0.79
Pima-Indian 73.84 65.61 72.27 0.02 0.21 0.04
Vehicle 69.27 66.01 69.16 0.04 0.92 0.09
German 72.50 70.60 72.60 0.06 0.94 0.06
Segment 95.76 95.84 96.19 0.44 0.25 0.35
Abalone 52.79 52.79 54.51 1 0.04 0.04
Satimage 86.16 85.75 86.11 0.18 0.84 0.27
Waveform 83.74 83.48 83.38 0.49 0.36 0.83
Page-blocks 93.92 91.17 89.73 0.00 0.00 0.00
CoIL2000 93.89 93.77 93.77 0.15 0.15 1
Shuttle 99.60 99.60 99.60 1 1 1

W/L/T 0/5/9 2/2/10 5/1/8

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 71

To examine the effect of reduction of training instances and verify the effectiveness of

ReliefS, for each data set, two feature subsets of the same cardinality are selected from
the top of the two resulting lists produced by ReliefF and ReliefS with the same number
of sampled instances (we choose m ≈ 10%N , corresponding to the smallest bucket size,
in our experiments). Table 11 records the 10-fold cross validation results of 5-NN on the
subsets of features chosen by ReliefF (column B) or ReliefS (column C). We use the results
on the target sets of features chosen by ReliefF with all instances (m = N) as the reference
point (column A) in comparison of ReliefF and ReliefS. As discussed in Section 5.1, for
feature ranking methods like ReliefF, the order of features in a resulting list is important
for subset selection. However, learning accuracy on a selected subset may not be sensitive
to the order of features; as long as two subsets contain the same features (having equal Pre-
cision values), they can result in the same learning accuracy for a given learning algorithm.
Therefore, in order to show the effect of the different orders of features, we choose two
subsets of different features of cardinality n from the top of the two resulting feature lists
to obtain the accuracy for 5-NN.

Table 11 also contains P values resulting from pair-wised comparisons of columns A,
B, and C. P (A, B) values for columns A and B suggest that there are 5 pairs of average
accuracy rates that are significantly different and the subsets selected by ReliefF with m ≈
1

10N cause accuracy decrease in all 5 cases. P (A, C) values for columns A and C show
that there are 4 pairs of average accuracy rates that significantly different, and the subsets
selected by ReliefS with m ≈ 1

10N result in accuracy increase for 2 data sets and decrease
for 2 data sets among the 4 cases. We then further compare the 5-NN results using the
feature subsets of ReliefS and ReliefF with m ≈ 1

10N directly. P (B, C) values for columns
B and C indicate that there are 6 pairs of average accuracy rates that are significantly
different. It is clear that the subsets selected by ReliefS with m ≈ 1

10N result in better
accuracy than the subsets selected by ReliefF with m ≈ 1

10N for 5 data sets and worse
accuracy for only one data set among the 6 cases. According to the above results, we
conclude that with the same number of sampled instances, ReliefS in general achieves
better performance than ReliefF in terms of learning accuracy and hence selective sampling
is an effective approach for active feature selection.

7. Conclusions and further work

In this paper, we present a case for active feature selection using a formalism of selec-
tive sampling. We choose an efficient feature selection algorithm ReliefF in our case study
to evaluate whether selective sampling has consistent advantages over random sampling.
In particular, we use the kd-tree to partition data and select instances from the partitions.
We conduct extensive experiments to evaluate the performance of active feature selection.
Significant time savings are observed using the Raw Distance performance measure. Im-
provement of learning accuracy is reported for the nearest neighbor classifier on numeric
data.

Although the experimental study demonstrates the effectiveness of active feature selec-
tion, we plan future work along the following lines: (1) to investigate why ReliefS still
works in cases where data is not purely numeric and explore different methods of handling

72 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

nominal features; (2) to automatically determine the cost-effective percentage of instances

for selective sampling and investigate its performance on large data sets (e.g., Web data);
(3) to investigate other means of exploiting data characteristics for selective sampling; and
(4) to apply selective sampling to the vast body of feature selection and other data pre-
processing algorithms [38].

Acknowledgements

We thank Bret Ehlert, Feifang Hu, Manoranjan Dash, Hongjun Lu, and Lance Parsons
for their contributions to this work. We are grateful to the anonymous reviewers who have
provided many helpful and constructive suggestions on an earlier version of this paper. An
earlier short version of this work was published in the proceedings of the 19th International
Conference on Machine learning, 2002 [39]. This work is in part based on the project
supported by National Science Foundation under Grant No. IIS-0127815 for H. Liu, and
on Grant-in-Aid for Scientific Research on Priority Areas (B), No. 759: Active Mining
Project by Ministry of Education, Culture, Sports, Science and Technology of Japan for H.
Motoda.

References

[1] R. Agrawal, T. Imielinski, A. Swami, Database mining: a performance perspective, IEEE Trans. Knowledge
Data Engrg. 5 (6) (1993) 914–925.

[2] R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proc. Internat. Conf. Very Large
Data Bases, Santiago, Chile, 1994, pp. 487–499.

[3] D.W. Aha, D. Kibler, M.K. Albert, Instance-based learning algorithms, Machine Learning 6 (1991) 37–66.
[4] S.D. Bay, The UCI KDD archive, 1999, http://kdd.ics.uci.edu.
[5] C.L. Blake, C.J. Merz, UCI Repository of machine learning databases, 1998, http://www.ics.uci.

edu/~mlearn/MLRepository.html.
[6] A.L. Blum, P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelli-

gence 97 (1997) 245–271.
[7] P.S. Bradley, U. Fayyad, C. Reina, Scaling clustering algorithms to large databases, in: Proceedings of the

Fourth International Conference on Knowledge Discovery & Data Mining, New York, AAAI Press, Menlo
Park, CA, 1998, pp. 9–15.

[8] C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge
Discovery 2 (1998) 121–167.

[9] W.G. Cochran, Sampling Techniques, Wiley, New York, 1977.
[10] D. Cohn, L. Atlas, R. Ladner, Improving generalization with active learning, Machine Learning 15 (1994)

201–221.
[11] S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, in: Proceedings of the Eighteenth

International Conference on Machine Learning, Williamstown, MA, 2001, pp. 74–81.
[12] M. Dash, H. Liu, Feature selection for classification, Intelligent Data Analysis: An Internat. J. 1 (3) (1997)

131–156.
[13] M. Dash, H. Liu, Feature selection for clustering, in: Proceedings of the Fourth Pacific Asia Conference on

Knowledge Discovery and Data Mining, (PAKDD-2000), Kyoto, Japan, Springer, Berlin, 2000, pp. 110–
121.

[14] M. Dash, H. Liu, H. Motoda, Consistency based feature selection, in: Proceedings of the Fourth Pacific Asia
Conference on Knowledge Discovery and Data Mining, (PAKDD-2000), Kyoto, Japan, Springer, Berlin,
2000, pp. 98–109.

H. Liu et al. / Artificial Intelligence 159 (2004) 49–74 73

[15] M. Dash, H. Liu, J. Yao, Dimensionality reduction of unsupervised data, in: Proceedings of the Ninth IEEE

International Conference on Tools with AI (ICTAI’97), Newport Beach, CA, IEEE Computer Society, 1997,
pp. 532–539.

[16] T.G. Dietterich, Machine learning research: four current directions, AI Magazine 18 (4) (1997) 97–136.
[17] J.G. Dy, C.E. Brodley, Feature subset selection and order identification for unsupervised learning, in: Pro-

ceedings of the Seventeenth International Conference on Machine Learning, Stanford, CA, 2000, pp. 247–
254.

[18] J.G. Dy, C.E. Brodley, Visualization and interactive feature selection for unsupervised data, in: Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston,
MA, 2000, pp. 360–364.

[19] Y. Freund, H. Seung, E. Shamir, N. Tishby, Selective sampling using the query by committee algorithm,
Machine Learning 28 (1997) 133–168.

[20] J.H. Friedman, J.L. Bentley, R.A. Finkel, An algorithm for finding best matches in logarithmic expected
time, ACM Trans. Math. Software 3 (1977) 209–226.

[21] V. Gaede, O. Günther, Multidimensional access methods, ACM Comput. Surv. 30 (2) (1998) 170–231.
[22] B. Gu, F. Hu, H. Liu, Sampling: knowing whole from its part, in: H. Liu, H. Motoda (Eds.), Instance Selec-

tion and Construction for Data Mining, Kluwer Academic, Boston, MA, 2001, pp. 21–38.
[23] M.A. Hall, Correlation based feature selection for machine learning, PhD Thesis, University of Waikato,

Dept. of Computer Science, 1999.
[24] M.A. Hall, Correlation-based feature selection for discrete and numeric class machine learning, in: Proceed-

ings of the Seventeenth International Conference on Machine Learning (ICML-00), Stanford, CA, Morgan
Kaufmann, San Francisco, CA, 2000.

[25] Se June Hong, Use of contextual information for feature ranking and discretization, IEEE Trans. Knowledge
Data Engrg. 9 (5) (1997) 718–730.

[26] T. Joachims, Text categorization with support vector machines: learning with many relevant features, in: C.
Nedellec, C. Rouveirol (Eds.), Proceedings of 10th European Conference on Machine Learning, Chemnitz,
Germany, Springer, Berlin, 1998, pp. 137–142.

[27] Y. Kim, W. Street, F. Menczer, Feature selection for unsupervised learning via evolutionary search, in: Pro-
ceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Boston, MA, 2000, pp. 365–369.

[28] K. Kira, L.A. Rendell, The feature selection problem: traditional methods and a new algorithm, in: Proceed-
ings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, AAAI Press/The MIT Press,
Menlo Park, CA, 1992, pp. 129–134.

[29] K. Kira, L.A. Rendell, A practical approach to feature selection, in: Sleeman, P. Edwards (Eds.), Proceed-
ings of the Ninth International Conference on Machine Learning (ICML-92), Aberdeen, Scotland, Morgan
Kaufmann, San Francisco, CA, 1992, pp. 249–256.

[30] J. Kivinen, H. Mannila, The power of sampling in knowledge discovery, in: SIGMOD/PODS’94, ACM,
1994, pp. 77–85.

[31] R. Kohavi, G.H. John, Wrappers for feature subset selection, Artificial Intelligence 97 (1–2) (1997) 273–324.
[32] I. Kononenko, Estimating attributes: Analysis and extension of RELIEF, in: F. Bergadano, L. De Raedt

(Eds.), Proceedings of the European Conference on Machine Learning, Catania, Italy, Springer, Berlin,
1994, pp. 171–182.

[33] I. Kononenko, E. Simec, M. Robnik-Sikonja, Overcoming the myopia of inductive learning algorithms with
RELIEFF, Appl. Intelligence 7 (1997) 39–55.

[34] P. Langley, Selection of relevant features in machine learning, in: Proceedings of the AAAI Fall Symposium
on Relevance, AAAI Press, 1994, pp. 140–144.

[35] E. Leopold, J. Kindermann, Text categorization with support vector machines. How to represent texts in
input space?, Machine Learning 46 (2002) 423–444.

[36] D. Lewis, W. Gale, A sequential algorithm for training text classifiers, in: Proceedings of the Seventeenth
Annual ACM-SIGR Conference on Research and Development in Information Retrieval, 1994, pp. 3–12.

[37] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Kluwer Academic,
Boston, MA, 1998.

[38] H. Liu, H. Motoda (Eds.), Instance Selection and Construction for Data Mining, Kluwer Academic, Boston,
MA, 2001.

74 H. Liu et al. / Artificial Intelligence 159 (2004) 49–74

[39] H. Liu, H. Motoda, L. Yu, Feature selection with selective sampling, in: Proceedings of the Nineteenth

International Conference on Machine Learning, Sidney, Australia, 2002, pp. 395–402.

[40] T.M. Mitchell, Machine Learning, McGraw-Hill, New York, 1997.
[41] A.W. Moore, An introductory tutorial on kd-trees, Extract from PhD Thesis Tech Report No. 209, Computer

Laboratory, University of Cambridge, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 1991.
[42] A.Y. Ng, On feature selection: learning with exponentially many irrelevant features as training examples, in:

Proceedings of the Fifteenth International Conference on Machine Learning, Madison, WI, 1998, pp. 404–
412.

[43] K.S. Ng, H. Liu, Customer retention via data mining, AI Rev. 14 (6) (2000) 569–590.
[44] K. Nigam, A.K. Mccallum, S. Thrun, T. Mitchell, Text classification from labeled and unlabeled documents

using EM, Machine Learning 39 (2000) 103–134.
[45] M. Robnik-Sikonja, I. Kononenko, An adaptation of relief for attribute estimation in regression, in: Proceed-

ings of Fourteenth International Conference on Machine Learning, Nashville, TN, 1997, pp. 296–304.
[46] M. Robnik-Sikonja, I. Kononenko, Attribute dependencies, understandability and split selection in tree based

models, in: Proceedings of Sixteenth International Conference on Machine Learning, Bled, Slovenia, 1999,
pp. 344–353.

[47] M. Robnik-Sikonja, I. Kononenko, Comprehensible interpretation of relief’s estimates, in: Proceedings of
Eighteenth International Conference on Machine Learning, Williamstown, MA, 2001, pp. 433–440.

[48] M. Robnik-Sikonja, I. Kononenko, Theoretical and empirical analysis of Relief and ReliefF, Machine Learn-
ing 53 (2003) 23–69.

[49] N. Roy, A. McCallum, Toward optimal active learning through sampling estimation of error reduction, in:
Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, 2001,
pp. 441–448.

[50] G. Schohn, D. Cohn, Less is more: active learning with support vector machines, in: Proceedings of the
Seventeenth International Conference on Machine Learning, Stanford, CA, 2000, pp. 839–846.

[51] M.R. Sikonja, Speeding up Relief algorithms with k–d trees, in: Proceedings of the Electrotechnical and
Computer Science Conference, ERK’98, 1998.

[52] N.A. Syed, H. Liu, K.K. Sung, A study of support vectors on model independent example selection, in:
S. Chaudhuri, D. Madigan (Eds.), Proceedings of ACM SIGKDD, International Conference on Knowledge
Discovery and Data Mining, ACM, New York, 1999, pp. 272–276.

[53] L. Talavera, Feature selection as a preprocessing step for hierarchical clustering, in: Proceedings of Interna-
tional Conference on Machine Learning (ICML’99), Bled, Slovenia, 1999, pp. 389–397.

[54] C.A. Thompson, M.E. Califf, R.J. Mooney, Active learning for natural language parsing and information
extraction, in: Proceedings of the Sixteenth International Conference on Machine Learning, Bled, Slovenia,
Morgan Kaufmann, San Francisco, CA, 1999, pp. 406–414.

[55] S. Tong, D. Koller, Support vector machine active learning with applications to text classification, Machine
Learning Res. 2 (2001) 45–66.

[56] I.H. Witten, E. Frank, Data Mining—Practical Machine Learning Tools and Techniques with JAVA Imple-
mentations, Morgan Kaufmann, San Francisco, CA, 2000.

[57] E. Xing, M. Jordan, R. Karp, Feature selection for high-dimensional genomic microarray data, in: Proceed-
ings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, 2001.

[58] L. Yu, H. Liu, Feature selection for high-dimensional data: a fast correlation-based filter solution, in: Pro-
ceedings of the Twentieth International Conference on Machine Learning, Washington, DC, 2003, pp. 856–
863.

