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Abstract

In this paper, we report on the development of a genetic algorithm (GA) for pattern recognition analysis of multivariate

chemical data. The GA identifies feature subsets that optimize the separation of the classes in a plot of the two or three largest

principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the

selected features is about differences between classes in the data set. The principal component (PC) plot function as embedded

information filter. Sets of features are selected based on their principal component plots, with a good principal component plot

generated by features whose variance or information is primarily about differences between classes in the data set. This limits

the GA to search for these types of feature subsets, significantly reducing the size of the search space. In addition, the pattern

recognition GA focuses on those classes and/or samples that are difficult to classify by boosting their weights over successive

generation using a perceptron to learn the class and sample weights. Samples that consistently classify correctly are not as

heavily weighted in the analysis as samples that are difficult to classify. The pattern recognition GA integrates aspects of

artificial intelligence and evolutionary computations to yield a ‘‘smart’’ one-pass procedure for feature selection. The efficacy

and efficiency of the pattern recognition GA is demonstrated via problems from chemical communication and environmental

analysis. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many relationships in chemical data cannot be ex-

pressed in quantitative terms. These relationships are

better expressed in terms of similarity and dissimilarity

among groups of multivariate data. The task confront-

ing the chemist when investigating these types of

relationships is two-fold: (1) Can the data be divided

into categories for the prediction of some property?,

and (2) Can the features necessary for differentiating

the classes in the data be identified? Pattern recogni-

tion techniques are well suited for tackling both these

tasks since they can display variability between a large

number of samples and show the major clustering

trends in large data sets [1–3].

Pattern recognition methods were originally devel-

oped to solve the class membership problem. In a

typical pattern recognition study, samples are classi-

fied according to a specific property using measure-

ments indirectly related to that property. An empirical

relationship or classification rule is developed from a

set of samples for which the property of interest and

the measurements are known. The classification rule is

then used to predict the property in samples that are

not part of the original training set. The property in

question may be the type of fuel responsible for a spill,

and the measurements are the areas of selected gas

chromatographic peaks. Classification is synonymous
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with pattern recognition and scientist have turned to it

to analyze the large data sets generated in studies that

involve environmental or biological samples.

Problems can arise when applying pattern recog-

nition techniques to chemical data. Classification

success rates vary with the pattern recognition method

employed. Unfavorable classification results are ob-

tained for the prediction set despite a linearly separa-

ble training set. Automation of these techniques for

the solution of a general class of pattern recognition

problems is often difficult.

The basic premise underlying the research des-

cribed in this paper is that all classification methods

will work well when the problem is simple. By

identifying the appropriate features, a ‘‘hard’’ problem

is reduced to ‘‘simple’’ one. Thus, our goal is feature

selection, in order to increase the signal to noise ratio

of the data by discarding measurements on compo-

nents that are not characteristic of the source profile

of the classes in the data set. To ensure identification

of all relevant features, it is best that a multivariate

approach to feature selection be employed. The ap-

proach should also take into account the existence of

redundancies in the data.

In this paper, we report on the development of a

genetic algorithm (GA) for pattern recognition analy-

sis of multivariate chemical data [4–7]. The GA

identifies a set of features that optimize the separation

of the classes in a plot of the two or three largest

principal components of the data. Since principal

components maximize variance, the bulk of the infor-

mation encoded by the selected features is about

differences between the classes in the data set. The

principal component plot used by the fitness function

acts as an embedded information filter. Sets of features

are selected based on their principal component plots,

with a good principal component plot generated by

features whose variance information is primarily about

differences between the classes. This limits the search

to these types of feature subsets, thereby significantly

reduces the size of the search space. In addition, the

GA can focus on those classes and/or samples that are

difficult to classify by boosting their weights over

successive generations using a perceptron to learn the

class and sample weights. Samples that consistently

classify correctly are not as heavily weighted in the

analysis as samples that are difficult to classify. The

pattern recognition GA integrates aspects of artificial

intelligence and evolutionary computations to yield a

‘‘smart’’ one-pass procedure for feature selection. The

efficacy and efficiency of the pattern recognition GA

is demonstrated via problems from chemical commu-

nication and environmental analysis.

2. Pattern recognition GA

A block diagram of the pattern recognition GA is

shown in Fig. 1. The GA builds a population of binary

strings of fixed length, each of which represents a

potential solution to the pattern recognition problem.

For a feature to be included in the subset, it is ne-

cessary for the corresponding bit in the string to be set

at 1. If the bit is set to 0, the corresponding feature is

not included.

During each generation, the strings are decoded

yielding the actual feature subset that is sent to the

fitness function for evaluation. Each string is assigned

a value by the fitness function, which is a measure of

the degree of separation between the classes in a prin-

cipal component map of the data defined by the

extracted feature subset. The fitness (i.e., the quality

Fig. 1. A block diagram of the pattern recognition GA.
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of the proposed feature subset for the pattern recog-

nition problem) is used to select potential solutions for

recombination, which produces a new population of

strings. The power of the GA arises from recombina-

tion [8,9], which causes a structured yet randomized

exchange of information between solutions, with the

expectation that good solutions can generate even

better ones. In addition, some of the binary strings

may undergo mutation, where one of the bits is ran-

domly changed.

The aforementioned process (evaluation, selection,

crossover, reproduction, and adjustment of internal

parameters) is repeated until a specified number of

generations or a feasible solution has been found. The

pattern recognition GA for chemoinformatics differs

from conventional genetic algorithms in the types of

operators that it employs. The operators unique to the

pattern recognition GA are described below.

2.1. Evaluation

The pattern recognition GA uses machine emula-

tion of human pattern recognition to score the princi-

pal component plots. To facilitate the tracking and

scoring of principal component plots, class and sam-

ple weights, which are an integral part of the fitness

function, are computed (see Eqs. (1) and (2)). The

class weights sum to 100; the sample weights for

samples constituting a particular class sum to a value

equal to the corresponding class weight.

CWðcÞ ¼ 100
CWðcÞX

c

CWðcÞ
; ð1Þ

SWcðsÞ ¼ CWðcÞ SWcðsÞX

sac

SWcðsÞ
: ð2Þ

Each principal component plot generated for each

chromosome after the subset of features in the chro-

mosome has been extracted is scored using the K-

nearest neighbor (K-NN) classification algorithm [10].

For a given data point, Euclidean distances are com-

puted between it and every other point in the principal

component plot. These distances are arranged from

smallest to largest. A poll is then taken of the point’s

k-nearest neighbors. For the most rigorous classifica-

tion, k equals the number of samples in the class to

which the point belongs. The number of k-nearest

neighbors with the same

FðdÞ ¼
X

c

X

sac

1

Kc

� SHCðsÞ � SWðsÞ; ð3Þ

class label as the sample point in question, the so-

called sample hit count (SHC), is computed (0V
SHC(s)VKc). It then becomes a simple matter to

score each principal component plot (see Eq. (3)).

To better understand the scoring of the principal

component plots, consider a data set with two classes,

which have been assigned equal weights. Class 1 has

20 samples, and class 2 has 50 samples. At generation

0, all samples in a given class will have the same

weight. Thus, each sample in class 1 has a sample

weight of 2.5, whereas each sample in class 2 has a

weight of 1. Suppose a sample from class 1 has as its

20 nearest neighbors 14 class one samples. Hence,

SHC/K = 0.7, and (SHC/K)� SW=0.7� 2.5, which

equals 1.75. By using (SHC/Kc)� SW for each sam-

ple, the principal component plot can be scored.

2.2. Adjusting internal parameters

The GA is able to focus on samples and classes

that are difficult to classify by boosting their weights

over successive generations (see Fig. 2). In order to

boost the weights, it is necessary to first compute the

sample hit rate, SHR(s), which is the mean value of

SHC/Kc over all feature subsets in a particular gen-

eration. SHR(s), which is a measure of the difficulty

of classifying a particular sample. If a sample is

difficult to classify, it has a low sample hit rate since

it has a low SHC/Kc value in most feature subsets of

the population. If a sample is easy to classify, it has a

high sample hit rate since it has a high SHC/Kc value

in most feature subsets of the population:

SHRðsÞ ¼ 1

/

X/

i¼1

SHCiðsÞ
K

; ð4Þ

CHRgðcÞ ¼ AVGðSHRgðsÞ : 8sacÞ: ð5Þ

Next, the class hit rate (see Eq. (5)), which is the

average sample hit rate for all of the samples in a class,
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is computed. The class and sample weights are then

adjusted using a perceptron (see Eqs. (6) and (7)).

Classes with a low class hit rate and samples with a

low sample hit rate are weighted more heavily than

classes or samples that score well. The user must set

the momentum, P. The value of P should be high

enough to facilitate learning while ensuring that a

particular sample or class does not dominate the cal-

culation, which would result in other samples and/or

classes not contributing to the fitness function. After a

certain number of generations, the class weights do

not change. Eq. (6) is then turned off and the GA

focuses exclusively on the troublesome samples via

Eq. (7). During each generation, class and sample

weights are updated (i.e., boosted) using the class and

sample hit rates from the previous generation ( g + 1 is

the current generation, whereas g is the previous

generation.) Boosting of sample and class weights is

crucial because it modifies the fitness landscape, as the

population evolves, potentially mitigating the problem

of convergence to a local optimum.

CWgþ1ðsÞ ¼ CWgðsÞ þ Pð1� CHRgðsÞÞ; ð6Þ

SWgþ1ðsÞ ¼ SWgðsÞ þ Pð1� SHRgðsÞÞ: ð7Þ

2.3. Reproduction

Selection, crossover, and mutation operators are

applied to the chromosomes to develop new and

potentially better solutions. The selection operator

used by the pattern recognition GA is implemented

by ordering the population of strings, i.e., the potential

solutions, from best to worst by their fitness while

simultaneously generating a copy of the same pop-

ulation and randomizing the order of the strings in this

copy with respect to their fitness. A fraction of the

population is then selected as per the selection pres-

sure, which is usually set at 0.5. The top half of the

ordered population is mated with strings from the top

half of the random population, guaranteeing the best

50% are selected for reproduction, while every string

in the randomized copy has a uniform chance of being

selected due to the randomized selection criterion

imposed on the strings from this population.

For each pair of strings selected for mating, two

new strings are generated using a variation of three-

point crossover (see Fig. 3). As in the case of simple

three-point crossover, the length of each new string or

solution is the same as the dimensionality of the data.

However, the crossover operator used by the pattern

recognition GA is not compelled to preserve order

Fig. 2. Block diagram of the boosting algorithm used to adjust the weights of difficult classes and/or samples.
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among exchanged string fragments. This safeguards

the loss of information or features in the population.

Furthermore, this variation of three-point crossover

may be useful in searching for good string arrange-

ments. If the current population has bad ordering,

where features with a high synergism are spaced apart

at great distances, simple crossover would probably

destroy these important allele packets. On the other

hand, there is a chance to obtain good allele ordering,

by using a crossover operator with a reordering

algorithm embedded in it.

The resulting population of strings, both parents

and children, are sorted by their fitness and the top /
strings are retained for the next generation. The new

population is expected to perform better on average

than its predecessor because the selection criterion

used for reproduction exhibits bias for the higher-

ranking strings. However, the aforementioned repro-

duction operators also assure a significant degree of

diversity in the population, since the crossover points

and reordering of exchanged string fragments of each

chromosome pair is selected at random.

3. Chemical communication

The first data set used to evaluate the efficiency and

efficacy of the pattern recognition GA consisted of gas

chromatograms of the post-pharygeneal gland (PPG)

hydrocarbons extracts of the ant Cataglyphis niger.

Previous workers [11–13] have shown that both

cuticular and PPG hydrocarbons of ants are important

in nestmate recognition, the process by which ants

recognize both colony and social caste of conspecifics.

Because the queen plays a central role in the ant

colony, it is logical to assume that she influences the

nestmate recognition cues used by individual ants.

To assess this hypothesis, a subset of ants from a

laboratory colony were isolated and furnished with a

new queen, which also came from the same laboratory

colony. (The new queen was a reserve queen in the

laboratory colony.) The hydrocarbon profiles of the

ants in this sub-colony were monitored over time: 0,

1, 2, and 3 months. The entomologists who performed

this experiment wanted to answer the following ques-

tion: Do the PPG hydrocarbons of the ants in the sub-

colony change systematically over time to reflect the

profile of their new queen?

The following experimental protocol was used to

generate the hydrocarbon profile data. Random sam-

ples of 10 ants were sacrificed at specific time

intervals (0, 1, 2, and 3 months) and their PPG hydro-

carbons were quantified by gas chromatography using

eicosane (C20) as the interval standard. To assure

equal treatment of the data, 23 peaks out of a total

of 72 were chosen for pattern recognition analysis.

Fig. 3. Three-point crossover with a reordering algorithm embedded in it. Instead of swapping alleles and simultaneously preserving their

position, four chromosome fragments are distributed and recombined at random with four factorial unique possibilities.
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The 23 peaks selected could be accurately and reliably

quantified by GC/MS. For pattern recognition analy-

sis, each gas chromatogram was represented by a data

vector, x = (x1, x2, x3 . . . xj . . . x23), where xj is the area
of the jth peak normalized using the total integrated

peak area so each peak was expressed as a fraction of

the total. The data were auto-scaled to ensure that each

peak had equal weight in the analysis.

The first step in the study was to apply principal

component analysis [14] to the data. Principal compo-

nent analysis is the most widely used multivariate

analysis technique in science and engineering. It is a

method for transforming the original measurement

variables into new, uncorrelated variables called prin-

cipal components. Each principal component is a

linear combination of the original measurement vari-

ables. Using this method is analogous to finding a new

coordinate system better at conveying information

present in the data than axes defined by the original

measurement variables. This new coordinate system is

linked to variation in the data. The basis vectors of this

new coordinate system are the principal components.

Often, only the two or three largest principal compo-

nents are necessary to explain all of the information

present in a data set if the data contains a large number

of interrelated measurement variables. Using principal

component analysis, dimensionality reduction, classi-

fication of samples, and identification of outliers in

high dimensional data is possible.

Fig. 4 shows a plot of the two largest principal

components of the 40 C. niger ant samples. Each ant

sample is represented as a point on the PC map. 1

represents 0 month ants, 2 represents 1 month ants, 3

represents 2 month ants, and 4 represents 3 month ants.

When the gas chromatogram of the queen was pro-

jected onto the principal component (PC) map defined

by the 23 gas chromatographic peaks and the 40 ant

samples, it was not evident whether any of the groups

possessed a hydrocarbon profile similar to the queen.

A GA for pattern recognition analysis was used

to uncover features characteristic of the gas chroma-

tographic profile of each group. The GA identified

Fig. 4. A plot of the two largest principal components of the 40 C. niger ant samples developed from the 23 gas chromatographic peaks. Each

ant sample is represented as a point in the principal component map (1 = 0 month ants, 2 = 1 month ants, 3 = 2 month ants, and 4 = 3 month ants).

The queen has been projected onto this PC map.
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features by sampling key feature subsets, scoring their

PC plots, and tracking those classes and/or samples

that were difficult to classify. A boosting routine was

used to steer the population to an optimal solution.

After 100 generations, the GA identified five gas chro-

matographic peaks whose PC plot showed clustering

of the ants on the basis of time period (see Fig. 5).

When the gas chromatogram of the queen was pro-

jected onto the principal component (PC) map defined

by the five gas chromatographic peaks and the 40 ant

samples, it was evident that 3 month ants possessed a

hydrocarbon profile similar to the queen. This result

further reinforced the hypothesis formulated by these

workers that PPG hydrocarbons play an important role

in nestmate recognition.

4. Post-consumer identification of plastics

The second data set used to evaluate the perform-

ance of the pattern recognition GA consisted of 188

Raman spectra of six common household plastics:

High density polyethylene (HDPE), low density

polyethylene (LDPE), polyethylene terephthalate

(PET), polypropylene (PP), polystyrene (PS), and

polyvinylchloride (PVC). The overall goal of this

study was to develop a potential method to differ-

entiate common household plastics by type using

Raman spectroscopy. Since the most valuable repro-

cessed plastics are prepared from pure polymer

streams, sorting of plastics by type is crucial to ensure

the economic viability of recycling.

Each plastic sample was cut from collected con-

tainers obtained from residential homes and BFI

Fig. 5. A plot of the two largest principal components of the 40 C. niger ant samples developed from the five gas chromatographic peaks

identified by the pattern recognition GA. Each ant sample is represented by a point in the principal component plot (1 = 0 month ants, 2 = 1

month ants, 3 = 2 month ants, and 4 = 3 month ants). The queen has been projected onto this PC map.

Table 1

Training set

Plastic type Number of spectra

HDPE 33

LDPE 26

PET 35

PP 26

PS 32

PVC 17

Total 169
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Recycling in Pocatello, ID. The sample geometry was

chosen based on optimal placement in the sample

holder of Raman spectrometer. Raman spectra were

measured using a Spex 500 M 1/2 meter Raman

spectrometer incorporating a Spex Model 1449 col-

lection optics module, an Omnichrome Model 160 T/

B air-cooled Ar + laser and liquid nitrogen cooled

charged coupled detector device. Further details about

the data can be found elsewhere [15].

Each Raman spectrum, an average of 16 one-

second scans, was collected over the wave number

range 850 to 1800 cm� 1 to yield 1093 points. The

Raman spectra were boxcar averaged every 10 points

yielding 218-point spectra, which were baseline cor-

rected for offsets using a linear polynomial. Each

spectrum was then normalized to unit length to adjust

for variations in the optical path length.

The spectra were divided into a training set of 169

spectra (see Table 1) and a prediction set of 19 spectra

(see Table 2). Members of the prediction set were

chosen by random lot. The data were auto-scaled to

ensure that each wavelength had equal weight in the

analysis. For pattern recognition analysis, each plastic

sample was represented by a data vector, x = (x1, x2,

x3 . . . xj, x218), where xj is the Raman intensity of the

jth point of the baseline corrected normalized Raman

spectrum.

The first step in the study was to apply principal

component analysis to the data. Fig. 6 shows a plot

of the two largest principal components of the 218-

point Raman spectra that comprised the training set.

Each spectrum is represented as a point in the princi-

pal component plot (1 =HDPE, 2 = LDPE, 3 = PET,

Table 2

Prediction set

Plastic type Number of spectra

HDPE 5

LDPE 2

PET 5

PP 2

PS 5

PVC 0

Total 19

Fig. 6. A plot of the two largest principal components of the 218-point Raman spectra that comprised the training set. Each spectrum is

represented as a point in the principal component map (1 =HDPE, 2 = LDPE, 3 = PET, 4 = PP, 5 = PS, and 6 = PVC). Reprinted with the kind

permission of SPIES from B. K. Lavine, and A.J. Moores, ‘‘Genetic Algorithms for Pattern Recognition Analysis and Fusion of Sensor

Data,’’ in Pattern Recognition, Chemometrics, and Imaging for Optical Environmental Monitoring, K. Siddiqui and D. Eastwood (Eds.),

Proceedings of SPIES, 1999, pp. 103–112.
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4 = PP, 5 = PS, and 6 = PVC). The overlap of HDPE,

LDPE, PP and PS in the PC plot is not surprising in

view of the similarity of their Roman spectra.

The pattern recognition GA was used in this study

to uncover features characteristic of the Raman profile

of each class. Features were identified by sampling

key feature subsets, scoring their principal component

plots, and tracking classes and/or samples, which were

most difficult to classify. The boosting routine used

this information to steer the population to an optimal

solution. After 100 generations, the pattern recogni-

tion GA identified nine spectral features whose prin-

cipal component plot showed clustering of the Raman

spectra on the basis of class (see Fig. 7).

A prediction set of 19 Raman spectra was used (see

Table 2) to assess the predictive ability of the nine

wavelengths identified by the pattern recognition GA.

The prediction set samples were projected onto the

principal component map developed from the 169

spectra and nine wavelengths. Fig. 8 shows the pro-

jection of the prediction set samples onto a principal

component map defined by the nine wavelengths

selected by the GA. Each projected sample lies in

a region of the map occupied by plastic samples

possessing the same class label. Evidently, the GA

can identify features in the Raman spectra character-

istic of the plastic-type. This suggests that Raman

spectroscopy can be used to sort plastic containers by

type.

5. Conclusion

The advantages of using the pattern recognition

GA for feature selection are four-fold. First, chance

classification is not a serious problem since the bulk

of the variance or information content of the features

selected is about the pattern recognition problem of

interest. Second, features that contain discriminatory

information about a particular classification problem

will be correlated, which is why feature selection

should be performed using methods based on princi-

pal component analysis. Third, the principal compo-

nent analysis routine of the fitness function is able to

dramatically reduce the size of the search space since

it can correctly assess the true dimensionality of the

data ensuring that only those regions of the solution

space with information about the problem of interest

Fig. 7. A plot of the two largest principal components of the 169 Raman spectra that comprise the training set and nine spectral features selected

by the GA. Each spectrum is represented as a point in the principal component map (1 =HDPE, 2 = LDPE, 3 = PET, 4 = PP, 5 = PS, and

6 = PVC). Reprinted with the kind permission of SPIES from B. K. Lavine, and A. J. Moores, ‘‘Genetic Algorithms for Pattern Recognition

Analysis and Fusion of Sensor Data,’’ in Pattern Recognition, Chemometrics, and Imaging for Optical Environmental Monitoring, K. Siddiqui

and D. Eastwood (Eds.), Proceedings of SPIES, 1999, pp. 103–112.
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are investigated. Fourth, the pattern recognition GA

through the PC plot that it generates allows the user to

interpret the meaning of the underlying pattern rec-

ognition relationship in the data and understand how

the decision for a classification is made from the

principal component plot generated.

The approach used by the GA for feature selection

and pattern recognition is the same approach used by

many chemists for multivariate data analysis. How-

ever, the GA has the advantage that it can search a

large space in a systematic manner using human

pattern recognition. The combination of human pat-

tern recognition and machine learning implemented

through the language of reproduction and natural se-

lection produces a learning paradigm superior to that

of man or machine alone because of the synergism

created by coupling different learning approaches.
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